Model Expander Iterative Hard Thresholding

Bubacarr Bah

Inst. of Computational Engineering and Sciences (ICES), and Dept. of Mathematics The University of Texas at Austin

SPARS 2015 July 6-9 Cambridge, UK

Joint work with Luca Baldassarre, and Volkan Cevher at LIONS, EPFL

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Algorithm is ...

designed for structured sparse recovery using model expander sensing matrices, & it's particularly suited for linear sketching

Thus this talk will discuss ...

- Structured sparse recovery
- 2 Model expander matrices
- Algorithm and it's features
- Onvergence of algorithm
- Experiements

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Three key aspects of linear sketching

- Signal (vector) x sparse or compressible
- Projection A information preserving (stable embedding)
- Recovery algorithm Δ tractable & accurate
- Applications: Data streaming, compressive sensing (CS), graph sketching, machine learning, group testing, etc.

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Sparsity and beyond

• Generic sparsity (or compressibility) not specific enough

- Many applications exhibit some structure in sparsity pattern
- \Rightarrow structured sparsity \rightarrow model-based CS [Baraniuk et al. 2010]

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Model-based CS

- Model-based CS exploits structure in sparsity model to
 - □ improve interpretability
 - reduce sketch length
 - increase speed of recovery
- Models of structured sparsity includes trees, blocks, groups, ...

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Overlapping Group Models

A natural generalization of sparsity

Group models application examples:

- Genetic Pathways in Microarray data analysis
- Wavelet models in image processing
- Brain regions in neuroimaging

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Information preserving linear embeddings A

Definition (ℓ_p -norm Restricted Isometry Property (RIP-p))

A matrix **A** has RIP-*p* of order *k*, if for all *k*-sparse **x**, it satisfies

 $(1 - \delta_k) \|\mathbf{x}\|_p^p \le \|\mathbf{A}\mathbf{x}\|_p^p \le (1 + \delta_k) \|\mathbf{x}\|_p^p$

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Information preserving linear embeddings A

Definition (ℓ_p -norm Restricted Isometry Property (RIP-p))

A matrix **A** has RIP-*p* of order *k*, if for all *k*-sparse **x**, it satisfies

 $(1 - \delta_k) ||\mathbf{x}||_p^p \le ||\mathbf{A}\mathbf{x}||_p^p \le (1 + \delta_k) ||\mathbf{x}||_p^p$

- Subgaussian A ∈ ℝ^{m×N} (w.h.p) have RIP-2 with m = O(k log(N/k)), but sparse binary A does not have RIP-2 unless m = Ω(k²)
- Sparse adjacency matrices of lossless
 expanders satisfy RIP-1 with m = O(k log(N/k))
- Structured sparsity \Rightarrow fewer *m* for model-RIP-2
 - O(k) for tree structure
 - $O(k + \log(M))$ for block structure; *M* blocks

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Sparse matrices from expanders

Definition (Lossless Expander Graphs)

 $G = (\mathcal{U}, \mathcal{V}, \mathcal{E})$ is an (k, d, ϵ) -lossless expander if it is a bipartite graph with $|\mathcal{U}| = N$ left vertices, $|\mathcal{V}| = m$ right vertices & has a regular left degree d, s.t. any $S \subset \mathcal{U}$ with $|S| \le k$ has $|\Gamma(S)| \ge (1 - \epsilon) d|S|$ neighbors

A is sparse (d nonzeros per col.)

Computational benefits of A

- Low storage complexity
- Efficient application

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Tractability of recovery

Nonlinear reconstruction

Given **A** & **y** = **Ax** + **e** with $||\mathbf{e}||_2 \le \eta$, find *k*-sparse $\hat{\mathbf{x}}$ satisfying:

$$\hat{\mathbf{x}} = \min_{\mathbf{y} \in \mathbb{R}^N} \|\mathbf{x}\|_0$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \eta$

• Tractable recovery algorithms (Δ) with provable guarantees

 \Box Convex approach: ℓ_1 -minimization

$$\hat{\mathbf{x}} = \min_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{x}\|_1$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \eta$

Discrete algorithms (OMP, IHT, CoSaMP, EIHT, ALPS, ...)

(IHT) iterates
$$\mathbf{x}^{n+1} = \mathcal{H}_k \left(\mathbf{x}^n + \mathbf{A}^* (\mathbf{y} - \mathbf{A} \mathbf{x}^n) \right)$$

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Accuracy of recovery

• Δ returns approximations with ℓ_p/ℓ_q -approximation error:

Definition $(\ell_p/\ell_q$ -approximation error - instance optimality)

A Δ returns $\hat{\mathbf{x}} = \Delta(\mathbf{A}\mathbf{x} + \mathbf{e})$ with ℓ_p/ℓ_q -approximation error if

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_{p} \leq C_{1}\sigma_{k}(\mathbf{x})_{q} + C_{2}\|\mathbf{e}\|_{p}$$

for a noise vector \mathbf{e} , $C_1, C_2 > 0$, $1 \le q \le p \le 2$, $\sigma_k(\mathbf{x})_q := \min_{k-\text{sparse } \mathbf{x}'} \|\mathbf{x} - \mathbf{x}'\|_q$

- The pair $(\mathbf{A}, \Delta) \Rightarrow$ two types of error guarantees
 - □ for each one pair (\mathbf{A}, Δ) for each given **x**
 - \Box for all one pair (**A**, Δ) for all **x**

Compressed sensing (linear sketching) Sparsity Recovery conditions Tractable and accurate recovery Motivation & Contribution

Goal of this work

To design an algorithm that makes it possible to efficiently exploit the benefits of combining the sparsity in \bf{A} with structured sparsity in \bf{x}

- Prior work on model-based CS use dense A
- Dense matrices: difficult to store, create computational bottlenecks, and not practical in real applications
- Sparse matrices: low storage complexity, efficient application, etc
- Existing recovery algorithm for such sparse matrices has exponential complexity

Contribution summary

"Tractable" linear complexity algorithm with provable for all ℓ_1/ℓ_1 approximation guarantees

Preliminaries Model expanders

Definition (RIP-1 for (k, d, ϵ) -lossless expanders)

If **A** is an adjacency matrix of a (k, d, ϵ) -lossless expanders, then $\Phi = \mathbf{A}/d$ has RIP-1 of order k, if for all k-sparse **x**, it satisfies

 $(1 - 2\epsilon) \|\mathbf{x}\|_1 \le \|\Phi\mathbf{x}\|_1 \le \|\mathbf{x}\|_1$

- Probabilistic constructions of expanders achieve optimal m = O(k log(N/k))
- But their deterministic constructions are sub-optimal m = O(k^{1+α}) for α > 0

Standard random construction of $G = ([N], [m], \mathcal{E})$

For every $u \in [N]$, uniformly sample a subset of [m] of size d and connect u and all the vertices from this subset

Preliminaries Model expanders

Models everywhere

\$\mathcal{T}_k & \mathcal{G}_k\$ denotes tree & loopless overlapping groups respectively, which are jointly denoted by \$\mathcal{M}_k\$

Definition (Model sparse vectors)

A vector \mathbf{x} is \mathcal{M}_k -sparse if supp $(\mathbf{x}) \subseteq \mathcal{K}$ for $\mathcal{K} \in \mathcal{M}_k$

Definition ((k, d, ϵ)-model expander graph)

Let $\mathcal{K} \in \mathcal{M}_k$, *G* is a model expander if for all $\mathcal{S} \subseteq \mathcal{K}$, we have $|\Gamma(\mathcal{S})| \ge (1 - \epsilon)d|\mathcal{S}|$

Definition (Model expander matrix)

A matrix **A** is a model expander if it is the adjacency matrix of a (k, d, ϵ) -model expander graph.

MEIHT algorithm Projections Algorithm's key features Convergence proof Experimental results

Model-Expander Iterative Hard Thresholding (MEIHT)

Initialize
$$\mathbf{x}^0 = \mathbf{0}$$
, iterate
 $\mathbf{x}^{n+1} = \mathcal{P}_{\mathcal{M}_k} [\mathbf{x}^n + \mathfrak{M} (\mathbf{y} - \mathbf{A}\mathbf{x}^n)]$

 𝔅(·) is the median operator which returns a vector 𝔅(u) ∈ ℝ^N for an input u ∈ ℝ^m; defined elementwise

 $[\mathfrak{M}(\mathbf{u})]_i := \mathsf{med}[u_j, j \in \Gamma(i)], i \in [N]$

- $\mathcal{P}_{\mathcal{M}_k}(\mathbf{u}) \in \operatorname{argmin}_{\mathbf{z} \in \mathcal{M}_k} \{ \|\mathbf{u} \mathbf{z}\|_1 \}$ is the ℓ_1 projection of \mathbf{u} onto \mathcal{M}_k
- MEIHT is a fusion (with adaptation) of various works:
 - SMP of [Berinde et al. 2008]
 - EIHT of [Foucart & Rauhut 2013]
 - Tractable group projections of [Baldassare et al. 2013]

MEIHT algorithm **Projections** Algorithm's key features Convergence proof Experimental results

Tractability of structured sparse models

 The projection is equivalent to Weighted Max Cover (WMC) for group-sparse problems

$$\mathcal{P}_{\mathcal{M}}(\boldsymbol{u}) = \min_{\boldsymbol{z}: \text{supp}(\boldsymbol{z}) \in \mathcal{M}} \|\boldsymbol{z} - \boldsymbol{u}\|_1 = \max_{\mathcal{S} \in \mathcal{M}} \|\boldsymbol{u}_{\mathcal{S}}\|_1 \equiv \text{WMC}$$

- So all WMC instances can be formulated as $\mathcal{P}_{\mathcal{M}}(\cdot)$
- Caveat: WMC is NP-hard $\Rightarrow \mathcal{P}_{\mathcal{M}}(\cdot)$ is NP-hard too
- But for some models, *M_k* (i.e. *T_k* & 𝔅_k) in particular, there exist linear time algorithms
- Like dynamic programs that recursively compute the optimal solution via the model graph [Baldassarre et al. 2013]

MEIHT algorithm Projections Algorithm's key features Convergence proof Experimental results

Runtime: polynomial in N for all tractable models

- Due to the sparsity of A, the projection onto the model is the dominant operation in MEIHT
- Based on the projection complexity from [Baldassarre et al. 2013], for fixed iterations, *n*, MEIHT achieves linear runtime of:
 - O(knN) for the \mathcal{T}_k model
 - $O(M^2kn + nN)$ for the \mathfrak{G}_k model; *M* groups

Error guarantees: ℓ_1/ℓ_1 in the for all case

 $\|\mathbf{x} - \hat{\mathbf{x}}\|_{1} \leq C_{1}\sigma_{\mathcal{M}_{k}}(\mathbf{x})_{1} + C_{2}\|\mathbf{e}\|_{1}$ where $C_{1}, C_{2} > 0$ and $\sigma_{\mathcal{M}_{k}}(\mathbf{x})_{1} := \min_{\mathbf{x}' \in \mathcal{M}_{k}} \|\mathbf{x} - \mathbf{x}'\|_{1}$

Approximate solutions are in the model, *M_k*; this is very useful for some applications

MEIHT algorithm Projections Algorithm's key features Convergence proof Experimental results

Lemma (Key ingredient of proof)

Let $\mathbf{A} \in \{0, 1\}^{m \times N}$ be a $(k, d, \epsilon_{\mathcal{M}_k})$ -model expander. If $S \subset [N]$ is \mathcal{M}_k -sparse, then for all $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{e} \in \mathbb{R}^m$,

$$\|\left[\mathfrak{M}\left(\mathbf{A}\mathbf{x}_{\mathcal{S}}+\mathbf{e}\right)-\mathbf{x}\right]_{\mathcal{S}}\|_{1} \leq \frac{4\epsilon_{\mathcal{M}_{k}}}{1-4\epsilon_{\mathcal{M}_{k}}}\|\mathbf{x}_{\mathcal{S}}\|_{1} + \frac{2}{\left(1-4\epsilon_{\mathcal{M}_{k}}\right)d}\|\mathbf{e}_{\Gamma(\mathcal{S})}\|_{1}$$

• For $Q^{n+1} := S \cup \text{supp}(\mathbf{x}^n) \cup \text{supp}(\mathbf{x}^{n+1})$, the triangle inequality yields

$$\|\mathbf{x}^{n+1} - \mathbf{x}_{\mathcal{S}}\|_{1} \leq 2\|\left[\mathbf{x}_{\mathcal{S}} - \mathbf{x}^{n} - \mathfrak{M}\left(\mathbf{A}\left(\mathbf{x}_{\mathcal{S}} - \mathbf{x}^{n}\right) + \mathbf{A}\mathbf{x}_{\bar{\mathcal{S}}} + \mathbf{e}\right)\right]_{\mathcal{Q}^{n+1}}\|_{1}$$

• Using the nestedness property of M_k and the lemma gives:

$$\|\mathbf{x}^{n+1} - \mathbf{x}_{\mathcal{S}}\|_{1} \leq \frac{8\epsilon_{\mathcal{M}_{3k}}}{1 - 4\epsilon_{\mathcal{M}_{3k}}} \|\mathbf{x}_{\mathcal{S}} - \mathbf{x}^{n}\|_{1} + \frac{4}{\left(1 - 4\epsilon_{\mathcal{M}_{3k}}\right)d} \|\mathbf{A}\mathbf{x}_{\bar{\mathcal{S}}} + \mathbf{e}\|_{1}$$

Taking lim_{n→∞} xⁿ = x̂, using the RIP-1 property of A and the triangle inequality with the condition ε_{M_{3k}} < 1/12, we have:

$$\|\hat{\mathbf{x}}-\mathbf{x}\|_{1} \leq C_{1}\sigma_{\mathcal{M}_{k}}(\mathbf{x})_{1}+C_{2}\|\mathbf{e}\|_{1}, \quad C_{2}=\beta=4\left(\left(1-12\epsilon_{\mathcal{M}_{3k}}\right)d\right)^{-1}, \ C_{1}=1+\beta d$$

Introduction Model expander matrices Model expander algorithm Conclusion MEIHT algorithm Projections Algorithm's key features Convergence proof Experimental results

- Simulations, with different *N*, on group and tree models

 $M = \lfloor N / \log_2(N) \rfloor, g = \lfloor N / M \rfloor,$ $k = 5, d = \lfloor 2 \log(N) / \log(kg) \rfloor$

Tree sparse

$$\begin{split} & m \in [2k, 10 \log_2(N)], \, k = \lfloor 2 \log_2(N) \rfloor, \\ & d = \lfloor 5 \log(N/k) / (2 \log \log(N/k)) \rfloor \end{split}$$

MEIHT requires fewer measurements than EIHT as expected

Summary

- MEIHT for model-based sketching with sparse matrices
- MEIHT has linear runtime & achieves ℓ_1/ℓ_1 error in the for all case
- MEIHT in proper perspective

	Price 2011	I. & R. 2013 ¹	this work
Structures (models)	block & tree	tree	tree & groups
Error guarantees	ℓ_2/ℓ_2	ℓ_1/ℓ_1	ℓ_1/ℓ_1
Guarantee types	for each	for all	for all
Runtime complexity	sublinear	exponential	linear
¹ Indyk and Razenshteyn 2013			

Possible extensions

- Implementation of MEIHT in lower level languages like C/C++
- Using MEIHT in real-life sketching & CS applications

References

- B. Bah, L. Baldassarre, & V. Cevher. Model-based sketching and recovery with expanders. ACM-SIAM Symposium on Discrete Algorithms (SODA '14)
- [2] L. Baldassarre, N. Bhan, V. Cevher, & A. Kyrillidis, Group-sparse model selection: Hardness and relaxations, arXiv, (2013)
- [3] R. Baraniuk, V. Cevher, M. Duarte, & C. Hegde, Model-based compressive sensing, IEEE IT. on, 56 (2010), pp. 1982-2001
- [4] S. Foucart & H. Rauhut, A mathematical introduction to compressive sensing, Applied Numerical Harmonic Analysis Birkhäuser, Boston, (2013)
- [5] P. Indyk & I. Razenshteyn, On model-based RIP-1 matrices, arXiv:1304.3604, (2013)
- [6] E. Price, Efficient sketches for the set query problem, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2011, pp. 41-56

THANK YOU