The Lasso yields pairs of spikes on thin grids

Vincent Duval
INRIA Rocquencourt MOKAPLAN

Gabriel Peyré
CNRS / Université Paris-Dauphine MOKAPLAN/CEREMADE

SPARS 2015
Cambridge

Observation model

- Consider a signal m_{0} defined on $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ (i.e. $[0,1)$ with periodic boundary condition).
- Observation :

$$
\Phi m_{0}+w=\int_{\mathbb{T} \times \mathbb{T}} \varphi(\cdot, y) \mathrm{d} m_{0}(y)+w \quad \text { where } \quad \varphi \text { is smooth and known. }
$$

- Example: Convolution

Observation model

- Consider a signal m_{0} defined on $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ (i.e. $[0,1)$ with periodic boundary condition).
- Observation :

$$
\Phi m_{0}+w=\int_{\mathbb{T} \times \mathbb{T}} \varphi(\cdot, y) \mathrm{d} m_{0}(y)+w \quad \text { where } \quad \varphi \text { is smooth and known. }
$$

- Example: Convolution

- Goal: recover m_{0} from the observation $y_{0}+w=\Phi m_{0}+w$ (or simply $y_{0}=\Phi m_{0}$)
- III-posed problem:
- the low pass filter might not be invertible ($\hat{\varphi}_{n}=0$ for some frequency n)
- even though, the problem is ill-conditioned $\left(\left|\hat{\varphi}_{n}\right| \ll\left|\hat{\varphi}_{0}\right|\right.$ for high frequencies n)
- Assumption: the signal m_{0} is sparse

$$
m_{0}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}, \quad \text { where }\left\{\begin{array}{l}
\alpha_{i} \in \mathbb{R} \\
x_{i} \in \mathbb{T} \\
N \in \mathbb{N} \text { is small. }
\end{array}\right.
$$

so that we observe $y+w=\sum_{i=1}^{N} \alpha_{i} \varphi\left(\cdot, x_{i}\right)+w$.

- Idea: Look for a sparse signal m such that $\Phi m \approx y_{0}+w\left(\right.$ or $\left.y_{0}\right)$.

Discretization

Define a finite grid $\mathcal{G}=\left\{\frac{i}{M} ; 0 \leqslant i \leqslant M-1\right\} \subset \mathbb{T}$, and consider signals of the form $m=\sum_{i=0}^{M-1} a_{i} \delta_{i}$.

- Write

$$
\begin{aligned}
& \Phi m=\sum_{i=0}^{M-1} a_{i} \varphi\left(\cdot, \frac{i}{M}\right) \\
& \text { Candidate Signal } \\
& =\underbrace{\left(\begin{array}{l|l|l|l}
& \varphi & \varphi\left(\cdot, \frac{1}{M}\right) & \ldots \\
& & & \varphi\left(\cdot, \frac{M-1}{M}\right)
\end{array}\right)}_{\Phi_{\mathcal{G}}} \\
&) \underbrace{\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{M-1}
\end{array}\right)}_{a} .
\end{aligned}
$$

- Equivalent paradigm: Look for a sparse vector $a \in \mathbb{R}^{M}$ such that $\Phi_{\mathcal{G}} \boldsymbol{a} \approx y_{0}\left(\right.$ or $\left.\Phi_{\mathcal{G}} \boldsymbol{a} \approx y_{0}+w\right)$.

Discrete ℓ^{1} regularization

Define
$\|m\|_{\ell^{1}(\mathcal{G})}= \begin{cases}\sum_{i=0}^{M-1}\left|a_{i}\right| & \text { if } m=\sum_{i=0}^{M-1} a_{i} \delta_{i} / M, \\ +\infty & \text { otherwise. }\end{cases}$

- Basis Pursuit [Chen \& Donoho (94)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})}\|m\|_{\ell^{\mathbf{1}}(\mathcal{G})} \text { such that } \Phi m=y_{0} \quad\left(\mathcal{P}_{0}^{\mathcal{G}}\left(y_{0}\right)\right)
$$

- LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})} \lambda\|m\|_{\ell^{\mathbf{1}}(\mathcal{G})}+\frac{1}{2}\left\|\Phi m-\left(y_{0}+w\right)\right\|_{2}^{2} \quad\left(\mathcal{P}_{\lambda}^{\mathcal{G}}\left(y_{0}+w\right)\right)
$$

Discrete ℓ^{1} regularization

Define
$\|m\|_{\ell^{1}(\mathcal{G})}= \begin{cases}\sum_{i=0}^{M-1}\left|a_{i}\right| & \text { if } m=\sum_{i=0}^{M-1} a_{i} \delta_{i / M}, \\ +\infty & \text { otherwise. }\end{cases}$

- Basis Pursuit [Chen \& Donoho (94)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})}\|m\|_{\ell^{1}(\mathcal{G})} \text { such that } \Phi m=y_{0}
$$

$$
\left(\mathcal{P}_{0}^{\mathcal{G}}\left(y_{0}\right)\right)
$$

- LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})} \lambda\|m\|_{\ell^{\mathbf{1}}(\mathcal{G})}+\frac{1}{2}\left\|\Phi m-\left(y_{0}+w\right)\right\|_{2}^{2} \quad \quad\left(\mathcal{P}_{\lambda}^{\mathcal{G}}\left(y_{0}+w\right)\right)
$$

ℓ^{2}-robustness (Grasmair et al. (2011))

If $m_{0}=\sum_{i} a_{0, i} \delta_{i / M}$ is the unique solution to $\mathcal{P}_{0}^{\mathcal{G}}\left(y_{0}\right)$, and $m_{\lambda}=\sum_{i} a_{\lambda, i} \delta_{i / M}$ is a solution to $\mathcal{P}_{\lambda}^{\mathcal{G}}\left(y_{0}+w\right)$, then
$\left\|a_{\lambda}-a_{0}\right\|_{2}=\mathcal{O}\left(\|w\|_{2}\right)$ for $\lambda=C\|w\|_{2}$.

Robustness of the support (discrete problem)

$$
m_{0}=\sum_{k=0}^{M-1} a_{0, k} \delta_{k / M}
$$

No support recovery

Support recovery

Can one guarantee that Supp $m_{\lambda}=$ Supp m_{0} ?

$$
m_{0}=\sum_{k=0}^{M-1} a_{0, k} \delta_{k / M}
$$

No support recovery

Support recovery

Can one guarantee that Supp $m_{\lambda}=$ Supp m_{0} ?

- Sufficient conditions [Tropp (06), Dossal \& Mallat (05)],
- Almost necessary and sufficient [Fuchs (04)],
- Or look at the minimal norm certificate.

Fuchs theorem

For $m_{0}=\sum_{i=1}^{M} a_{0, i} \delta_{x_{0}, i}$, assume that $\Phi_{x_{0}} \stackrel{\text { def. }}{=}\left(\varphi\left(\cdot, x_{0,1}\right), \ldots \varphi\left(\cdot, x_{0, N}\right)\right)$ has full rank.

Theorem (Fuchs (04))

If $\left|\eta_{F}\left(\frac{k}{M}\right)\right|<1$ for all k such that $\frac{k}{M} \notin\left\{x_{0,1}, \ldots, x_{0, N}\right\}$, then m_{0} is the unique solution to $\mathcal{P}_{0}^{\mathcal{G}}\left(y_{0}\right)$, and there exists $\gamma>0, \lambda_{0}>0$ such that for $0 \leqslant \lambda \leqslant \lambda_{0}$ and $\|w\|_{2} \leqslant \gamma \lambda$,

- The solution m_{λ} to $\mathcal{P}_{\lambda}^{\mathcal{G}}\left(y_{0}+w\right)$ is unique.
- Supp $m_{\lambda}=$ Supp m_{0}, that is $m_{\lambda}=\sum_{i=1}^{N} \alpha_{\lambda, i} \delta_{x_{0}, i}$, and $\operatorname{sign}\left(\alpha_{\lambda, i}\right)=\operatorname{sign}\left(\alpha_{0, i}\right)$,
- $\alpha_{\lambda}=\alpha_{0}+\Phi_{x_{0}}^{+} w-\lambda\left(\Phi_{x_{0}}^{*} \Phi_{x_{0}}\right)^{-1} \operatorname{sign}\left(\alpha_{0}\right)$.

If $\left|\eta_{F}\left(\frac{k}{M}\right)\right|>1$ for some k, the support is not stable.

Fuchs theorem

For $m_{0}=\sum_{i=1}^{M} a_{0, i} \delta_{x_{0}, i}$, assume that
$\Phi_{x_{0}} \stackrel{\text { def. }}{=}\left(\varphi\left(\cdot, x_{0,1}\right), \ldots \varphi\left(\cdot, x_{0, N}\right)\right)$
has full rank.

$$
\begin{aligned}
\eta_{F} \stackrel{\text { def. }}{=} \Phi^{*} p_{F} \quad \text { where } \quad p_{F} & \stackrel{\text { def. }}{=} \operatorname{argmin}\left\{\|p\|_{L^{2}(\mathbb{T})} ;\left(\Phi^{*} p\right)\left(x_{0, i}\right)=\operatorname{sign}\left(\alpha_{0, i}\right)\right\} \\
& =\Phi_{x_{0}}^{+, *} s .
\end{aligned}
$$

Theorem (Fuchs (04))

If $\left|\eta_{F}\left(\frac{k}{M}\right)\right|<1$ for all k such that $\frac{k}{M} \notin\left\{x_{0,1}, \ldots, x_{0, N}\right\}$, then m_{0} is the unique solution to $\mathcal{P}_{0}^{\mathcal{G}}\left(y_{0}\right)$, and there exists $\gamma>0, \lambda_{0}>0$ such that for $0 \leqslant \lambda \leqslant \lambda_{0}$ and $\|w\|_{2} \leqslant \gamma \lambda$,

- The solution m_{λ} to $\mathcal{P}_{\lambda}^{\mathcal{G}}\left(y_{0}+w\right)$ is unique.
- Supp $m_{\lambda}=$ Supp m_{0}, that is $m_{\lambda}=\sum_{i=1}^{N} \alpha_{\lambda, i} \delta_{x_{0}, i}$, and $\operatorname{sign}\left(\alpha_{\lambda, i}\right)=\operatorname{sign}\left(\alpha_{0, i}\right)$,
$-\alpha_{\lambda}=\alpha_{0}+\Phi_{\times_{0}}^{+} w-\lambda\left(\Phi_{\times_{0}}^{*} \Phi_{x_{0}}\right)^{-1} \operatorname{sign}\left(\alpha_{0}\right)$.
If $\left|\eta_{F}\left(\frac{k}{M}\right)\right|>1$ for some k, the support is not stable.

When the grid is too thin, the Fuchs criterion cannot hold \Rightarrow the support is not stable.

Question

What is the support at low noise when the Fuchs criterion does not hold?

Need to study the minimal norm certificate.

The minimal norm certificate

Assume that m_{0} is a solution to $\mathcal{P}_{0}\left(y_{0}\right)$.
Define the minimal norm certificate on \mathcal{G}

$\eta_{0}^{\mathcal{G}} \stackrel{\text { def. }}{=} \Phi^{*} p_{0}^{\mathcal{G}}$ where $p_{0}^{\mathcal{G}} \stackrel{\text { def. }}{=} \operatorname{argmin}\left\{\|p\|_{L^{2}(\mathbb{T})} ;\left(\Phi^{*} p\right)\left(x_{0, i}\right)=\operatorname{sign}\left(\alpha_{0, i}\right)\right.$ for $1 \leqslant i \leqslant N$

$$
\text { and } \left.\left|\left(\Phi^{*} p\right)\left(\frac{k}{M}\right)\right| \leqslant 1 \text { for } 0 \leqslant k \leqslant M-1\right\} .
$$

General principle

- If $\left|\eta_{0}^{\mathcal{G}}\left(\frac{k}{M}\right)\right|<1$ for all k such that $k / M \notin\left\{x_{0,1}, \ldots, x_{0, N}\right\}$, there is a low noise regime with support recovery.
- If $\left|\eta_{0}^{\mathcal{G}}\left(\frac{k}{M}\right)\right|=1$ for some k such that $k / M \notin\left\{x_{0,1}, \ldots, x_{0, N}\right\}$, then for arbitrary small values of $\lambda,\|w\|_{L^{2}(\mathbb{T})}$, a spike may appear at k / M.

The set $\left\{k / M ;\left|\eta_{0}^{\mathcal{G}}\left(\frac{k}{M}\right)\right|=1\right\}$ is called the extended support on \mathcal{G} (see also [Dossal (07)]).

Working on thin grids

- Consider a sequence of refining grids with vanishing stepsize:

$$
\mathcal{G}_{n}=\left\{\frac{k}{M_{n}} ; 0 \leqslant k \leqslant M_{n}-1\right\} \subset \mathbb{T} \quad \text { with }\left\{\begin{array}{l}
\mathcal{G}_{n} \subset \mathcal{G}_{n+1}\left(\text { e.g. } M_{n}=\frac{1}{2^{n}}\right) \\
\lim _{n \rightarrow+\infty} M_{n}=+\infty
\end{array}\right.
$$

- Assume that Supp $m_{0} \subset \mathcal{G}_{n}$ for n large enough, i.e. $x_{0, i} \in \mathcal{G}_{n}$ for all $1 \leqslant i \leqslant N$.

Working on thin grids

- Consider a sequence of refining grids with vanishing stepsize:

$$
\mathcal{G}_{n}=\left\{\frac{k}{M_{n}} ; 0 \leqslant k \leqslant M_{n}-1\right\} \subset \mathbb{T} \quad \text { with }\left\{\begin{array}{l}
\mathcal{G}_{n} \subset \mathcal{G}_{n+1}\left(\text { e.g. } M_{n}=\frac{1}{2^{n}}\right) \\
\lim _{n \rightarrow+\infty} M_{n}=+\infty
\end{array}\right.
$$

- Assume that Supp $m_{0} \subset \mathcal{G}_{n}$ for n large enough, i.e. $x_{0, i} \in \mathcal{G}_{n}$ for all $1 \leqslant i \leqslant N$.

Proposition (Tang \& Recht (13))

The solutions of $\mathcal{P}_{0}^{\mathcal{G}_{n}}\left(y_{0}\right)$ (resp. $\mathcal{P}_{\lambda}^{\mathcal{G}_{n}}\left(y_{0}+w\right)$) weakly* converge (up to subsequences) towards the solutions of $\mathcal{P}_{0}\left(y_{0}\right)\left(\right.$ resp. $\mathcal{P}_{\lambda}\left(y_{0}+w\right)$).

- Basis Pursuit for measures [de Castro \& Gamboa (12), Candes \& Fernandez-Granda (13)],

$$
\begin{equation*}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { such that } \Phi m=y_{0} \tag{0}
\end{equation*}
$$

- LASSO for measures [Recht et al. (12), Bredies \& Pikkarainen (13), Azais et al. (13)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\left\|\Phi m-\left(y_{0}+w\right)\right\|_{2}^{2} \quad\left(\mathcal{P}_{\lambda}\left(y_{0}+w\right)\right)
$$

- Consider a sequence of refining grids with vanishing stepsize:

$$
\mathcal{G}_{n}=\left\{\frac{k}{M_{n}} ; 0 \leqslant k \leqslant M_{n}-1\right\} \subset \mathbb{T} \quad \text { with }\left\{\begin{array}{l}
\mathcal{G}_{n} \subset \mathcal{G}_{n+1}\left(\text { e.g. } M_{n}=\frac{1}{2^{n}}\right) \\
\lim _{n \rightarrow+\infty} M_{n}=+\infty
\end{array}\right.
$$

- Assume that Supp $m_{0} \subset \mathcal{G}_{n}$ for n large enough, i.e. $x_{0, i} \in \mathcal{G}_{n}$ for all $1 \leqslant i \leqslant N$.

Proposition (Duval \& Peyré (13))

The minimal norm certificate $\eta_{0}^{\mathcal{G}_{n}}$ for $\mathcal{P}_{0}^{\mathcal{G}_{n}}\left(y_{0}\right)$ converges towards the minimal norm certificate of $\mathcal{P}_{0}\left(y_{0}\right)$.

- Basis Pursuit for measures [de Castro \& Gamboa (12), Candes \& Fernandez-Granda (13)],

$$
\begin{equation*}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { such that } \Phi m=y_{0} \tag{0}
\end{equation*}
$$

- LASSO for measures [Recht et al. (12), Bredies \& Pikkarainen (13), Azais et al. (13)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\left\|\Phi m-\left(y_{0}+w\right)\right\|_{2}^{2} \quad\left(\mathcal{P}_{\lambda}\left(y_{0}+w\right)\right)
$$

Extended support on thin grids

If m_{0} is "non-degenerate", for n large enough

$$
\left\{k / M ;\left|\eta_{0}^{\mathcal{G}}\left(\frac{k}{M}\right)\right|=1\right\} \subseteq \bigcup_{i=1}^{N}\left\{x_{0, i}, x_{0, i}+\frac{\varepsilon_{n, i}}{M_{n}}\right\} .
$$

where $\varepsilon_{n, i} \in\{-1,1\}^{N}$.
Define the natural shift as

$$
\rho \stackrel{\text { def. }}{=}\left(\Phi_{x_{0}}^{\prime *} \Pi \Phi_{x_{0}}^{\prime}\right)^{-1} \Phi_{x_{0}}^{\prime *} \Phi_{x_{0}}^{+, *} \operatorname{sign}\left(\alpha_{0}\right) .
$$

Theorem (D.-Peyré (15))

If $\rho_{i} \neq 0$ for all $1 \leqslant i \leqslant N$, then ε does not depend on n, and is given by

$$
\varepsilon=\left(\operatorname{diag}\left(\operatorname{sign}\left(\alpha_{0}\right)\right)\right) \operatorname{sign}(\rho)
$$

where Π is the orthogonal projector onto $\left(\operatorname{lm} \Phi_{\times_{0}}\right)^{\perp}$.
Moreover

$$
\left\{k / M ;\left|\eta_{0}^{\mathcal{G}}\left(\frac{k}{M}\right)\right|=1\right\}=\bigcup_{i=1}^{N}\left\{x_{0, i}, x_{0, i}+\frac{\varepsilon_{i}}{M_{n}}\right\} .
$$

Under the same hypotheses:

Theorem (D.-Peyré (15))

There exists $\gamma^{(n)}>0, \lambda_{0}^{(n)}>0$ such that for $0 \leqslant \lambda \leqslant \lambda_{0}^{(n)}$ and $\|w\|_{2} \leqslant \gamma^{(n)} \lambda$,

- The solution $m_{\lambda}^{(n)}$ to $\mathcal{P}_{\lambda}^{\mathcal{G}_{n}}\left(y_{0}+w\right)$ is unique.
- Supp $m_{\lambda}^{(n)}=\bigcup_{1 \leqslant i \leqslant N}\left\{x_{0, i}, x_{0, i}+\frac{\varepsilon_{i}}{M_{n}}\right\}$, that is
$m_{\lambda}^{n}=\sum_{i=1}^{N}\left(\alpha_{\lambda, i}^{(n)} \delta_{x_{0}, i}+\beta_{\lambda, i}^{(n)} \delta_{x_{0}, i}+\frac{\varepsilon_{i}}{M_{n}}\right)$, and
$\operatorname{sign}\left(a_{\lambda, i}\right)=\operatorname{sign}\left(b_{\lambda, i}\right)=\operatorname{sign}\left(a_{0, i}\right)$,
$\Rightarrow\binom{\alpha_{\lambda}^{(n)}}{\beta_{\lambda}^{(n)}}=\binom{\alpha_{0}}{0}+\Phi_{x_{0}, x_{0}+\varepsilon}^{+} w-\lambda\left(\Phi_{x_{0}, x_{0}+\varepsilon}^{*} \Phi_{x_{0}, x_{0}+\varepsilon}\right)^{-1}\binom{\operatorname{sign}\left(\alpha_{0, l}\right)}{\operatorname{sign}\left(\alpha_{0, l}\right)}$.
In fact $\gamma^{(n)}=O(1)$ and $\lambda_{0}^{(n)}=O\left(\frac{1}{M_{n}}\right)$.

Numerical example $(w=0)$

- (Almost)-stability of the support on thin grids
- As the grid stepsize refines, stability decreases
- For a more stable "support recovery", use the continuous approach

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution, V. Duval \& G. Peyré (JFoCM 2014) Sparse Spikes Deconvolution on thin Grids V. Duval \& G. Peyré (ArXiv Preprint 2015)

Thank you for your attention!

Continuous framework for deconvolution

Using the total variation of measures:
$|m|(\mathbb{T})=\sup \left\{\int_{\mathbb{T}} \psi d m ; \psi \in C(\mathbb{T}),\|\psi\|_{\infty} \leqslant 1\right\}$

- Basis Pursuit for measures [de Castro \& Gamboa (12), Candes \& Fernandez-Granda (13)],

$$
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { such that } \Phi m=y_{0}
$$

- LASSO for measures [Recht et al. (12), Bredies \& Pikkarainen (13), Azais et al. (13)]

$$
\inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\left\|\Phi m-\left(y_{0}+w\right)\right\|_{2}^{2} \quad\left(\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right)\right)
$$

\exists numerical methods for solving $\mathcal{P}_{0}\left(y_{0}\right)$ and $\mathcal{P}_{\lambda}\left(y_{0}+w\right)$, see [Bredies \& Pikkarainen (13), Candes \& Fernandez-Granda (13)]

Limit of the functionals

We say that $m_{n} \in \mathcal{M}(\mathbb{T})$ weakly * converges towards $m \in \mathcal{M}(\mathbb{T})$ if

$$
\forall f \in C(\mathbb{T}), \lim _{n \rightarrow+\infty} \int_{\mathbb{T}} f \mathrm{~d} m_{n}=\int_{\mathbb{T}} f \mathrm{~d} m .
$$

Consider a sequence $\left(m_{n}\right)_{n \in \mathbb{N}} \in \mathcal{M}(\mathbb{T})^{\mathbb{N}}$ such that each m_{n} is a minimizer of $\mathcal{P}_{0}^{M_{n}}\left(y_{0}\right)\left(\right.$ resp. $\left.\mathcal{P}_{\lambda}^{M_{n}}\left(y_{0}+w\right)\right)$.

Theorem ([Tang et al. 13])

The sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ has convergent subsequences for the weak * convergence, and each limit point is a minimizer of $\mathcal{P}_{0}^{\infty}\left(y_{0}\right)$ (resp. $\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right)$).

Remark: In fact $\mathcal{P}_{0}^{M_{n}}\left(y_{0}\right)$ (resp. $\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right) \Gamma$-converges towards $\mathcal{P}_{0}^{\infty}\left(y_{0}\right)\left(\right.$ resp. $\left.\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right)\right)$.

Fine properties of the support

More precisely, if the solution $m^{\infty}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ to $\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right)$ (resp. $\left.\mathcal{P}_{0}^{\infty}\left(y_{0}\right)\right)$ is "non-degenerate",

- then the solution m_{n} to $\mathcal{P}_{\lambda}^{\infty}\left(y_{0}+w\right)\left(\right.$ resp. $\left.\mathcal{P}_{0}\left(y_{0}\right)\right)$ is made of pairs consecutive spikes:

$$
\begin{array}{r}
m_{n}=\sum_{i=1}^{N}\left(a_{i} \delta_{k_{i} / M}+b_{i} \delta_{\left(k_{i}+\varepsilon_{i}\right) / M}\right) \\
\text { with } \operatorname{sign}\left(a_{i}\right)=\operatorname{sign}\left(b_{i}\right)=\operatorname{sign}\left(\alpha_{i}\right), \varepsilon_{i} \in\{ \pm 1\}
\end{array}
$$

- At low noise, if the original measure is on the grid, pairs of consecutive spikes (including the original one) (see Section 1).

Identifiability for discrete measures

Minimum separation distance of a measure m :

$$
\Delta(m)=\min _{x, x^{\prime} \in \text { Supp } m, x \neq x^{\prime}}\left|x-x^{\prime}\right|
$$

Ideal Low Pass filter: $\varphi(t)=\frac{\left.\sin \left(2 f_{c}+1\right) \pi t\right)}{\sin \pi t}$
 i.e $\hat{\varphi}_{n}=1$ for $|n| \leqslant f_{c}, 0$ otherwise.

Theorem (Candès \& Fernandez-Granda (2013))

Let φ be the ideal low-pass filter. There exists a constant $C>0$ such that, for any (discrete) measure m_{0} with $\Delta\left(m_{0}\right) \geqslant \frac{C}{f_{c}}, m_{0}$ is the unique solution of

$$
\begin{equation*}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { such that } \Phi m=y_{0} \tag{0}
\end{equation*}
$$

where $y_{0}=\Phi m_{0}$.
Remark: $1 \leqslant C \leqslant 1.87$.

Weak-* robustness (Bredies \& Pikkarainen (2013))
If $m_{0}=\sum_{i} a_{0, i} \delta_{x_{0}, i}$ is the unique solution to $\mathcal{P}_{0}\left(y_{0}\right), m_{\lambda}$ is a solution to $\mathcal{P}_{\lambda}\left(y_{0}+w\right)$, then $m_{\lambda} \stackrel{*}{\rightharpoonup} m_{0}$ as $\lambda \rightarrow 0^{+},\|w\|_{2}^{2} / \lambda \rightarrow 0$.
(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local averages in the case of the ideal LPF)

$$
m_{0}=\sum_{i=0}^{N} a_{0, i} \delta_{x_{0, i}}
$$

Weak-* robustness (Bredies \& Pikkarainen (2013))

If $m_{0}=\sum_{i} a_{0, i} \delta_{x_{0}, i}$ is the unique solution to $\mathcal{P}_{0}\left(y_{0}\right), m_{\lambda}$ is a solution to $\mathcal{P}_{\lambda}\left(y_{0}+w\right)$, then $m_{\lambda} \stackrel{*}{\rightharpoonup} m_{0}$ as $\lambda \rightarrow 0^{+},\|w\|_{2}^{2} / \lambda \rightarrow 0$.
(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local averages in the case of the ideal LPF)

$$
m_{0}=\sum_{i=0}^{N} a_{0, i} \delta_{x_{0, i}}
$$

No Support recovery

"Support recovery"

Robustness of the support (continuous problem)

For $m_{0}=\sum_{i=1}^{N} a_{i_{0}} \delta_{x_{0}, i}$, define
$\Gamma_{x_{\mathbf{0}}}=\left(\varphi\left(\cdot-x_{0,1}\right), \ldots \varphi\left(\cdot-x_{0, N}\right), \varphi^{\prime}\left(\cdot-x_{0, \mathbf{1}}\right), \ldots \varphi^{\prime}\left(\cdot-x_{\mathbf{0}, N}\right)\right)$

Theorem (D.-Peyré 2013)

Assume that $\Gamma_{x_{0}}$ has full rank, and that m_{0} is non-degenerate. Then there exists, $\alpha>0, \lambda_{0}>0$ such that for $0 \leqslant \lambda \leqslant \lambda_{0}$ and $\|w\|_{2} \leqslant \alpha \lambda$,

- the solution m_{λ} to $\mathcal{P}_{\lambda}(y+w)$ is unique and has exactly N spikes, $m_{\lambda}=\sum_{i=1}^{N} a_{\lambda, i} \delta_{x_{\lambda, i}}$,
- the mapping $(\lambda, w) \mapsto\left(a_{\lambda}, x_{\lambda}\right)$ is C^{1}.
- the solution has the Taylor expansion

$$
\binom{a_{\lambda}}{x_{\lambda}}=\binom{a_{0}}{x_{0}}+\left(\begin{array}{cc}
1 & 0 \\
0 & \operatorname{diag} a_{0}^{-1}
\end{array}\right)\left(\Gamma_{x_{0}}^{*} \Gamma_{x_{0}}\right)^{-1}\left[\binom{\operatorname{sign}\left(a_{0}\right)}{0} \lambda-\Gamma_{x_{0}}^{*} w\right]+o\binom{\lambda}{w}
$$

$$
\begin{array}{ll|ll}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { s.t. } \Phi m=y & \left(\mathcal{P}_{0}(y)\right) & \inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-y\|_{2} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle & \left(\mathcal{D}_{0}(y)\right) & \sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle-\frac{\lambda}{2}\|p\|_{2}^{2} & \left(\mathcal{D}_{\lambda}(y)\right)
\end{array}
$$

$$
\begin{array}{ll|ll}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { s.t. } \Phi m=y & \left(\mathcal{P}_{0}(y)\right) & \inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-y\|_{2} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle & \left(\mathcal{D}_{0}(y)\right) & \sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle-\frac{\lambda}{2}\|p\|_{2}^{2} & \left(\mathcal{D}_{\lambda}(y)\right) \tag{y}
\end{array}
$$

Extremality relation:

$$
\Phi^{*} p \in \partial|m|(\mathbb{T})
$$

$$
\left\{\begin{array}{c}
\Phi^{*} p_{\lambda} \in \partial\left|m_{\lambda}\right|(\mathbb{T}) \\
-p_{\lambda}=\frac{1}{\lambda}\left(\Phi m_{\lambda}-y\right)
\end{array}\right.
$$

$$
\eta:=\Phi^{*} p \text { is a certificate for } m
$$

Duality

$$
\begin{array}{ll|ll}
\inf _{m \in \mathcal{M}(\mathbb{T})}|m|(\mathbb{T}) \text { s.t. } \Phi m=y & \left(\mathcal{P}_{0}(y)\right) & \inf _{m \in \mathcal{M}(\mathbb{T})} \lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-y\|_{2} & \left(\mathcal{P}_{\lambda}(y)\right) \\
\sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle & \left(\mathcal{D}_{0}(y)\right) & \sup _{\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1}\langle y, p\rangle-\frac{\lambda}{2}\|p\|_{2}^{2} & \left(\mathcal{D}_{\lambda}(y)\right) \tag{y}
\end{array}
$$

Extremality relation:

$$
\Phi^{*} p \in \partial|m|(\mathbb{T})
$$

$$
\left\{\begin{array}{c}
\Phi^{*} p_{\lambda} \in \partial\left|m_{\lambda}\right|(\mathbb{T}) \\
-p_{\lambda}=\frac{1}{\lambda}\left(\Phi m_{\lambda}-y\right)
\end{array}\right.
$$

$\eta:=\Phi^{*} p$ is a certificate for m

Subdifferential of the total variation

$$
\begin{aligned}
& \partial|m|(\mathbb{T})=\left\{\eta \in C(\mathbb{T}) ; \quad \forall m^{\prime} \in \mathcal{M}(\mathbb{T}),\left|m^{\prime}\right|(\mathbb{T}) \geqslant|m|(\mathbb{T})+\left\langle\eta, m^{\prime}-m\right\rangle\right\} \\
&=\left\{\eta \in C(\mathbb{T}) ;\|\eta\|_{\infty} \leqslant 1, \forall t \in \operatorname{Supp} m_{+} \eta(t)=1\right. \\
&\text { and } \left.\forall t \in \operatorname{Supp} m_{-} \eta(t)=-1\right\}
\end{aligned}
$$

Extremality relation:

$$
\Phi^{*} p \in \partial|m|(\mathbb{T})
$$

$$
\left\{\begin{array}{c}
\Phi^{*} p_{\lambda} \in \partial\left|m_{\lambda}\right|(\mathbb{T}) \\
-p_{\lambda}=\frac{1}{\lambda}\left(\Phi m_{\lambda}-y\right)
\end{array}\right.
$$

Find the support of $m \longleftrightarrow$ Find all t such that $\eta(t):=\left(\Phi^{*} p\right)(t)= \pm 1$
For $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$,
$\partial|m|(\mathbb{T})=\left\{\eta \in C(\mathbb{T}) ;\|\eta\|_{\infty} \leqslant 1\right.$ and $\eta\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right)$ for $\left.1 \leqslant i \leqslant N\right\}$.

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{p \in L^{2}(\mathbb{T})}\langle y, p\rangle \quad \text { s.t. } \sup _{t \in \mathbb{T}}\left|\left(\Phi^{*} p\right)(t)\right| \leqslant 1
$$

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{c \in \mathbb{R}^{2 f_{c}+1}} \Re\langle\hat{y}, c\rangle \quad \text { s.t. } \sup _{t \in \mathbb{T}}\left|\sum_{n=-f_{c}}^{f_{c}} c_{n} e^{2 i \pi n t}\right| \leqslant 1 .
$$

Lemma (Dumitrescu)

A causal trigonometric polynomial $\sum_{n=0}^{M-1} c_{n} e^{2 i \pi n t}$ is bounded by one in magnitude if and only if there exists a Hermitian matrix $Q \in \mathbb{C}^{M \times M}$ such that

$$
\left[\begin{array}{ll}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \text { and } \sum_{i=1}^{M-j} Q_{i, i+j}=\left\{\begin{array}{l}
1, j=0 \\
0, j=1,2 \ldots M-1
\end{array}\right.
$$

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{c \in \mathbb{R}^{2 f_{c}+1}, Q \in \mathcal{H}_{2 f_{c}+1}} \Re\langle\hat{y}, c\rangle \quad \text { s.t. }\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \text { and } \ldots
$$

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{c \in \mathbb{R}^{2 f_{c}+1}, Q \in \mathcal{H}_{2 f_{c}+1}} \Re\langle\hat{y}, c\rangle \quad \text { s.t. }\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \text { and } \ldots
$$

- Find the roots of $\left|\sum_{n=-f_{c}}^{f_{c}} c_{n} X^{f_{c}+n}\right|^{2}-1$ on the unit circle: $e^{2 i \pi x_{1}}, \ldots, e^{2 i \pi x_{N}}$.

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{c \in \mathbb{R}^{2 f_{c}+1}, Q \in \mathcal{H}_{2 f_{c}+1}} \Re\langle\hat{y}, c\rangle \quad \text { s.t. }\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \text { and } \ldots
$$

- Find the roots of $\left|\sum_{n=-f_{c}}^{f_{c}} c_{n} X^{f_{c}+n}\right|^{2}-1$ on the unit circle: $e^{2 i \pi x_{1}}, \ldots, e^{2 i \pi x_{N}}$.
- Solve the system $\sum_{n=1}^{N} a_{n} e^{2 i \pi k x_{n}}=\hat{y}_{k}$ for $-f_{c} \leqslant k \leqslant f_{c}$

How to solve $\mathcal{P}_{0}(y)$ in the case of the ideal LPF? \longrightarrow use the Fourier coefficients.

- Solve

$$
\sup _{c \in \mathbb{R}^{2 f_{c}+1}, Q \in \mathcal{H}_{2 f_{c}+1}} \Re\langle\hat{y}, c\rangle \quad \text { s.t. }\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \text { and } \ldots
$$

- Find the roots of $\left|\sum_{n=-f_{c}}^{f_{c}} c_{n} X^{f_{c}+n}\right|^{2}-1$ on the unit circle: $e^{2 i \pi x_{1}}, \ldots, e^{2 i \pi x_{N}}$.
- Solve the system $\sum_{n=1}^{N} a_{n} e^{2 i \pi k x_{n}}=\hat{y}_{k}$ for $-f_{c} \leqslant k \leqslant f_{c}$

There is a variant for $\mathcal{P}_{\lambda}(y)$ (Azais et al., 2013)

Example

EXAMPLE

The dual as a projection

The set $C=\left\{p \in L^{2}(\mathbb{T}),\left\|\Phi^{*} p\right\|_{\infty} \leqslant 1\right\}$ is non-empty closed and convex.

Consequence

- The mapping $\frac{y}{\lambda} \mapsto p_{\lambda}$ is non-expansive, and $\left\|\tilde{p}_{\lambda}-p_{\lambda}\right\|_{2} \leqslant \frac{\|w\|_{2}}{\lambda}$.
- Each "face" of C corresponds to a set of active constraints $\left(\Phi^{*} p\right)(t)= \pm 1$ and hence to a (signed) support for the solution \tilde{m}_{λ}.

Projection onto convex sets

C_{3}

C_{4}

$$
C=\bigcap_{n \in \mathbb{N}} C_{n}
$$

Discrete case

$C_{M}=\left\{p \in L^{2}(\mathbb{T}) ;\left|\left(\Phi^{*} p\right)\left(\frac{i}{M}\right)\right| \leqslant 1\right.$ for $\left.0 \leqslant i \leqslant M-1\right\}$ is a convex polytope.
The support is locally constant.

Continuous case

$C=\left\{p \in L^{2}(\mathbb{T}) ;\left|\left(\Phi^{*} p\right)(t)\right| \leqslant 1\right.$ for $\left.t \in \mathbb{T}\right\}$ is convex, piecewise smooth.
The support varies smoothly.

Asumption : there is a solution to $\mathcal{D}_{0}(y)$ (OK if $\operatorname{dim}(\operatorname{lm} \Phi)<+\infty)$.

Lemma ((D.-Peyré. 2013))

Let p_{λ} the unique solution of $\mathcal{D}_{\lambda}(y)$, and p_{0} be the solution of $\mathcal{D}_{0}(y)$ with minimal norm. Then

$$
\lim _{n \rightarrow+\infty} p_{\lambda}=p_{0} \text { in } L^{2} \text { (strongly) }
$$

Moreover, the dual certificate $\eta_{\lambda}=\Phi^{*} p_{\lambda}$ and its derivatives $\eta_{\lambda}^{(k)}$ $(0 \leqslant k \leqslant 2)$ satify:

$$
\lim _{\lambda \rightarrow 0} \eta_{\lambda}^{(k)}=\eta_{0}^{(k)} \text { in the sense of the uniform convergence. }
$$

Definition

A measure $m_{0}=\sum_{i=1}^{N} a_{0, i} \delta_{x_{0}, i}$ satisfies the Non Degenerate Source Condition if

- There exists $\eta \in \operatorname{Im} \Phi^{*}$ such that $\eta \in \partial\left|m_{0}\right|(\mathbb{T})$, or equivalently:
- there exists a solution p to $\mathcal{D}_{0}(y)$,
- m_{0} is a solution to $\mathcal{P}_{0}(y)$
- The minimal norm certificate $\eta_{0}=\Phi^{*} p_{0}$ satisfies
- For all $s \in \mathbb{T} \backslash\left\{x_{0,1}, \ldots x_{0, N}\right\},\left|\eta_{0}(s)\right|<1$,
- For all $i \in\{1, \ldots N\}, \eta_{0}^{\prime \prime}\left(x_{0, i}\right) \neq 0$.
- (Almost)-stability of the support for the deconvolution problem
- As the grid stepsize refines, stability decreases
- Try the grid free approaches the Sparse Spikes Deconvolution on Numerical tours!

www.numerical-tours.com

> Papers:
> Exact Support Recovery for Sparse Spikes Deconvolution, V. Duval \& G. Peyré (JFoCM 2014) Sparse Spikes Deconvolution on thin Grids V. Duval \& G. Peyré (ArXiv Preprint 2015)

Azais, J.-M., De Castro, Y., and Gamboa, F. (2013). Spike detection from inaccurate samplings. Technical report.
Bredies, K. and Pikkarainen, H. (2013). Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 19:190-218.
Candès, E. J. and Fernandez-Granda, C. (2013). Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics. To appear.
Chen, S. and Donoho, D. (1994). Basis pursuit. Technical report, Stanford University.
Chen, S., Donoho, D., and Saunders, M. (1999). Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33-61.
de Castro, Y. and Gamboa, F. (2012). Exact reconstruction using beurling minimal extrapolation. Journal of Mathematical Analysis and Applications, 395(1):336-354.
Dossal, C. and Mallat, S. (2005). Sparse spike deconvolution with minimum craln In Drocondince of SDADC nacoc 102-106

