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ABSTRACT

We lay a philosophical framework for the design of overcomplete multidimensional signal decompositions based
on the union of two or more orthonormal bases. By combining orthonormal bases in this way, tight (energy
preserving) frames are automatically produced. The advantage of an overcomplete (tight) frame over a single
orthonormal decomposition is that a signal is likely to have a more sparse representation among the overcomplete
set than by using any single orthonormal basis. We discuss the question of the relationship between pairs of bases
and the various criteria that can be used to measure the goodness of a particular pair of bases. A particular case
considered is the dual-tree Hilbert-pair of wavelet bases. Several definitions of optimality are presented along
with conjectures about the subjective characteristics of the ensembles where the optimality applies. We also
consider relationships between sparseness and approximate representations.

Keywords: Overcomplete decompositions, tight frames, unions of bases, dual-tree transforms, Hilbert pairs of
bases, sparsity.

1. INTRODUCTION

The concept of overcomplete representations for signals has been around for some time. Frames, a particular
class of overcomplete representations, have been defined since the 1950s. A very good introduction to this topic
with many references to earlier work is the pair of tutorial papers by Kovac̆ević and Chebira,1,2 so we do not
repeat this historical material here. However there is still rather a lack of results in the area of optimal design of
overcomplete decompositions of signals, and especially of work which takes account of a number of recent results
in the area of sparse signal representations. Part of the problem has been the strong emphasis on non-redundant
and orthogonal decompositions in the 1980s and 1990s (e.g. the discrete cosine transform and the discrete wavelet
transform), because of their beautiful mathematical properties and highly efficient implementations. However
more recently the potential advantages of overcomplete (redundant) decompositions have been recognized and/or
rediscovered, so the question of optimal design of such systems is highly relevant.

This paper is somewhat tutorial in nature, but it also relates current general ideas about overcompleteness
and sparsity to more specific cases involving Hilbert pairs of orthonormal bases (ONBs). It is in this latter area
that we feel we have some new thoughts and results to offer.

2. TIGHT FRAMES AND UNIONS OF ORTHONORMAL BASES

Here we define some key mathematical concepts and set up notation for dealing with frames that are unions of
orthonormal bases (ONBs). This rather brief analysis follows closely the fundamental ideas about frames, as
presented recently by Kovac̆ević and Chebira.1 We define the basis vectors of the frame to be columns of the
n×m matrix Φ such that any n-dimensional signal x is represented using an m-dimensional coefficient vector y
by

x = Φy (1)

It is simplest (but often not optimal – see later) to calculate y from x using an m× n matrix Φ∗, so that

y = Φ∗x where ΦΦ∗ = In (2)
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We assume that m ≥ n, and hence we cannot simply say that Φ∗ = Φ−1 unless m = n and Φ is full rank. Note,
in the non-redundant case when m = n, that Φ∗ Φ = Im; whereas in the redundant case when m > n, Φ∗Φ
becomes a projection matrix, projecting from any point in m-dimensional space to the nearest point within the
n-dimensional range space of Φ∗.

In order for Φ and Φ∗ to represent a frame, when y is calculated from x using equation (2) the following
frame bound must be satisfied:

A ||x||2 ≤ ||y||2 ≤ B ||x||2 for all x, and where 0 < A ≤ B (3)

If A = B, the frame is known as a tight frame (TF). Furthermore, if A = B = 1, it is known as a Parseval
tight frame (PTF) because ||y||2 = ||x||2 for any x, and energy is preserved between the signal and transform
domains, as in the standard Parseval theorem for Fourier Transforms.

Now
||y||2 = yHy = xHΦ∗HΦ∗x (4)

Hence we see that if ΦΦH = In so that Φ∗ = ΦH , then Φ∗HΦ∗ = ΦΦH = In. Therefore

||y||2 = xHΦΦHx = xHx = ||x||2 for any x (5)

and so we have a PTF. (Note that we use hermitian transpose, [.]H , for generality here, even though most
matrices are likely to be purely real so transpose, [.]T , would be equivalent.)

If m = n and ΦΦH = In, then this implies that Φ is an orthonormal matrix. Hence a non-redundant PTF
must also be an ONB.

Now let us consider the case m = Kn, where Φ is a union of K n-dimensional ONBs, Φk, k = 1 . . .K, which
are all different from each other:

Φ = 1√
K

[Φ1 Φ2 · · · ΦK ] (6)

For this case:

ΦΦH = 1√
K

[Φ1 · · · ΦK ] . 1√
K




ΦH
1
...

ΦH
K


 = 1

K

K∑

k=1

Φk ΦH
k = 1

K K In = In (7)

Hence a union of K ONBs, scaled by 1/
√

K, produces a PTF. This is not unexpected as each ONB is energy
preserving.

It is worth noting here that one or more additional stages of ONB conversions may follow the first stage of
K parallel ONBs. Typically the ONBs of the new stage(s) operate on vectors which are samples from across
two or more of the first-stage ONB outputs, thus cross-connecting outputs from the first stage. Energy is still
preserved through these later ONBs so the overall Φ still represents a PTF.

3. KEY PROPERTIES OF A PARSEVAL TIGHT FRAME

How do we choose a good Φ or a good set of Φ1 . . . ΦK ?

We can get some important hints on this from the ideas underlying principal components analysis (PCA),
which tells us how to get an optimal Φ when m = n and Φ comprises only one ONB. PCA works as follows.

Given p samples of x, where typically p À n, we form a matrix

X = [x1 x2 · · · xp] (8)

and then calculate the symmetric covariance matrix (strictly an auto-correlation matrix)

SX = 1
p X XH (9)



The equivalent matrix to X in the transform domain, assuming Φ represents a PTF, is then

Y = [y1 y2 · · · yp] = ΦH X (10)

and so the covariance in the transform domain is

SY = 1
p Y Y H = 1

p ΦH X XH Φ = ΦH SX Φ (11)

Assuming Φ ΦH = In (as Φ represents a PTF),

Φ SY ΦH = ΦΦH SX ΦΦH = SX (12)

PCA theory says that an optimum transform is one which diagonalizes SY . An explanation for this, based on
minimizing the off-diagonal energy in SY , is given in the appendix. Hence if m = n, Φ and SY contain the
eigenvectors and eigenvalues respectively of SX .

But what if m > n ? Then the problem becomes more difficult.

For example, let K = 2 so m = 2n and Φ = 1√
2

[Φ1 Φ2] where Φ1 and Φ2 each represent an ONB. Then

SY = ΦH SX Φ = 1√
2

[
ΦH

1

ΦH
2

]
SX

1√
2

[Φ1 Φ2] = 1
2

[
ΦH

1 SX Φ1 ΦH
1 SX Φ2

ΦH
2 SX Φ1 ΦH

2 SX Φ2

]
(13)

Hence SY is diagonalized if ΦH
1 SX Φ1 and ΦH

2 SX Φ2 are both diagonal and if ΦH
1 SX Φ2 = (ΦH

2 SX Φ1)H = On,
where On is a matrix of zeros. This is difficult for 2 reasons:

• It implies that Φ1 and Φ2 must both be eigenvector decompositions of SX , which is not usually possible if
they are to be significantly different from each other;

• It also implies that ΦH
1 times RX must have zero correlation with ΦH

2 times RX , where RXRH
X = SX , (ie

RX is a square root of SX).

But we can make progress if we allow the vectors in Y to be calculated some other way than using equation
(2), while still ensuring that equation (1) is satisfied (for example by a sparsity inducing method such as Matching
Pursuits – see next section). If this produces an approximately diagonal SY with rapidly decaying elements,
such that Φ SY ΦH ' SX , then this implies that we can get a good approximation to X that is sparse in the y
domain, by eliminating the components of Y that correspond to low-valued elements of SY .

Hence we should choose Φ such that this can be achieved!

Let us consider the case of other values for y which still result in the same x when projected using Φy. They
can be expressed as

y = yr + yn where yr = ΦHx and Φyn = 0 (14)

Hence
Φy = Φyr + Φyn = ΦΦHx + 0 = x , assuming that ΦΦH = In (i.e. Φ is a PTF). (15)

yr is known as the range-space component of y, while yn is its null-space component. Note that yn is always
orthogonal to yr, since, if it were not so, yn would affect the value of x = Φy, which it does not do by its
definition above.

Let Θ be an (m− n)×m matrix which generates the null-space components of Φ, so that yn = ΘHz where
z may be any (m−n)-dimensional vector. In order for yn to be always orthogonal to yr, all the rows of Θ must
be orthogonal to all the rows of Φ. In other words

since Φyn = 0, ΦΘHz = 0 ∀ z, and so ΦΘH = O (16)

where O is an n× (m− n) matrix of zeros.



This demonstrates the orthogonality between the rows of Φ and Θ, or between the range-space and null-space
components of y. We note that in general y has m degrees of freedom, while yr = ΦHx has only the n degrees
of freedom of x, and yn = ΘHz has the (m− n) degrees of freedom of z. Hence we may write

y = yr + yn = ΦHx + ΘHz =
[

Φ
Θ

]H [
x
z

]
= ΨH

[
x
z

]
(17)

where we have formed the m×m matrix

Ψ =
[

Φ
Θ

]
(18)

If Θ and Φ both represent PTFs such that ΘΘH = Im−n and ΦΦH = In, then Ψ has the property that

ΨΨH =
[

Φ
Θ

] [
ΦH ΘH

]
=

[
ΦΦH ΦΘH

ΘΦH ΘΘH

]
=

[
In O
OH Im−n

]
= Im (19)

Hence Ψ represents an m-dimensional ONB, of which Φ and Θ are two parts, comprising n and (m − n) basis
functions respectively. This neatly illustrates Naimark’s theorem,1,3 which tell us that ‘every PTF can be realized
as a projection of an ONB from a larger space’.

Returning now to the double ONB (DONB) case when m = 2n and Φ = 1√
2

[Φ1 Φ2], then we can see that a
valid choice for Θ is Θ = 1√

2
[Φ1 (−Φ2)], because

ΦΘH = 1
2 [Φ1 Φ2]

[
ΦH

1

−ΦH
2

]
= 1

2 (Φ1ΦH
1 − Φ2ΦH

2 ) = 1
2 (In − In) = O (20)

Hence SY is now

SY = SYr + SYn = ΦHSXΦ + ΘHSZΘ

= 1
2

[
ΦH

1 SXΦ1 ΦH
1 SXΦ2

ΦH
2 SXΦ1 ΦH

2 SXΦ2

]
+ 1

2

[
ΦH

1 SZΦ1 −ΦH
1 SZΦ2

−ΦH
2 SZΦ1 ΦH

2 SZΦ2

]

= 1
2

[
ΦH

1 (SX + SZ)Φ1 ΦH
1 (SX − SZ)Φ2

ΦH
2 (SX − SZ)Φ1 ΦH

2 (SX + SZ)Φ2

]
(21)

If SZ = SX , the two off-diagonal terms become zero, and if Φ1 and Φ2 both (approximately) diagonalize
(SX + SZ), then SY will be diagonalized. Thus we can overcome the second problem encountered in equation
(13).

We shall now consider how sparsity can be induced in y and how this affects the choice of Φ.

4. SPARSITY

Sparsity has been proposed in recent years as a key aim for many good signal processing algorithms. It allows
signals to be separated efficiently from noise (denoising), and also permits different signal components to be
separated from each other (source separation). Furthermore it can act as an effective tool for regularization of
ill-conditioned processes such as encountered in deconvolution and in compressed sensing.

PCA has long been recognized as a way of achieving a degree of sparsity by largely linear methods, where
Φ is a non-redundant transform (m = n) selected so as to project x in directions that maximise variance and
minimise cross correlations between the components of y (off-diagonal energy in SY ).

When Φ is allowed to become redundant (m > n), each signal vector x no longer has a unique transform-
domain vector y. The minimum energy solution for a PTF is the one in which y = yr = ΦHx and thus lies in
the range-space of Φ. Hence y contains no null-space components yn. This minimizes energy because equation
(26), in the appendix, shows that the total energy of y is the sum of the range-space energy, which equals the
energy of x, and the null-space energy, which is zero when yn is zero. However this is not in general the sparsest



y to give x = Φy. If Φ comprises a union of K ONBs, as in equation (6), then the minimum energy approach
always builds the reconstructed signal from the sum of K equal-amplitude components, each one created by
analysing and reconstructing x with just one of the ONBs Φk. This means that every feature of the signal must
be represented equally in y by each of the K ONBs, shown in the summation terms in equation (7). Clearly this
is not going to give a very sparse representation.

A much better approach is to represent each feature by just one of the ONBs, and to use the ONB whose bases
match the feature most closely (i.e. with fewest terms). This does not require any change to the reconstruction
rule, x = Φy, but it does require significant non-linearities to be introduced to the way that y is calculated
from x. A well-known greedy algorithm that implements a near-optimal solution to this problem is orthogonal
matching pursuits (OMP),4 in which basis vectors are found, one at a time, in decreasing order of their ability
to reduce the error between the input signal and its sparse approximation using the basis vectors found so far.
This is a rather inefficient algorithm for finding many components in large datasets.

A more efficient approach is iterative threshold shrinkage, in which many new components are updated at
each iteration of the algorithm as they gradually appear above a threshold which is being slowly reduced (shrunk)
as the iterations proceed. A good general overview of iterative thresholding methods can be found in Elad et
al.5 A method, closely related to these, is stagewise OMP (StOMP) by Donoho et al.6

The overall effect of these sparsity-inducing algorithms is to create vectors y that minimize a cost function
J(x) which is some measure of sparsity: typically J(x) comprises the Lp-norm of y where 0 ≤ p ≤ 1, plus an
error measure, typically ||x−Φy||2. This produces y, whose range-space component yr is close to ΦHx such that
Φy closely approximates x, and whose null-space component yn is selected so that y = yr + yn is sparse. The
yn component increases the energy of y but usually in a relatively controlled way since the Lp-norm component
of the cost function tends to penalize excessively large y that also minimize J(x). We shall now look at how big
the energy of yn can get.

Let Φ be a union of K ONBs, and let the signal x be very sparse and comprise just a single unit-energy
component that is one of the m = Kn basis vectors, say the ith column φk,i from Φk. Then the sparsest y will
contain just one coefficient, corresponding to φk,i and with amplitude

√
K so as to overcome the 1/

√
K factor

in equation (6). This y will have an energy of K times the energy of x, whereas the minimum energy solution
for y will have the same energy as x because Φ is a PTF. Hence, in this case, the null-space component yn will
have K − 1 times the energy of the range-space component yr (and of x). Because this is the sparsest scenario
for y (just one non-zero component), this represents the worst-case energy amplification by the sparsity-inducing
analysis process, which is therefore by a factor of K for a PTF that is a union of K ONBs.

For the DONB case considered earlier, K = 2, and so the maximum energy of yn equals the energy of yr,
which equals the energy of x. Typically in a region of the signal which is closely approximated by a single basis
vector from Φ, then the energy of yn in this region will be close to this maximum; whereas in other regions
where the signal corresponds to a number of correlated components superimposed, then the energy of yn will be
lower than this.

It is worth noting that the situation discussed at the end of the previous section, in connection with equation
(21) regarding the need for SZ ≈ SX , would produce approximately equal energies for yn and yr, which are
trace(SZ) and trace(SX) respectively (see the appendix). In fact the sparsity-inducing process should result
in reduced correlations between the components of y for Φ1 and those for Φ2, and thus automatically give low
energy in the regions of SY corresponding to the Φ1 and Φ2 interactions (the upper-right and lower-left quarters).
The reason for this is that a good sparsity-inducing process tends to use either a component from Φ1 or a similar
component from Φ2 to represent a given feature of the signal, but it prefers not to use both together. Hence
it tends to give much lower correlation between these two components in SY than would be the case with an
analysis process that just produced y = yr = Φx. Therefore a good sparsity-inducing process will tend to
minimize the upper-right and lower left terms in equation (21).

For a more redundant union of ONBs, where K > 2, a good sparsity-inducing process will tend to minimize
all the cross-correlation terms in SY that are of the form ΦH

k SΦl where k 6= l.

Now we consider how these ideas about sparsity may be used to help choose a good set of ONBs for Φ. We
have seen that the desirability of having a near-diagonal covariance matrix SY in the transform domain remains



true even when the redundancy is quite large m À n, as long as sparsity-inducing analysis methods are employed
to create the most useful transform domain representations.

One important class of overcomplete systems are those designed for signals which have several distinct types
of component. For example many audio signals have segments which are strongly tonal, such as vowel sounds in
speech or melodic sections of music, while other segments tend to be much more impulsive, such as consonant
(plosive) sounds in speech or percussive sections of music. With such signals it makes great sense for the ONBs of
an overcomplete system to be chosen such that one or more ONBs are optimized for one type of sound while other
ONBs are optimized for another type of sound. Sparsity-inducing algorithms should then pick the basis functions
appropriate for each type of sound and automatically adapt the decomposition to the changing statistics of the
input signal.

We will not consider such systems further here, as the choice of ONBs depends heavily on the type of signal
being analyzed, and in general, existing techniques for designing these ONBs either already exist (particularly
if it is just one ONB per signal type), or the results presented later can be used separately for each signal type.
So we will concentrate on the problem of designing overcomplete systems for signals with statistics that do not
change substantially with time.

Considering the DONB case again, and referring back to equation (21), we shall assume that the sparsity-
inducing analysis method produces SZ ≈ SX , but that this is not an exact equality. Looking at the final matrix
result of this equation, we can infer the following properties about the ONBs, Φ1 and Φ2:

• ΦH
1 SXΦ1 should be approximately diagonal.

• ΦH
2 SXΦ2 should also be approximately diagonal.

• ΦH
1 (SX − SZ)Φ2 should be approximately zero.

The first two properties require both Φ1 and Φ2 to be close to eigenvector solutions of SX (and of SZ). The
third property shows that it is desirable for SZ to approximately equal SX , but that it will be helpful if Φ1 and
Φ2 are as uncorrelated with each other as possible.

A useful way of framing the problem of choosing Φ is to ask the question: Assuming diagonal SY is desirable,
can we obtain a good approximation to SX for typical signals from it? This leads to the importance of shift
invariant statistics which apply to many typical signals.

5. SHIFT INVARIANCE

A key feature of many data sources is that their first and second order statistics are shift invariant. In practice
this means that a given type of waveform feature can occur with equal probability at any point along the data
stream (i.e. at any time, if the data is time dependent). It also means that any shift of the complete data stream
is an equally valid data stream, ignoring end effects.

Within the framework we have been using in earlier sections, shift-invariance of x means that the matrix
of training data X can contain all shifts of the input data stream. Hence the ith column of X will be xi =
[xi xi+1 . . . xi+n−1]T where the xj are samples from the input data. Shift invariance then means that the
mean and the covariance of X will be independent of shift, so the auto-correlation matrix SX will be invariant
along its diagonals (i.e. of symmetric Toeplitz form). Hence

(SX)i,j = (SX)i+c,j+c ∀ i, j, i+c, j+c within the bounds of SX (22)

We define SX as being shift invariant if this applies.

Note that there may be some departure from this diagonal invariance in the vicinity of the boundaries of SX

but we shall ignore this here. We shall assume that SX is large enough that its elements decay to zero along
most of the boundaries except near the upper-left and lower-right corners.

If SX is shift invariant, what does this imply about optimal choices for Φ and the resulting matrix SY ?
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Figure 1. (a) Diagonal matrix SY for a 4-level discrete wavelet transform (DWT), assuming a 1/ω2 spectral decay of
energy and m = n = 128; (b) matrix SX corresponding to this SY when Φ represents a DWT; (c) the equivalent SY for
a dual-tree complex wavelet transform (DTCWT) where m = 2n = 256; (d) SX when Φ represents a DTCWT.

Since we are aiming to find an optimal PTF Φ which diagonalizes SY , we are looking for equation (12) to be
satisfied, i.e. ΦSY ΦH = SX where SY is diagonal.

If SX is shift invariant, then there is no reason for an optimal Φ to process the data in different ways for
different shifts. Hence many of the basis functions of Φ will be shifts of each other. However not all shifts will
be present as, within each ONB that forms Φ, there is a need for orthogonality between basis functions. For
example within a discrete wavelet transform (DWT), the n/2 basis functions at level 1 comprise shifts that are 2
samples apart, the n/4 functions at level 2 are 4 samples apart, the n/8 functions at level 3 are 8 samples apart,
and so on. The Fourier transform is well known for its ability to diagonalize shift-invariant processes, such as
convolution, but it is also known for its poor localization performance, so it is usually not a good candidate for
sparse signal analysis, unless it is used in its windowed and overlapped (short-time) form, when it also resembles
a filter bank.

The diagonal terms in SY correspond to the energy of each transform-domain component, averaged over all
p samples in Y . Hence for data with shift-invariant statistics and for groups of basis functions that are shifts of
each other (e.g. all from within a given wavelet subband), the coefficient energies should all be the same (given
sufficient training data, i.e. sufficiently large p). Thus the diagonal terms in SY should also be shift invariant,
when they correspond to basis functions that are just shifts of each other.

Let us consider the DWT as an example of an ONB which is known to be good for a class of signals that are
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Figure 2. Matrices SX when Φ represents either a DWT (a to d) or a DTCWT (e to h), and SY contains unit coefficients
in one wavelet level only (a,e = level 2 only; b,f = level 3 only; c,g = level 4 only; d,h = scaling functions at level 4 only).



piecewise smooth (energy only at low frequencies) but contain a relatively sparse number of step discontinuities
(energy decays as 1/ω2). Such signals have a power spectrum that is approximately of the form

Pxx(ω) =
2P0T0

1 + (ωT0)2
(23)

where P0 is the total power and T0 is the time constant of the process. The autocorrelation function is the
inverse Fourier transform of Pxx and is given by

rxx(τ) = P0 exp
(
−|τ |

T0

)
(24)

Hence the autocorrelation matrix SX should have a Toeplitz form in which the terms decay exponentially away
from the main diagonal as rxx(τ), where τ is the horizontal or vertical distance from the main diagonal.

In the wavelet domain, the energies of the wavelet coefficients of a spectrally flat (white noise) process will
be constant across all subbands (since the basis functions are all normalized to unit energy). Therefore, for a
process of the form given above, the energies will decay by a factor of 4 for each octave increase in frequency
above the corner frequency, 1/T0. Hence the diagonal terms of SY should be proportional to [256 64 16 4 1]
for the 5 subbands of a 4-level DWT, arranged in order of increasing centre frequency, and assuming that the
corner frequency coincides with the upper edge of the lowest band (the level-4 scaling function). The off-diagonal
components of SY should be zero if the transform fully decorrelates the signal, and so it should be of the form
shown as an image in figure 1(a), when n = 128 (blacker pixels are more positive).

Applying the inverse DWT to both the rows and columns of SY , so as to obtain SX = ΦSY ΦH , produces
figure 1(b). It is clear that this corresponds approximately to the decaying exponential model of a piecewise
smooth process with step discontinuities, but it is also apparent that there are significant fluctuations along
the diagonal direction, which should ideally not be present. These fluctuations are produced by the poor shift-
invariance7,8 of the DWT and are the result of aliasing caused by the down-sampling processes in the DWT.
This problem is illustrated in more detail in figure 2(a to d) which shows separately the components due to each
subband for levels 2, 3 and 4 wavelets and for level 4 scaling functions. Hence we see that the DWT is not fully
optimized for this shift-invariant process.

The dual-tree complex wavelet transform (DTCWT)8,9 is known to be an effective way to produce an approx-
imately shift-invariant form of the DWT, by employing a second tree of wavelet filters in parallel with the usual
DWT tree of filters. By designing the lowpass filters of the second tree to have a half-sample delay with respect
to their counterparts in the first tree, the wavelet basis functions of the second tree become the approximate
Hilbert transforms of those in the first tree.10 Hence, with orthonormal wavelet filters in both trees, the DTCWT
forms a PTF that is a DONB, where Φ1 represents the ONB that is due to the first tree and Φ2 the ONB due
to the second tree.

Figure 1(c) shows the SY matrix for a 4-level DTCWT, with n = 128 and m = 256. For clarity we have
interleaved the coefficients from the two trees of the DTCWT so that pairs of equivalent coefficients from the
two trees are adjacent along the diagonal of SY . We have used the same scaling as before, by [256 64 16 4 1],
to synthesize the spectral energies of the process.

Figure 1(d) shows the SX matrix that results from applying the DONB Φ, which represents the DTCWT, to
the rows and columns of SY . It is clear that SX is now very close to being shift invariant (ignoring end effects
at the corners of SX) and that it is a reasonable approximation to the exponential decay that we desire. The
rate of decay may be controlled by using more (or fewer) wavelet levels and by adjusting the gain of the lowest
frequency band. Figure 2(e to h) show the components due to each subband of the DTCWT separately, as was
done for the DWT on the left of the figure. The improvement in shift invariance for each subband is clearly
visible.



Correlation values ×100
level 1a level 1b level 2a level 2b level 3a level 3b level 4a level 4b

sample

-4 -0.00 -0.05 0.00 -0.77 0.00 1.00 0.00 2.79
-3 0.00 -0.04 -0.00 2.75 -0.00 -9.85 0.00 1.25
-2 -0.00 -0.24 0.00 -7.65 0.00 24.53 0.00 -0.92
-1 0.00 5.41 -0.00 43.38 0.00 -35.67 -0.00 0.51
0 0.00 34.76 100.00 0.01 -0.00 35.62 0.00 -1.28
1 -0.00 28.07 -0.00 -43.84 -0.00 -24.44 -0.00 -2.55
2 0.00 1.07 0.00 8.03 0.00 9.74 0.00 1.73
3 0.00 0.25 -0.00 -1.95 0.00 -0.80 0.00 2.22
4 -0.00 0.07 0.00 -0.05 0.00 -0.57 -0.00 -0.91

Table 1. Correlation between a level 2 basis function from tree a of the DTCWT, and all other nearby basis functions at
levels 1 to 4 and trees a and b (ONBs Φ1 and Φ2). The self-correlation is shown in bold.

6. HILBERT PAIRS OF BASES

The DTCWT, considered above, is a special case of a family of DONBs, known as Hilbert pairs of bases (the
short-time Fourier transform with 2:1 window overlap is also of this form). They have the property that each
basis function in Φ2 corresponds to the (approximate) Hilbert transform of an equivalent basis function in Φ1.
This has several key advantages:

• The magnitude of the frequency response of a basis function is unchanged by taking its Hilbert transform
(which simply shifts the phase of all frequency components by ±90◦). Hence the time-frequency properties
of Φ1 are preserved in Φ2. This helps to overcome the problem of simultaneous diagonalization of SX by
both Φ1 and Φ2, encountered in equation (13).

• The ±90◦ phase shifts, mean that each Hilbert pair of basis functions are mutually orthogonal. This helps
to produce low correlations between Φ1 and Φ2 in general, while still preserving similar signal decorrelation
properties, and addresses the need to minimize the energy in the off-diagonal matrices of equation (13).

• The ability to separate positive from negative frequency components in the transform domain, which arises
when the Hilbert pairs are combined as real and imaginary parts of complex basis functions, produces the
shift invariant property that we have seen above, and also produces basis functions with good orientation
selectivity9 when the transforms are extended into higher dimensional spaces (e.g. 2-D images and 3-D
volumes).

To illustrate the decorrelation properties of Hilbert pairs of wavelet bases, we show in table 1 the correlation
values between a basis function at level 2 from tree a of the DTCWT (Φ1) and all nearby basis functions
from both tree a and tree b (Φ2) at levels 1 to 4. For this data and for that in the previous figures, 14-tap
Q-shift orthonormal filters8 were used in the DTCWT. The correlation scores are scaled up by 100 and so are
percentages of maximum correlation. Note that there is zero correlation between the input basis function (at
sample 0, level 2a) and all the other functions from tree a at any level, as would be expected for an ONB. There is
also approximately zero correlation (0.01%) between the input and the tree b basis function at the same level and
sample position, indicating the very low correlation within a Hilbert pair. The worst correlations are of about
44% between the input and the two samples from tree b on either side of the zero-sample position. Correlations
of up to 36% also exist across scale to levels 1 and 3 of tree b. There is less than 3% correlation from the level-2
input signal to level 4 basis functions.

Table 2 shows that very similar results occur when the input is a basis function from level 3, rather than
level 2. This similarity exists at all levels beyond 2. At level 1, the Hilbert pair properties are not so accurate
and the maximum correlations rise to 61%, instead of 44%.



Correlation values ×100
level 1a level 1b level 2a level 2b level 3a level 3b level 4a level 4b

sample

-4 0.00 0.00 0.00 0.08 0.00 -0.79 0.00 1.06
-3 0.00 -0.01 0.00 -0.07 -0.00 2.79 0.00 -10.01
-2 -0.00 -0.04 0.00 0.46 0.00 -8.27 0.00 24.75
-1 0.00 -0.06 0.00 -9.85 0.00 44.06 0.00 -35.80
0 -0.00 0.23 0.00 -35.67 100.00 0.38 -0.00 35.57
1 -0.00 2.69 -0.00 -24.44 -0.00 -44.37 -0.00 -24.24
2 0.00 0.42 0.00 -0.80 0.00 7.16 0.00 9.52
3 0.00 -0.01 0.00 -0.30 -0.00 -1.86 0.00 -0.67
4 -0.00 -0.00 0.00 -0.06 0.00 -0.07 -0.00 -0.60

Table 2. Correlation between a level 3 basis function from tree a of the DTCWT, and all other nearby basis functions at
levels 1 to 4 and trees a and b (ONBs Φ1 and Φ2). The self-correlation is shown in bold.

It may seem that these worst-case correlation values are quite high, but values of this order are necessary
when the basis functions are highly localised and thus have a very limited number of near-neighbours. The total
energy of all the unwanted correlations has to sum to unity (100%), because Φ1 and Φ2 both have to make
equal contributions to the final result when linear analysis is used. With a 1-D transform there are only about
6 near-neighbours (2 in the input level, and 2 each in the levels above and below), as can be seen in the tables.
Hence the correlations with these 6 basis functions need to be of the order of 1/

√
6 = 41%.

So far, we have been considering 1-dimensional (1-D) signals and transforms for simplicity. However many of
the arguments extend naturally into 2-D and 3-D domains, particularly if separable 1-D processing (filtering) is
assumed for efficiency. The Hilbert pair concept extends well into 2-D and 3-D, as long as pairs are introduced
along each dimension in turn. This leads naturally to PTFs comprising K = 4 ONBs for 2-D images, and to
PTFs with K = 8 ONBs for 3-D volumes.

Furthermore, in 2-D, it becomes desirable (for improved orientation selectivity) to combine the groups of 4
Hilbert-related coefficients by simple Haar pairwise sum and difference operations9 into pairs of complex values.
Because the Haar transform is a very simple ONB, the energy-preserving properties of the union of ONBs are
maintained and the resulting frame remains a PTF. Similarly, in 3-D, there are groups of 8 Hilbert-related
coefficients, which may be combined by two stages of Haar transformation to produce groups of 4 complex
values. The resulting frame again remains a PTF. The possibility of applying extra stages of ONBs in this way
was referred to briefly at the end of section 2.

The correlations between basis functions in higher dimensions become more complicated to evaluate as there
are spatial, scale and orientation directions for neighbours to exist in, so we are not able to go into this in detail
here. However we have investigated this and the correlations are comparable in magnitude to the near-neighbour
correlations for the 1-D case.

7. CONCLUSIONS

We have defined Parseval tight frames (PTFs) that are unions of orthonormal bases (ONBs) and have analyzed
the properties of such frames. We have shown how the ideas that underly principal components analysis (PCA)
may be applied to PTFs as well as to non-redundant systems. Although PCA is an inherently linear process
in the non-redundant case, it is important that concepts of sparsity are introduced for the case of overcomplete
frames. This leads to the need for an auxiliary variable z in addition to the input vector x to allow for the
null-space component of each transform-domain vector y. We have shown how the autocorrelation matrix for z
can be deduced from that for x when a good sparsity-inducing analysis method is employed.

The specific case of a double ONB has been considered in some detail, and it has been shown how the
requirements on the two ONBs Φ1 and Φ2 can be well met by designing the basis vectors of Φ2 to be Hilbert



pairs with equivalent basis vectors of Φ1. Hence the dual-tree wavelet transform becomes an appropriate frame
to use when the signal statistics are well-suited for wavelet analysis.

There remains considerable scope for extensions to these ideas and for more rigorous justification of some of
the key concepts.

APPENDIX

Here we aim to answer the question: Why should SY be diagonal? (Or why does PCA work?)

Consider the case where Φ is a PTF, so that ΦΦH = In, and where Y = ΦH X, and X is the n × p matrix
of p training vectors. Here we assume that the m-dimensional column vectors of Y are only in the range-space
of Φ (i.e. they contain no null-space components).

Mean energy of X = 1
p trace(X XH) = trace(SX)

(because it is the sum of the energies, or mean squares, of each of the n components of x).

Mean energy of Y = trace(SY ) = 1
p trace(ΦH X XH Φ) = trace(ΦH SX Φ) = trace(SX)

(because Φ is a PTF and preserves energy).

Energy of the SX matrix (sum of squares of all its elements) =
∑

i

∑
j |(SX)ij |2 = trace(SXSH

X )

Energy of the SY matrix = trace(SY SH
Y ) = trace(ΦH SX ΦΦH SH

X Φ) = trace(ΦH SX SH
X Φ) = trace(SX SH

X )

Hence both the trace and the energy of SX are preserved in the conversion to SY by a Φ which is a PTF.
Thus these parameters are all independent of the choice of Φ.

In order to maximize the variance of the diagonal elements of SY , consistent with their mean, trace(SY )/m,
remaining constant, we must choose a PTF Φ which puts all the energy of SY into its diagonal terms. Maximizing
the variance of the diagonal elements, while keeping their mean constant, has the effect of maximizing the ratio
of the large terms to the smaller ones since they must all be squares and hence be non-negative. This in turn
improves the sparsity of the y decomposition.

Note that since we are in some sense maximizing the variance of the variances of the components of y, while
keeping the mean of their variances constant, this is equivalent to maximizing the kurtosis or fourth moment of
the distribution of the components of y.

If we now allow Y to contain vectors with null-space components Yn as well as range-space components Yr

such that Y = Yr + Yn = ΦHX + ΘHZ, where Φ and Θ are both PTFs such that ΦΘH = O, then

SY = 1
p Y Y H = 1

p (Yr + Yn) (Y H
r + Y H

n ) = 1
p (YrY

H
r + YnY H

n ) = SYr + SYn (25)

since Yn Y H
r = Om, the m ×m zero-matrix, because the null-space and range-space components are mutually

orthogonal.

Now we see that the energy of Y is given in terms of the range-space and null-space energies by

trace(SY ) = trace(SYr ) + trace(SYn) = trace(SX) + trace(SZ) (26)

where SZ is the covariance matrix of the null-space generating vectors in Z, and SYn = ΘHSZΘ.

The total energy of SY is given by

trace(SY SH
Y ) = trace((SYr + SYn)(SH

Yr
+ SH

Yn
))

= trace(SYrS
H
Yr

) + trace(SYnSH
Yn

) + trace(SYrS
H
Yn

) + trace(SYnSH
Yr

) (27)

The final two terms above may be ignored because they are of the form

trace(SYrS
H
Yn

) = trace(ΦHSXΦ ΘHSZΘ) = trace(ΦHSXOSZΘ) = 0 (28)

as the rows of Θ and Φ are mutually orthogonal, yielding Φ ΘH = O, a n× (m− n) matrix of zeros.



Hence
trace(SY SH

Y ) = trace(SYr
SH

Yr
) + trace(SYn

SH
Yn

) = trace(SXSH
X ) + trace(SZSH

Z ) (29)

i.e. the energy of SY is the sum of the energy of SYr
and the energy of SYn

, which in turn equal the energies of
SX and SZ , because Φ and Θ are PTFs.

If the trace of SZ (energy of Z) and the energy of SZ are assumed to be known (as well as these parameters
for SX), then by the same argument as given above for the pure range-space case, the greatest range of values of
the diagonal elements of SY will be achieved when there is negligible energy in its off-diagonal terms. Hence we
still wish to find the Φ and Θ which approximately diagonalize SY in order to obtain the greatest compaction of
energy into the larger components of Y .
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