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Introduction 
Within the context of the Data and Information Fusion Defence Technology Centre Multi-Dimensional Fusion 
refers to the fusion of data and information that span several bands, more than one dimension and more than one 
mode of sensing.  
 
The Applied Multi-Dimensional Fusion (AMDF) project has been developed to showcase key research in single 
and multi-modal data fusion, image enhancement, feature detection, tracking and fusion metrics. The aim is to 
hone this research into practical applicable products through the technical expertise of the commercial partners 
and scientific excellence of the academic partners.   
 
In order to demonstrate the applicability of academic multi-dimensional fusion research to a military customer  
the project has constructed research activities around an urban surveillance, target acquisition and tracking 
scenario. For this purpose, the commercial partners have produced a simulated scenario that represents and 
highlights common issues within this challenging environment. 
 
The scenario focuses on the detection of a known target moving through complex terrain (an urban 
environment) using ‘video’ imagery in both visible and thermal bands.  It is representative of the support of an 
intelligence led operation where multiple air and ground based surveillance assets may be used to detect and 
confirm a known target within an Area of Interest derived from existing intelligence. 
 
The scenario uses hypothetical linked assets of a type that might be used to provide the capability described in 
the near future.  Hidden within the detail of the scenarios are many ‘real-world’ issues; truncated meta data, 
cumulative errors in sensor location and attitude determination, and changing environmental conditions. 
 
This paper presents highlights of the work done in the area of dual-band video fusion: Effects of resolution, 
restoration and reconstruction of blurred data, and multi-sensor fusion on target detection, identification and 
tracking.  The paper is presents issues in a sequential manner, though the research work is done in parallel 
streams.  The paper starts with issues of multi-sensor scenario generation and presents a précis of scientific 
research conducted in the area of super resolution, fusion, tracking, and concludes with the discussion on 
metrics and utility of metrics to video fusion, and presents the scope of the future work in the area of utilisation 
of hyperspectral data. 

Dual Band Video Scenario Generation 
GD-UK and QinetiQ produce synthetic visible and thermal video data at High Definition (as defined by the 
NATO standard STANAG 4609 “Digital Motion Imagery”).  These data are also down-sampled to conventional 
Standard Definition resolution to match current generation equipments. 
 
The visible simulation for the scenario is developed by GD using the NewTek Lightwave 3D computer 
animation package, QinetiQ provides the corresponding long-wave IR imagery using its  Cameosim multi-
spectral simulation system. This necessitates importing scene geometry and motion data,, provided by GD, and 
assigning appropriate materials, and hence thermal properties, to the objects in the scene. 
 
The scene data are provided in the form of Lightwave scene and model files.  As Cameosim has no facility to 
import data directly from Lightwave into its own proprietary format, the conversion is performed using a two 
step process.  The data are first converted to the OpenFlight[1] (*.flt) format that is further converted into the 
Cameosim format.  The second task involves significantly more work than the first.  Unlike ‘visible’ ray tracers 
like the one used by Lightwave, which use RGB image textures to determine the colours of objects, Cameosim 
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requires the use of spectral signature data, where the amount of light reflected back at each frequency is defined.  
These signatures allow Cameosim to render objects in a more realistic fashion and at wavelengths beyond the 
visible band.  The down side is that collecting these data is considerably harder than creating RGB textures. 
 
To render thermal imagery Cameosim needs the ‘thermal properties’ of each object to be defined, as well as the 
spectral signatures.  This consists of defining one or more layers of different materials by defining appropriate 
data (density, thermal conductivity etc) for each substance.  As an example, a typical cavity wall would consist 
of a layer of ‘bricks’ followed by a layer of ‘insulation’ then a layer of ‘breeze blocks’.  Together with the 
spectral signature, these two sets of data form a ‘material’, which can then be assigned to objects directly, or 
combined together to form textures in much the same way as the RGB textures used by ‘visible’ ray tracers. 
 
One of the most technically challenging problems in generating the scene was rendering the smoke from the 
fire.  A wide range of methods were considered, ranging from a full particle simulation to a simple post-process 
effect.  The primary constraints were making the smoke match the smoke in the visible image while also looking 
realistic, and keeping the setup and rendering times to a minimum.  The method chosen was to create the smoke 
cloud using a set of small billboard-style discs, each having a semi-transparent texture.  These discs were 
arranged in rough layers which were moved around to emulate the smoke drifting across the scene. 
 
Unfortunately conversion process introduced errors which were not detected until the imagery had been 
rendered and both versions (visible and IR) were compared.  These errors were compounded (and obscured) by 
differences in the routes taken by the moving objects in the two rendered scenes, itself  caused by the two 
packages using different algorithms for interpolating (‘tweening’) the motion information.  This was resolved by 
extracting frame-by-frame position information for every object from the Lightwave scene and then importing 
those data into Cameosim. 

    
Figure 1:  Visual and LWIR Data 

Super resolution 
Super-resolution (SR) image reconstruction is a multiframe fusion process capable of reconstructing a high 
resolution (HR) image from several low resolution (LR) images of the same scene.  It extends classical single 
frame image restoration methods by simultaneously utilizing information from multiple observed images to 
achieve restoration at resolutions higher than that of the original data. 
 
Imperial College is presenting a new approach that circumvents, to some degree; some of the limitations 
previously associated with these techniques and can be used in realistic scenarios with more complex geometric 
distortions (e.g. affine distortions).  The SR reconstruction is formulated as a Bayesian optimization problem 
using a discontinuity adaptive robust kernel that characterizes the image’s prior distribution. In addition, the 
initialization of the optimization is performed using an adapted Normalized Convolution (NC) technique [20] 
that incorporates the uncertainty due to mis-registration. 
 
Imperial College has shown both qualitative and quantitative results on real video sequences and demonstrate 
the advantages of the proposed method compared with conventional methodologies.  The general strategy that 
characterizes a multiframe SR process comprises three major processing steps:  

a) LR image acquisition: acquisition of a sequence of LR images from the same scene with arbitrary 
geometric distortion between the images;  

b) Image registration / motion compensation: estimation of the registration of the LR frames with each 
other with sub-pixel accuracy;  

c) HR image construction: construction of a HR image from the co-registered LR images. 
 



To start with, a look at the general formulation of the SR problem.  First, an observation model relating the LR 
frames to the HR image should be formulated. The observed LR frames are assumed to have been produced by a 
degradation process that involves geometric warping, blurring, and uniform downsampling performed on the 
sought HR image z (see Fig. 2). Moreover, each LR frame is typically corrupted by additive Gaussian noise 
which is uncorrelated between the different LR frames. Thus, the kth LR frame may be written as: 

( ) ( ) KknzrWnzrDBTy kkkkkkk ,...,3,2,1 =∀+=+=  

Figure 2: Block diagram of the degradation process relating each HR frame with its LR counterpart 
This observation model is used to construct the unknown z image using an iterative process initialised using 
normalised convolution.  The result is an image with higher and improved resolution in comparison with any of 
the originally captured images.  This is demonstrated in Figure 3, where an original low resolution frame of the 
video sequence is shown and the constructed high resolution one using the 16 preceding frames from the video 
sequence. By using the previous 16 frames, any frame in the sequence (apart of course from the first 15 ones) 
may be upgraded this way, before further processing takes place.  In combination with tracking, the method can 
be used to super-resolve part of the captured frame that contains the object of interest that is being tracked. 

 
 Standard Definition Frames High Definition Frames Super Resolved SD Frames 
  Upsampling factor ~ 2 Upsampling factor ~ 4 

Figure 3:  Super resolved frames from Standard Definition Frames compared to High Definition frames 

Joint Fusion and Blind Image Restoration 
Image fusion is the process of combining information from different image realizations that capture the same 
registered scene in order to enhance the perception of the scene. 
 
Current image fusion approaches detect salient features from the input images and fuse these details to form a 
new synthetic (fused) image.  Image fusion approaches in can be classified into two domains: 
 

• Spatial domain 
• Transform domain 

 
In spatial domain techniques, the input images are fused in the spatial domain using localised spatial features.  
The motivation to move to a transform domain is to work in a framework, where image’s salient features are 
more clearly depicted than in the spatial domain.  Transform techniques project the input images onto bases, 
modelling sharp and abrupt transitions (edges) and therefore represent the image into a more meaningful 
representation that can be used to detect and emphasize salient features, important for performing the task of the 
image fusion. 
 



Image fusion is the process of combining information from different input sensor images, in order to form a new 
composite, synthetic image that contains all the useful information of the input images.  In some cases there 
might be parts of the observed scene where there is only degraded information available.  The task in this 
proposal is to identify the areas of degraded information in the input sensor images. A very simple identification 
approach based on local image statistics to trace the degraded areas is adopted. 
 
Image fusion can exhibit poor performance in various situations especially when a specific region is distorted in 
all of the available image realizations.  These distortions can be considered to be of any unknown blurring 
process; out-of-focus camera, motion and others. The current fusion algorithms will fuse all high quality 
information from the input sensors and for the common degraded areas will form a blurry mixture of the input 
images, as there is no high quality information available.  
  
Imperial College are proposing a Joint Image Fusion and Restoration of overlapping areas to overcome this 
problem, allowing for a simultaneous reduction of additive random noise (smoothing).  The question does arise: 
Why not restore the entire images prior to fusion?   
The answer is: Restoration methods enhance edge information, but suffer from various type of distortion; 
ringing effects, ghost artefacts etc.  This promotes the case for region based restoration, though, how can you 
estimate areas that are jointly distorted?  This is specific to application, and should be dealt with on case by case 
basis.  To aide estimation of overlapping areas in multi-focus case Imperial follow a very simple identification 
approach, based on local image statistics to trace the degraded areas. 
 
The following algorithm for extracting these areas is used: 

• Extract the edge map of the fused image f , in terms of Laplacian kernel, i.e., ),(2 trf∇  

• Find the local standard deviations ),( trVL for each pixel of the Laplacian edge map ),(2 trf∇ , using 
55× local neighbourhoods 

• Reduce the dynamic range by calculating ( )),r(ln tVL  
• Estimate ),r( tVsL by smoothing ( )),r(ln tVL  using a 1515× median filter 
• Create the common degraded area map by thresholding ),( trVsL  by ( ) ξ−),r(mean tVsLr  

 
Now an image restoration technique is applied that is based on Double weighted regularised image restoration 
[21] with additional robust functionals to improve the performance in the case of outliers.Blind regularised 
image restoration uses alternating minimisation technique based on the following function: 
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Here residual term represents the accuracy of the restoration process.  The second term – image regularisation 
imposes a smoothness constraint on the recovered image and the third term acts similarly to the estimated blur.  
Since each term of the cost function is quadratic, it can simply be optimised by applying Gradient Decent 
optimisation [22].  To recover the image using this cost function using the gradients of the cost function in terms 
of )(rf and )(rh , the iterative scheme as follows: 

• At each iteration, update: 
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• Stop, if f̂ and h convergence. 
There terms 1η and 2η are the step size parameters that control the convergence rates for the image and Point 
Spread Function (blurring image) respectively. 
   
Imperial College has applied robust functionals in the cost functions, in order to rectify some of the problems 
with using double regularisation restoration (e.g., quadratic term penalises sharp grey-level transitions resulting 
in blurring of image details, recovered images suffer from ringing).  This results in modified original cost 
function: 
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Three distinct robust kernels, ( )⋅nρ , ( )⋅fρ and ( )⋅dρ  are introduced in the new cost function and are referred to 
as the robust residual and regularising terms respectively. 
Results of fusion and joint fusion and restoration are presented in Figure 11. 

Multi-resolution target detection and identification 
An important problem in image analysis is that of finding similar objects in sets of images, where the objects are 
often at different locations, scales and orientations in the various images. Partial occlusion of objects is also 
quite common.  An effective general approach to this problem is first to find a relatively large number, typically 
several thousand, of key feature points in each image, and then to develop a more detailed descriptor for each 
keypoint. This allows points from different images to be compared and matched to create candidate pairings.   
 
Often a reference object is taken from one image and then other instances of the object are searched for in the 
remaining images, so the number of reference keypoints is quite small (10 – 100), but the number of candidate 
keypoints can be very large (105 – 107).  Hence it is important to develop keypoint descriptors which allow 
efficient comparison of pairs of keypoints (reference-to-candidate). 
 
Cambridge approached the problem with the template matching technique with automatic template update.  The 
technique produced promising results, though with this scheme the target cannot rotate arbitrarily between 
consecutive frames.  In order to overcome this, Cambridge have adopted a technique of polar matching with 
dual-tree complex wavelet transform (DTCWT) coefficients.   
 
Polar-matching with DTCWT based technique does not require the dominant orientation(s) to be computed first 
because it allows efficient matching of descriptor pairs in a rotationally invariant way.  Polar matching matrix 
gives low redundant rotation invariant descriptor in addition to its computational efficiency making it very 
effective.   
 
DTCWT is a multi-scale transform with decimated six subbands with complex coefficients.  DTCWT is 
approximately shift invariant, which means that the z-transfer function, through any given subband of a forward 
and inverse DTCWT in tandem, is invariant to spatial shifts, and that aliasing effect due to decimation within 
the transform are small enough to be neglected for most image processing purposes.   
 
Another feature of DTCWT is that the complex wavelet coefficients within any given subband are sufficiently 
bandlimited that it is possible to interpolate between them in order to calculate coefficients that correctly 
correspond to any desired sampling location or pattern of locations.  Hence for a given keypoint location you 
may calculate the coefficients for an arbitrary sampling pattern centred on that location.   
 
To obtain circular symmetry consistent with the subband orientations, a 13-point sampling pattern was chosen 
as shown in Figure 4. 
 
The main innovation of Cambridge’s work is the technique for assembling complex coefficients from the 
sampling locations, subband orientations, and one or more scales such that they form a ‘polar’ matching matrix 
P, in which a rotation of the image about the centre of the sampling pattern corresponds to a cyclic shift of the 
columns of P. 
 
The cyclic shift property of the matrix P, when rotation occurs, means that Fourier transform methods are 
appropriate for performing correlations between two matrices Pr and Ps from the reference and search images 
respectively. It has been shown that this correlation may be performed efficiently in the Fourier domain, 
followed by a single low complexity inverse FFT to recover the correlation result as a function of rotationθ. The 
peak of this result is the required rotation-invariant similarity measure between Pr and Ps.  A key aspect is that 
phase information from the complex coefficients can be fully preserved in this whole process. 
 
The aim is to sample the directional subbands at a given scale on a grid, centred on the desired keypoint, and 
then to map the data to a matrix P, such that the rotations of the image about the keypoint are converted into 
linear cyclic shifts down the columns of P.   



The sampling grid that is centred on the keypoint is shown in Figure 4. It is circularly symmetric and the 
sampling interval is chosen to be °30  to match that of subbands.  There are 12 samples around the circle 

),...,,( LBA  and one at its centre (M).  The radius of the circle is equal to the sampling interval of the DTCWT 
subbands at the given scale, as this is an appropriate interval to avoid aliasing and yet provide a rich description 
of the keypoint locality. 
 
Cambridge use a Bandpass interpolation technique for obtaining samples on the circular grid around each 
keypoint.. The information contained in a given directional complex subband is bandlimited to a particular 
region of 2-D frequency space, which has a centre frequency ( )21,ww .  Bandpass interpolation may be 
implemented by: 

1. a frequency shift by { }21, ww −−  down to zero frequency (i.e. a multiplication of the complex subband 

coefficients by )]([ 2211 xwxwje +−  at each sampling point },{ 21 xx ),  
2. a conventional lowpass Spline or bi-cubic interpolation to each new grid point,  
3. inverse frequencies shift up by { }21, ww  (a multiplication by )]([ 2211 ywywje +−  at each grid 

point },{ 21 yy ).  
 
To simplify notation for the mapping to matrix P, for a given keypoint locality },...,,{ MBA  in Fig. 4, the 13 
subband coefficients are denoted by },...,,{ ddd mba , where 6,...,2,1=d indicates the direction of the subband.  
The 712×  matrix P is then formed from the 613×  coefficients and their conjugates as shown in the Matrix P. 
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The rational for choosing this mapping can be understood from Fig. 4, which shows each of the columns of P in 
diagrammatic form using arrows on the grid of Fig. 5 to represent the direction of each subband. Hence all the 
samples in column 1 of P are taken at the midpoint M and correspond to the 6 subbands and their conjugates 
taken in sequence.  
 
The arrow labelled ’1’ is from the °15  subband, arrow ’2’ is from the °45  subband, arrow ’7’ is from the 
conjugate of the °15  subband (i.e. the °195  subband), and so on. The circle of arrows for column 2 shows the 
location and subband from which each element in column 2 of P is taken, and this is also shown for the 
remaining columns. Thus you see that each column of P represents a particular pattern of rotationally symmetric 
combinations of sampling location and subband orientation, such that if an object is rotated clockwise about the 
centre of the sampling pattern by 30×k  (k integer), then each column of P will be cyclically shifted k places 
downwards. 
 
In order to perform rotation-invariant object detection, a matching technique is required which measures the 
correlation between a candidate locality in the search image and all possible rotations of a reference object in an 
efficient way.  The Fourier transform is well-known to be a useful aid to performing cyclic correlations and in 
conjunction with the mapping to the P matrix, as above, it turns out to be effective at performing rotational 
correlations too. The basic idea is to form matrices irP , at every keypoint i in the reference image, and to form 
matrices jsP ,  at all candidate keypoints j in the search image. 
 



The pairwise correlation process for each transformed matrix pair irP ,  and jsP ,  then becomes: 

1. Multiply each Fourier component of jsP ,  with the conjugate of the equivalent Fourier component of 

irP , to get a matrix jiS , ( 84712 =×  complex multiplies). 
2. Accumulate the 84712 =× elements of jiS , into a 48 – element spectrum vector jis ,  (84 complex 

adds). 
3. Take the real part of the inverse FFT of jis ,  to obtain the 48-point correlation result jis ,  

( irP ,2 )48(log48 =× 270 complexes multiply-an-adds). 

There has been some concentration on the theory of Cambridge’s technique, that is admittedly quite 
complicated, and so there is limited space for results.  Cambridge has shown how rotational correlations may be 
performed using interpolated complex samples from the DTCWT, utilising both phase and amplitude 
information. There is considerable scope for extending these ideas to increase the robustness to typical image 
distortions (e.g. due to change of viewpoint or lighting) and small mis-registration of keypoints.  Results of 
tracking scheme are shown in Figure 10. 
 

Task based image and video fusion assessment 
The widespread use of image fusion methods has led to a rising demand of pertinent quality assessment tools in 
order to compare the results obtained with different algorithms and systems or to derive an optimal setting of 
parameters for a specific fusion algorithm.  
 
For man-in-the-loop applications, the performance of the fusion algorithm can be measured in terms of 
improvement in operator performance in different tasks like detection, recognition, classification, and tracking. 
This approach requires a well defined task, for which quantitative measurement can be made, and it usually 
involves costly and time consuming field trials.  
 
Computational image fusion quality assessment metrics that relate to human observer performance are therefore 
of great value. The assessment can either be done by comparing the fused result with a reference image that 
provides the ground-truth, or (since such ground-truth is not available in most applications) by relating the fused 
result (or some of its features) to each of the input images (the so-called non-reference approach). Video fusion 
assessment is even more challenging as the spatio-temporal characteristics of the inputs need to be taken into 
account.  
 

 
 
 

Figure 4:  The 13-point circular sampling pattern for 
DTCWT at each keypoint location 

 
Figure 5:  Shows how each column of the polar 

matching matrix P is comprised of a set of rotationally 
symmetric samples from the subbands and their 
conjugates, whose orientations are shown by the 

arrows. Numbers give the row indices in P. 



Previous experiments conducted at Bristol have shown that, unfortunately, subjective ranking of fused 
images/video and computational metric results on the one hand, and human performance for particular tasks, 
such as tracking, on the other hand, do not correlate well. In other words, fused images and videos that are 
highly ranked by computational metrics or even by human observers because of their high image quality, do not 
necessarily lead to improved task performance when shown to human observers.  
 
It was thus decided to focus in the future on developing video fusion assessment metrics that correlate well with 
and can predict human performance for a particular task. Work on such task-dependant metrics has begun and 
the plan is to incorporate them into a general framework of metrics that will work for a broad range of tasks. 
 
One of the main focuses of the AMDF Cluster project is to study the effects of resolution (SD vs. HD) and 
multi-sensor (visible and IR) video fusion on target tracking. Hence, it was decided to study in more detail the 
influence of pixel-level video fusion on object tracking using a variety of multi-sensor datasets, i.e. visible, 
FLIR and hyperspectral synthetic sequences from QinetiQ, visible and IR datasets from the Eden Project [9] 
(see Fig.6) and another visible and IR dataset available in the public domain [10]. The object tracking was done 
in house (in collaboration with the DIF DTC Tracking Cluster project) using several different trackers available 
in Bristol. 

 
Figure 6:  Tracking in an Eden sequence. Clockwise from top left the results correspond to: visible, infrared; 

DT-CWT fused and average fusion 
The experimental results suggest strongly that on average, the IR mode is the most useful when it comes to 
tracking objects that are well seen in the IR spectrum. However, under some circumstances fusion is beneficial. 
In addition, in a situation when the task is not to simply track a single target, but to determine/estimate its 
position with respect to another object that is not visible in the IR video, video fusion is essential in order to 
perform the task successfully and accurately. This is due to the inclusion of complementary and contextual 
information from all input sources, making it more suitable for further analysis by either a human observer or a 
computer program. However, metrics for fusion assessment clearly point towards the supremacy of the multi-
resolution methods, especially DT-CWT. Thus, a new, tracking-oriented, metric is needed that would be able to 
reliably assess the tracking performance on a fused video sequence. 

Independent evaluation of the image fusion results 
It is generally agreed that image fusion techniques can produce fused images that appear to be at least as good, 
and hopefully better than, the sum of the input parts. But proving how much better a fused image is over the 
original source images is notoriously difficult. This is essential if the additional costs of multi-sensor systems 
and associated processing are to be justified. 
 



The method of assessment is greatly dependent upon the application. Empirical studies using human observers 
[15] have illustrated the benefits of fusion for tasks such as object detection and identification, and general 
situational awareness. These tasks can be performed with higher accuracy and greater confidence when 
compared to using the source imagery alone. Such experiments also compared grey-scale and colour fusion and 
concluded that the utility of colour fusion is highly dependent upon the colour mapping. 
 
The benefits of systems whose outputs are interpreted by automatic processing algorithms (for example, target 
tracking) are generally easier to quantify because clearly defined metrics exist for the tasks that they perform. 
No equivalent standard set of metrics currently exists for fusion systems that provide imagery for human 
interpretation. 
 
Part of Waterfall Solution’s work is concerned with assessing the performance of image fusion schemes which 
provide outputs for a number of automatic tasks, principally target detection and tracking. This can be achieved 
by quantifying the improvement to image quality engendered by the fusion process through the use of 
appropriate metrics. 
 
Measures of the quality of an image are diverse, from simple image moments (i.e. mean, standard deviation etc.) 
to edge densities and other image content metrics. These measures are very flexible and can therefore be chosen 
to match the salient image features that might be exploited - for example, a target detection algorithm. 
  
However, single-frame image metrics are only sensitive to the contents of the current frame, and can therefore 
give misleading results in the presence of noise or other time-dependent image features. Metrics may also give 
very different results when presented with two scenes of the same quality, and so must be chosen carefully. 
The sensitivity of single-frame metrics to frame content can be mitigated by normalising the metric to the results 
from one of the sources images to show the relative change in the metric caused by the fusion algorithm. 
Although this removes sensitivity to changing image content, the result is not bounded. 
 
A novel method to visualise a potentially large number of single-frame image metrics, first proposed by Smith 
[16], is the polar plot (also sometimes termed Kiviat diagram when used in a control system validation context). 
In this representation, each normalised metric is plotted on a spoke of the polar plot along with the results for the 
input images so that an instantaneous comparative ‘snap-shot’ can be given which encompasses all metrics of 
interest. An example for five metrics is show below. 

 
Figure 7:  Polar plot representation of image metrics 

Investigations have shown that single-frame image metrics can sometimes disagree with interpretation of the 
fused imagery by eye and some (even the more advanced) metrics may exhibit behaviour counter to task-driven 
measures of performance.  
 
An alternative family of metrics is the set of image validation metrics which calculate the difference (or 
similarity) between two images for a given characteristic [17]. When assessing output from an image fusion 
technique using image validation metrics, one or more of the original input modalities is chosen as a reference. 
The majority of image validation metrics also have the advantage that they are automatically bounded between 0 
and 1. In most cases, values approaching unity indicate that the images are nearly identical. 
 
Examples of image validation metrics are cross-correlation, image quality, image structural similarity and peak 
signal-to-noise ratio. Image quality and image structural similarity metrics have both been proposed by Wang 
[18] et al. and the peak signal-to-noise ratio was developed by Fisher [19].  
 



A cautionary note on the interpretation of image validation metrics is illustrated by reference to the image 
structural metric. A value close to 1 would indicate that the fused image has retained much of the structure of 
the reference input channel. However, a fused image may be of high quality but have a low score. This would 
occur if the fused image had retained complementary detail present in another input channel. These types of 
issues can be detected by running the validation metrics using each source image as the control case. 
 

 
Figure 8:  Screen shot of Image Analysis Tool, I2DB 

The image validation metrics have equal applicability to temporal sequences in which the reference image is 
replaced by the previous (or next) image in the sequence. This analysis provides information on flicker and the 
severity of image transitions which can be a contributory factor in operator stress over long periods. 
 
A particular family of image metrics deserving of mention are spectral metrics. The project will generate 
synthetic co-incident panchromatic, multi-spectral and hyperspectral imagery each at a progressively coarser 
resolution.  
 
The academic teams may choose to fuse panchromatic and spectral imagery or fuse wavebands of spectral 
imagery. This presents a challenge in that the salient features of the data are no longer confined to two spatial 
dimensions but now also extend into the spectral dimension. Spectral metrics will need to be considered 
alongside spatial metrics in order to assess the information that has been preserved in the fusion schemes. 
 
Image metrics - single-frame, validation, temporal and spectral – underpin any assessment of image fusion. 
Waterfall Solutions’ integrated software tool will be used for trusted, repeatable and multi-faceted image 
analysis to support the assessment activities. The Figure 8 shows a screen shot of the tool. 

Future Work 
Hyperspectral imaging is widely used in Earth observation systems and remote sensing applications. Modern 
hyperspectral imaging sensors produce vast amounts of data. Thus, autonomous systems that can fuse 
"important" spectral bands and then classify regions of interest are required. Hyperspectral image analysis has 
proved useful in a variety of applications including target detection, pattern classification, material mapping and 
identification, etc.  
 
At Bristol, research in this direction has focused on the development of novel algorithms for band reduction in 
hyperspectral images as well as for subsequent image classification. Different state-of-the-art techniques for 
dimensionality reduction have been investigated, which are based on entropy, mutual information and 
independent component analysis (ICA). New techniques based on the universal image quality index instead of 
entropy or mutual information have been developed and they showed considerable improvement over existing 
techniques. 
 



Another important topic that is studied is how to improve the classification of hyperspectral images using image 
fusion techniques. The main idea is to capture the most important features and salient points of the input bands 
using image fusion. The information obtained using image fusion techniques can lead to improved target 
detection and (supervised or unsupervised) classification in hyperspectral imagery. As fusion methods relying 
on the dual-tree complex wavelet transform and ICA have shown to be the best performing in the multimodal 
image fusion, these approaches are now being generalized to work with hyperspectral image data. 
 
Initial developments were made using the wavelet transform, which constitutes a powerful framework for 
implementing image fusion algorithms [5, 6]. The theoretical limits of many image fusion algorithms are 
determined by the underlying statistical model. Consequently, the focus was on studying prior probability 
models that have the potential to better characterize the different bands of hyperspectral images, as well as their 
associated transform coefficients.  
 
In order to cope with more appropriate statistical model assumptions, the original weighted-average method [7] 
that combines images based on their local saliency was reformulated and modified. The candidate prior 
probability models included: generalised Gaussian distributions and alpha-stable distributions. Both were 
previously applied successfully to modelling natural images and were found to model the heavy-tailed image 
distributions more precisely than the conventional Gaussian distribution [8, 9].  
 
Additionally, the models of image wavelet coefficients have been amended to account for both interscale 
dependencies and noise presence in the data. This has been achieved by incorporating bivariate shrinkage 
functions, derived from the underlying statistical models, into the fusion scheme. Simple and efficient 
implementations have been achieved with analytic estimators for special cases of the above distributions, 
namely the Laplace and the Cauchy distributions. In order to estimate all statistical parameters involved in the 
fusion algorithms a relatively novel framework that of Mellin transform theory was used.  
 
The new method has been shown to perform very well with noisy datasets, outperforming conventional 
algorithms. The method has also been shown to significantly reduce the noise variance in the fused output 
images. Figure 9 shows an example of hyperspectral data, taken from [10], fused with the proposed method, 
compared to the conventional choose-max algorithm. More details on this fusion algorithm can be found in [11, 
12]. 

 
Figure 9:  Statistical fusion of hyperspectral imagery, from left to right: input images from two different spectral 
bands, a fused image with the choose-maximum method in the wavelet domain and statistical fusion result using 

Laplacian modelling and bivariate shrinkage functions. 

Conclusions 
AMDF set out to develop academic research into applicable products.  Work done to date in the area of super-
resolution, joint image fusion and restoration, multi-resolution tracking and task based image fusion metric has 
yielded exciting results.  At the same time practical issues synthetic scenario generation have been raised.  This 
research work has revealed the weaknesses of synthetically generated video sequences; the SR research exposed 
the absence of sub-pixel detail within the synthetic data, whilst the stable synthetic view and ‘quiet’ simulated 
environment lacked the real-world occlusions and dynamically changing views of the objects, that would prove 
the efficacy of the new techniques. The military customer has also lamented the absence of the random fires, 
and high traffic densities that characterise much of the challenges in real-world surveillance data.  To this effect 
commercial partners are working to develop new version of data set to address these issues. 
 



Work carried out to date has shown great potential, showing convergence towards more application oriented 
approach.  The next key stage will be to apply research to an enhanced synthetic scenario as a tool where 
efficacy of the research work to urban surveillance and target tracking can be proved. 
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Figure 10:  Tracking results with confidence level shown in red, entering and exiting occluded zone (smoke) 

 

 
 (a) Input 1 (b) Input 2 (c) Fusion Scheme 

  
 (d) Common Degraded region  (e) Fusin (Affected Area) (f) Fusion + Restoration (Affected Area) 

Figure 11:  Overall fusion improvement using the proposed fusion approach enhanced with restoration. 
 


