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Algorithm is ...

designed for structured sparse recovery using model expander
sensing matrices, & it’s particularly suited for linear sketching

Thus this talk will discuss ...
1 Structured sparse recovery

2 Model expander matrices

3 Algorithm and it’s features

4 Convergence of algorithm

5 Experiements
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Three key aspects of linear sketching

Signal (vector) x
sparse or compressible

Projection A
information preserving
(stable embedding)

Recovery algorithm ∆
tractable & accurate

Applications: Data streaming, compressive sensing (CS),
graph sketching, machine learning, group testing, etc.
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Sparsity and beyond

Generic sparsity (or compressibility) not specific enough

Note: Mk ⊆ Σk

Many applications exhibit some structure in sparsity pattern

⇒ structured sparsity→ model-based CS [Baraniuk et al. 2010]
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Model-based CS

Model-based CS exploits structure in sparsity model to
� improve interpretability
� reduce sketch length
� increase speed of recovery

Models of structured sparsity includes trees, blocks, groups, ...

tree-sparse Block-sparse
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Overlapping Group Models

A natural generalization of sparsity

Group models application examples:

Genetic Pathways in Microarray data analysis

Wavelet models in image processing

Brain regions in neuroimaging

Bubacarr Bah Model Expander Iterative Hard Thresholding



Introduction
Model expander matrices

Model expander algorithm
Conclusion

Compressed sensing (linear sketching)
Sparsity
Recovery conditions
Tractable and accurate recovery
Motivation & Contribution

Information preserving linear embeddings A

Definition (`p-norm Restricted Isometry Property (RIP-p))

A matrix A has RIP-p of order k , if for all k -sparse x, it satisfies

(1 − δk )‖x‖pp ≤ ‖Ax‖pp ≤ (1 + δk )‖x‖pp
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Information preserving linear embeddings A

Definition (`p-norm Restricted Isometry Property (RIP-p))

A matrix A has RIP-p of order k , if for all k -sparse x, it satisfies

(1 − δk )‖x‖pp ≤ ‖Ax‖pp ≤ (1 + δk )‖x‖pp

Subgaussian A ∈ Rm×N (w.h.p) have RIP-2 with
m = O (k log(N/k)), but sparse binary A does not
have RIP-2 unless m = Ω

(
k 2
)

Sparse adjacency matrices of lossless
expanders satisfy RIP-1 with m = O (k log(N/k))

Structured sparsity⇒ fewer m for model-RIP-2

O(k) for tree structure
O(k + log(M)) for block structure; M blocks

A

A
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Sparse matrices from expanders

Definition (Lossless Expander Graphs)

G = (U,V,E) is an (k , d, ε)-lossless expander if it is a bipartite graph
with |U| = N left vertices, |V| = m right vertices & has a regular left
degree d, s.t. any S ⊂ U with |S| ≤ k has |Γ(S)| ≥ (1 − ε) d|S| neighbors

� (S)

S ⇢ U
|S|  k

U : |U| = N

V : |V| = m

|� (S)| � (1 � ✏)d|S|

d = 3, ✏ 2 (0, 1/2)

(k, d, ✏)-lossless expander
G = (U , V, E)

A is sparse (d nonzeros per col.)

Computational benefits of A
Low storage complexity
Efficient application
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Tractability of recovery

Nonlinear reconstruction

Given A & y = Ax + e with ‖e‖2 ≤ η, find k -sparse x̂ satisfying:
x̂ = min

x∈RN
‖x‖0 subject to ‖Ax − y‖2 ≤ η.

Tractable recovery algorithms (∆) with provable guarantees

� Convex approach: `1-minimization

x̂ = min
x∈RN

‖x‖1 subject to ‖Ax − y‖2 ≤ η

� Discrete algorithms (OMP, IHT, CoSaMP, EIHT, ALPS, ...)

(IHT) iterates xn+1 = Hk (xn + A∗(y − Axn))
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Accuracy of recovery

∆ returns approximations with `p/`q-approximation error:

Definition (`p/`q-approximation error - instance optimality)

A ∆ returns x̂ = ∆(Ax + e) with `p/`q-approximation error if

‖x̂ − x‖p ≤ C1σk (x)q + C2‖e‖p

for a noise vector e, C1,C2 > 0, 1 ≤ q ≤ p ≤ 2, σk (x)q := min
k−sparse x′

‖x − x′‖q

The pair (A,∆) ⇒ two types of error guarantees
� for each - one pair (A,∆) for each given x
� for all - one pair (A,∆) for all x
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Goal of this work

To design an algorithm that makes it possible to efficiently exploit the
benefits of combining the sparsity in A with structured sparsity in x

Prior work on model-based CS use dense A

Dense matrices: difficult to store, create computational bottlenecks,
and not practical in real applications

Sparse matrices: low storage complexity, efficient application, etc

Existing recovery algorithm for such sparse matrices has
exponential complexity

Contribution summary

“Tractable” linear complexity algorithm with provable for all `1/`1

approximation guarantees
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Definition (RIP-1 for (k , d, ε)-lossless expanders)

If A is an adjacency matrix of a (k , d, ε)-lossless expanders, then
Φ = A/d has RIP-1 of order k , if for all k -sparse x, it satisfies

(1 − 2ε)‖x‖1 ≤ ‖Φx‖1 ≤ ‖x‖1

Probabilistic constructions of expanders
achieve optimal m = O (k log(N/k))

But their deterministic constructions are
sub-optimal m = O

(
k 1+α

)
for α > 0

� (S)

S ⇢ U
|S|  k

U : |U| = N

V : |V| = m

|� (S)| � (1 � ✏)d|S|

d = 3, ✏ 2 (0, 1/2)

(k, d, ✏)-lossless expander
G = (U , V, E)

Standard random construction of G = ([N], [m],E)

For every u ∈ [N], uniformly sample a subset of [m] of size d and connect
u and all the vertices from this subset
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Models everywhere

Tk & Gk denotes tree & loopless overlapping groups
respectively, which are jointly denoted byMk

Definition (Model sparse vectors)

A vector x isMk -sparse if supp(x) ⊆ K for K ∈ Mk

Definition ((k , d, ε)-model expander graph)

Let K ∈ Mk , G is a model expander if for
all S ⊆ K , we have

∣∣∣Γ(S)
∣∣∣ ≥ (1 − ε)d|S|

� (S)

S ⇢ U

U : |U| = N

V : |V| = m

|� (S)| � (1 � ✏)d|S|

d = 3, ✏ 2 (0, 1/2)

G = (U , V, E)
(k, d, ✏)-model expander

S ✓ K 2 Mk

Definition (Model expander matrix)

A matrix A is a model expander if it is the adjacency matrix of a
(k , d, ε)-model expander graph.
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Model-Expander Iterative Hard Thresholding (MEIHT)

Initialize x0 = 0, iterate
xn+1 = PMk [xn +M (y − Axn)]

M(·) is the median operator which returns
a vectorM(u) ∈ RN for an input u ∈ Rm;
defined elementwise

[M(u)]i := med[uj , j ∈ Γ(i)], i ∈ [N]

� (S)

S ⇢ U

U : |U| = N

V : |V| = m

|� (S)| � (1 � ✏)d|S|

d = 3, ✏ 2 (0, 1/2)

G = (U , V, E)
(k, d, ✏)-model expander

S ✓ K 2 Mk

PMk (u) ∈ argminz∈Mk
{‖u − z‖1} is the `1 projection of u ontoMk

MEIHT is a fusion (with adaptation) of various works:
SMP of [Berinde et al. 2008]

EIHT of [Foucart & Rauhut 2013]

Tractable group projections of [Baldassare et al. 2013]
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Tractability of structured sparse models

The projection is equivalent to Weighted Max Cover (WMC)
for group-sparse problems

PM(u) = min
z:supp(z)∈M

‖z − u‖1 = max
S∈M
‖uS‖1 ≡ WMC

So all WMC instances can be formulated as PM(·)

Caveat: WMC is NP-hard⇒ PM(·) is NP-hard too

But for some models,Mk (i.e. Tk & Gk ) in particular, there
exist linear time algorithms

Like dynamic programs that recursively compute the optimal
solution via the model graph [Baldassarre et al. 2013]
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Runtime: polynomial in N for all tractable models

Due to the sparsity of A, the projection onto the model is the
dominant operation in MEIHT
Based on the projection complexity from [Baldassarre et al. 2013],
for fixed iterations, n, MEIHT achieves linear runtime of:

O(knN) for the Tk model
O(M2kn + nN) for the Gk model; M groups

Error guarantees: `1/`1 in the for all case

‖x − x̂‖1 ≤ C1σMk (x)1 + C2‖e‖1
where C1,C2 > 0 and σMk (x)1 := minx′∈Mk ‖x − x′‖1

Approximate solutions are in the model,Mk ; this is very
useful for some applications
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Lemma (Key ingredient of proof)

Let A ∈ {0, 1}m×N be a (k , d, εMk )-model expander. If S ⊂ [N] isMk -sparse, then
for all x ∈ RN and e ∈ Rm,

‖ [M (AxS + e) − x]
S ‖1 ≤

4εMk

1 − 4εMk

‖xS‖1 +
2

(1 − 4εMk ) d
‖eΓ(S)‖1

For Qn+1 := S ∪ supp (xn) ∪ supp
(
xn+1
)
, the triangle inequality yields

‖xn+1 − xS‖1 ≤ 2‖ [xS − xn −M (A (xS − xn) + AxS̄ + e)]
Qn+1 ‖1

Using the nestedness property ofMk and the lemma gives:

‖xn+1 − xS‖1 ≤
8εM3k

1 − 4εM3k

‖xS − xn‖1 +
4(

1 − 4εM3k

)
d
‖AxS̄ + e‖1

Taking limn→∞ xn = x̂, using the RIP-1 property of A and the triangle
inequality with the condition εM3k < 1/12, we have:

‖x̂−x‖1 ≤ C1σMk (x)1+C2‖e‖1, C2 = β = 4
((

1 − 12εM3k

)
d
)−1

, C1 = 1+βd

�
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Simulations, with different N, on group and tree models

The median over different realizations of the minimum no. of
samples for which ‖x̂−x‖1

‖x‖1
≤ 10−5 is plotted for MEIHT & EIHT

Group sparse Tree sparse

7 8 9 10 11 12 13
100

150

200

250

300

350

400

450

500

log2(N )

m
∗

 

 

MEIHT
EIHT

7 8 9 10 11 12 13
0

50

100

150

200

250

log2(N )
m

∗

 

 

MEIHT
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M = bN/ log2(N)c, g = bN/Mc, m ∈ [2k , 10 log2(N)], k = b2 log2(N)c,
k = 5, d = b2 log(N)/log(kg)c d = b5 log(N/k)/(2 log log(N/k))c

MEIHT requires fewer measurements than EIHT as expected

Bubacarr Bah Model Expander Iterative Hard Thresholding



Introduction
Model expander matrices

Model expander algorithm
Conclusion

Summary

MEIHT for model-based sketching with sparse matrices

MEIHT has linear runtime & achieves `1/`1 error in the for all case

MEIHT in proper perspective
Price 2011 I. & R. 20131 this work

Structures (models) block & tree tree tree & groups
Error guarantees `2/`2 `1/`1 `1/`1

Guarantee types for each for all for all
Runtime complexity sublinear exponential linear

1Indyk and Razenshteyn 2013

Possible extensions

Implementation of MEIHT in lower level languages like C/C++

Using MEIHT in real-life sketching & CS applications
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