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2 / 14Observation model

I Consider a signal m0 defined on T = R/Z (i.e. [0, 1) with periodic
boundary condition).

I Observation :

Φm0 + w =

∫
T×T

ϕ(·, y)dm0(y) + w where ϕ is smooth and known.

I Example: Convolution

Original Signal

m0

t0 1

∗

Low-pass filter

ϕ

t0.5−0.5

+

Noise

w

t0 1

=

Observation

y0 + w

t0 1

I Goal: recover m0 from the observation y0 + w = Φm0 + w (or simply
y0 = Φm0)

I Ill-posed problem:
I the low pass filter might not be invertible (ϕ̂n = 0 for some frequency n)
I even though, the problem is ill-conditioned (|ϕ̂n| � |ϕ̂0| for high

frequencies n)
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3 / 14Assumption

I Assumption: the signal m0 is sparse

Original Signal

m0

t0 1
x1

x2

x3

∗

Low-pass filter

ϕ

t0.5−0.5

+

Noise

w

t0 1

=

Observation

y + w

t0 1

m0 =
N∑
i=1

αiδxi , where


αi ∈ R,
xi ∈ T,
N ∈ N is small.

so that we observe y + w =
∑N

i=1 αiϕ (·, xi ) + w .

I Idea: Look for a sparse signal m such that Φm ≈ y0 + w (or y0).



4 / 14Discretization

Define a finite grid G = { i
M

; 0 6 i 6 M − 1} ⊂ T, and consider signals of the
form m =

∑M−1
i=0 aiδ i

M
.

Candidate Signal

m

t
0 1

1
M

3
M

M−1
M

I Write

Φm =
M−1∑
i=0

aiϕ

(
·, i

M

)

=

 ϕ ϕ(·, 1
M

) . . . ϕ(·, M−1
M

)


︸ ︷︷ ︸

ΦG


a0

a1
...

aM−1


︸ ︷︷ ︸

a

.

I Equivalent paradigm: Look for a sparse vector a ∈ RM such that
ΦGa ≈ y0 (or ΦGa ≈ y0 + w).



5 / 14Discrete `1 regularization

Define

‖m‖`1(G) =

{ ∑M−1
i=0 |ai | if m =

∑M−1
i=0 aiδi/M ,

+∞ otherwise.
m0 =

∑M−1
i=0 a0,iδi/M

t0 1
1
M

3
M

M−1
MI Basis Pursuit [Chen & Donoho (94)]

inf
m∈M(T)

‖m‖`1(G) such that Φm = y0 (PG0 (y0))

I LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

inf
m∈M(T)

λ‖m‖`1(G) +
1
2
||Φm − (y0 + w)||22 (PGλ (y0 + w))

`2-robustness (Grasmair et al. (2011))

If m0 =
∑

i a0,iδi/M is the unique solution to PG0 (y0), and
mλ =

∑
i aλ,iδi/M is a solution to PGλ (y0 + w), then

‖aλ − a0‖2 = O(‖w‖2) for λ = C‖w‖2.
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6 / 14Robustness of the support (discrete problem)

Can one guarantee that Suppmλ = Suppm0?

I Sufficient conditions [Tropp (06), Dossal & Mallat (05)],
I Almost necessary and sufficient [Fuchs (04)],
I Or look at the minimal norm certificate.
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7 / 14Fuchs theorem

For m0 =
∑M

i=1 a0,iδx0,i , assume that

Φx0
def.
= (ϕ(·, x0,1), . . . ϕ(·, x0,N))

has full rank.

ηF
def.
= Φ∗pF where pF

def.
= argmin{‖p‖L2(T); (Φ∗p)(x0,i ) = sign(α0,i )}
= Φ+,∗

x0 s.

Theorem (Fuchs (04))
If |ηF ( k

M
)| < 1 for all k such that k

M
/∈ {x0,1, . . . , x0,N}, then m0 is the unique

solution to PG0 (y0), and there exists γ > 0, λ0 > 0 such that for 0 6 λ 6 λ0

and ‖w‖2 6 γλ,
I The solution mλ to PGλ (y0 + w) is unique.
I Suppmλ = Suppm0, that is mλ =

∑N
i=1 αλ,iδx0,i , and

sign(αλ,i ) = sign(α0,i ),
I αλ = α0 + Φ+

x0w − λ(Φ∗x0Φx0)−1 sign(α0).

If |ηF ( k
M

)| > 1 for some k, the support is not stable.
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8 / 14But. . .

1 1

When the grid is too thin, the Fuchs criterion cannot hold
⇒ the support is not stable.

Question
What is the support at low noise when the Fuchs criterion does not
hold?

Need to study the minimal norm certificate.



9 / 14The minimal norm certificate

Assume that m0 is a solution to P0(y0).

Define the minimal norm certificate on G
−1

0

1

ηG0
def.
= Φ∗pG0 where pG0

def.
= argmin{||p||L2(T); (Φ∗p)(x0,i ) = sign(α0,i ) for 1 6 i 6 N

and
∣∣∣∣(Φ∗p)

(
k

M

)∣∣∣∣ 6 1 for 0 6 k 6 M − 1}.

General principle
I If

∣∣ηG0 ( k
M

)
∣∣ < 1 for all k such that k/M /∈ {x0,1, . . . , x0,N}, there is a low

noise regime with support recovery.
I If

∣∣ηG0 ( k
M

)
∣∣ = 1 for some k such that k/M /∈ {x0,1, . . . , x0,N}, then for

arbitrary small values of λ, ||w ||L2(T), a spike may appear at k/M.

The set {k/M;
∣∣ηG0 ( k

M
)
∣∣ = 1} is called the extended support on G (see

also [Dossal (07)]).



10 / 14Working on thin grids

I Consider a sequence of refining grids with vanishing stepsize:

Gn =

{
k

Mn
; 0 6 k 6 Mn − 1

}
⊂ T with

{
Gn ⊂ Gn+1 (e.g. Mn = 1

2n ),
limn→+∞Mn = +∞,

I Assume that Suppm0 ⊂ Gn for n large enough, i.e. x0,i ∈ Gn for all
1 6 i 6 N.

Proposition (Duval & Peyré (13))
The minimal norm certificate ηGn0 for PGn0 (y0) converges towards the minimal
norm certificate of P0(y0).

I Basis Pursuit for measures [de Castro & Gamboa (12), Candes &
Fernandez-Granda (13)],

inf
m∈M(T)

|m|(T) such that Φm = y0 (P0(y0))

I LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et
al. (13)]

inf
m∈M(T)

λ|m|(T) +
1
2
||Φm − (y0 + w)||22 (Pλ(y0 + w))
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11 / 14Extended support on thin grids

If m0 is “non-degenerate”, for n large enough{
k/M;

∣∣∣∣ηG0 ( k

M

)∣∣∣∣ = 1
}
⊆

N⋃
i=1

{
x0,i , x0,i +

εn,i
Mn

}
.

where εn,i ∈ {−1, 1}N .
Define the natural shift as

ρ
def.
= (Φ′∗x0ΠΦ′x0)−1Φ′∗x0Φ+,∗

x0 sign(α0).

Theorem (D.-Peyré (15))
If ρi 6= 0 for all 1 6 i 6 N, then ε does not depend on n, and is given by

ε = (diag(sign(α0))) sign (ρ) .

where Π is the orthogonal projector onto (ImΦx0)⊥.
Moreover {

k/M;

∣∣∣∣ηG0 ( k

M

)∣∣∣∣ = 1
}

=
N⋃
i=1

{
x0,i , x0,i +

εi
Mn

}
.



12 / 14Low noise “robustness” on thin grids

Under the same hypotheses:

Theorem (D.-Peyré (15))

There exists γ(n) > 0, λ(n)
0 > 0 such that for 0 6 λ 6 λ

(n)
0 and ‖w‖2 6 γ(n)λ,

I The solution m
(n)
λ to PGnλ (y0 + w) is unique.

I Suppm(n)
λ =

⋃
16i6N

{
x0,i , x0,i + εi

Mn

}
, that is

mn
λ =

∑N
i=1

(
α

(n)
λ,iδx0,i + β

(n)
λ,iδx0,i+

εi
Mn

)
, and

sign(aλ,i ) = sign(bλ,i ) = sign(a0,i ),

I

(
α

(n)
λ

β
(n)
λ

)
=

(
α0

0

)
+ Φ+

x0,x0+εw − λ(Φ∗x0,x0+εΦx0,x0+ε)−1
(
sign(α0,I )
sign(α0,I )

)
.

In fact γ(n) = O(1) and λ(n)
0 = O( 1

Mn
).



13 / 14Numerical example (w = 0)

Input Signal

t0 1
x1 x2

0 10
0

0.5

1

λ

A
m
pl
itu

de

at x1
at x2



14 / 14Conclusion

I (Almost)-stability of the support on thin grids
I As the grid stepsize refines, stability decreases
I For a more stable “support recovery”, use the continuous

approach

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution,

V. Duval & G. Peyré (JFoCM 2014)
Sparse Spikes Deconvolution on thin Grids
V. Duval & G. Peyré (ArXiv Preprint 2015)



Thank you for your attention!



16 / 14Continuous framework for deconvolution

Using the total variation of measures:
|m|(T) = sup

{∫
T ψdm;ψ ∈ C (T), ‖ψ‖∞ 6 1

}
I Basis Pursuit for measures [de Castro & Gamboa (12), Candes &

Fernandez-Granda (13)],

inf
m∈M(T)

|m|(T) such that Φm = y0 (P∞0 (y0))

I LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais
et al. (13)]

inf
m∈M(T)

λ|m|(T) +
1
2
||Φm − (y0 + w)||22 (P∞λ (y0 + w))

∃ numerical methods for solving P0(y0) and Pλ(y0 + w), see [Bredies &
Pikkarainen (13), Candes & Fernandez-Granda (13)]



17 / 14Limit of the functionals

We say that mn ∈M(T) weakly * converges towards m ∈M(T) if

∀f ∈ C (T), lim
n→+∞

∫
T
f dmn =

∫
T
f dm.

Consider a sequence (mn)n∈N ∈M(T)N such that each mn is a
minimizer of PMn

0 (y0) (resp. PMn
λ (y0 + w)).

Theorem ([Tang et al. 13])
The sequence (mn)n∈N has convergent subsequences for the weak *
convergence, and each limit point is a minimizer of P∞0 (y0)
(resp. P∞λ (y0 + w)).

Remark: In fact PMn
0 (y0) (resp. P∞λ (y0 + w) Γ-converges towards

P∞0 (y0) (resp. P∞λ (y0 + w)).



18 / 14Fine properties of the support

More precisely, if the solution
m∞ =

∑N
i=1 αiδxi to P∞λ (y0 + w) (resp.

P∞0 (y0)) is “non-degenerate”,
t0 1

x1

x2
x3

I then the solution mn to P∞λ (y0 + w) (resp. P0(y0)) is made
of pairs consecutive spikes:

mn =
N∑
i=1

(aiδki/M + biδ(ki+εi )/M)

with sign(ai ) = sign(bi ) = sign(αi ), εi ∈ {±1}

I At low noise, if the original measure is on the grid, pairs of
consecutive spikes (including the original one) (see Section 1) .



19 / 14Identifiability for discrete measures

Minimum separation distance of a measure m:

∆(m) = min
x ,x ′∈Suppm,x 6=x ′

|x − x ′|

Ideal Low Pass filter: ϕ(t) = sin(2fc+1)πt)
sinπt

i.e ϕ̂n = 1 for |n| 6 fc , 0 otherwise.

m =
∑N

i=1 aiδxi

t0 1
x1

x2
x3

∆(m)

Theorem (Candès & Fernandez-Granda (2013))
Let ϕ be the ideal low-pass filter. There exists a constant C > 0
such that, for any (discrete) measure m0 with ∆(m0) > C

fc
, m0 is

the unique solution of

inf
m∈M(T)

|m|(T) such that Φm = y0 (P0(y0))

where y0 = Φm0.

Remark: 1 6 C 6 1.87.



20 / 14Robustness?
Weak-* robustness (Bredies & Pikkarainen (2013))
If m0 =

∑
i a0,iδx0,i is the unique solution to P0(y0), mλ is a solution to

Pλ(y0 + w), then mλ
∗
⇀ m0 as λ→ 0+, ‖w‖22/λ→ 0.

(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local
averages in the case of the ideal LPF)
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21 / 14Robustness of the support (continuous problem)

For m0 =
∑N

i=1 ai0δx0,i , define

Γx0 =
(
ϕ(· − x0,1), . . . ϕ(· − x0,N ), ϕ′(· − x0,1), . . . ϕ′(· − x0,N )

)

Theorem (D.-Peyré 2013)
Assume that Γx0 has full rank, and that m0 is non-degenerate.
Then there exists, α > 0, λ0 > 0 such that for 0 6 λ 6 λ0 and ‖w‖2 6 αλ,

I the solution mλ to Pλ(y + w) is unique and has exactly N spikes,
mλ =

∑N
i=1 aλ,iδxλ,i ,

I the mapping (λ,w) 7→ (aλ, xλ) is C 1.
I the solution has the Taylor expansion(

aλ
xλ

)
=

(
a0
x0

)
+

(
I 0
0 diag a−1

0

)
(Γ∗x0Γx0 )−1

[(
sign(a0)

0

)
λ− Γ∗x0w

]
+ o

(
λ
w

)



22 / 14Duality

inf
m∈M(T)

|m|(T) s.t. Φm = y (P0(y))

sup
||Φ∗p||∞61

〈y , p〉

(D0(y))

inf
m∈M(T)

λ|m|(T) +
1
2
||Φm − y ||2 (Pλ(y))

sup
||Φ∗p||∞61

〈y , p〉 − λ

2
||p||22

(Dλ(y))

Extremality relation:

Φ∗p ∈ ∂|m|(T)

{
Φ∗pλ ∈ ∂|mλ|(T),
−pλ = 1

λ
(Φmλ − y).

η := Φ∗p is a certificate for m

Subdifferential of the total variation

∂|m|(T) =
{
η ∈ C(T); ∀m′ ∈M(T), |m′|(T) > |m|(T) + 〈η,m′ −m〉

}
= {η ∈ C(T); ‖η‖∞ 6 1, ∀t ∈ Suppm+ η(t) = 1,

and ∀t ∈ Suppm− η(t) = −1}
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inf
m∈M(T)

λ|m|(T) +
1
2
||Φm − y ||2 (Pλ(y))

sup
||Φ∗p||∞61

〈y , p〉 − λ

2
||p||22 (Dλ(y))

Extremality relation:

Φ∗p ∈ ∂|m|(T)

{
Φ∗pλ ∈ ∂|mλ|(T),
−pλ = 1

λ
(Φmλ − y).

Find the support of m ! Find all t such that η(t) := (Φ∗p)(t) = ±1

For m =
∑N

i=1 aiδxi ,
∂|m|(T) = {η ∈ C(T); ‖η‖∞ 6 1 and η(xi ) = sign(ai ) for 1 6 i 6 N}.

−1

1

 

 

η
V



23 / 14Algorithm (Candès & Fernandez-Granda)

How to solve P0(y) in the case of the ideal LPF? −→ use the
Fourier coefficients.

I Solve

sup
p∈L2(T)

〈y , p〉 s.t. sup
t∈T
|(Φ∗p)(t)| 6 1.

I Find the roots of
∣∣∣∑fc

n=−fc cnX
fc+n

∣∣∣2 − 1 on the unit circle:

e2iπx1 , . . . , e2iπxN .
I Solve the system

∑N
n=1 ane

2iπkxn = ŷk for −fc 6 k 6 fc

There is a variant for Pλ(y) (Azais et al., 2013)
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sup
c∈R2fc+1

<〈ŷ , c〉 s.t. sup
t∈T

∣∣∣∣∣∣
fc∑

n=−fc

cne
2iπnt

∣∣∣∣∣∣ 6 1.

Lemma (Dumitrescu)
A causal trigonometric polynomial

∑M−1
n=0 cne

2iπnt is bounded by one in
magnitude if and only if there exists a Hermitian matrix Q ∈ CM×M such that[

Q c
c∗ 1

]
� 0 and

M−j∑
i=1

Qi,i+j =

{
1, j = 0
0, j = 1, 2 . . .M − 1
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EXAMPLE



25 / 14The dual as a projection

The set C = {p ∈ L2(T), ‖Φ∗p‖∞ 6 1} is non-empty closed and
convex.

C

• y0
λ•

pλ

•

y0+w
λ

•p̃λ

Rewrite sup
||Φ∗p||∞61

〈y , p〉 − λ

2
||p||22 (Dλ(y))

as inf
p∈C

∥∥∥p − y

λ

∥∥∥2
2

(D′λ(y))

→ projection of y
λ onto C !

C =
⋂

t∈T,ε=±1

{
p ∈ L2(T); 〈ϕ(· − t), p〉 6 1

}

Consequence
I The mapping y

λ 7→ pλ is non-expansive, and
‖p̃λ − pλ‖2 6 ‖w‖2

λ .
I Each "face" of C corresponds to a set of active constraints

(Φ∗p)(t) = ±1 and hence to a (signed) support for the
solution m̃λ.



26 / 14Projection onto convex sets

. . .
C3 C4 C =

⋂
n∈N Cn

Discrete case
CM = {p ∈ L2(T);

∣∣(Φ∗p)( i
M )
∣∣ 6 1 for 0 6 i 6 M − 1} is a

convex polytope.
The support is locally constant.

Continuous case
C =

{
p ∈ L2(T); |(Φ∗p)(t)| 6 1 for t ∈ T

}
is convex, piecewise

smooth.
The support varies smoothly.



27 / 14Limit for the dual problem

Asumption : there is a solution to D0(y) (OK if
dim(ImΦ) < +∞) .

Lemma ((D.-Peyré. 2013))
Let pλ the unique solution of Dλ(y), and p0 be the solution of
D0(y) with minimal norm. Then

lim
n→+∞

pλ = p0 in L2(strongly).

Moreover, the dual certificate ηλ = Φ∗pλ and its derivatives η(k)
λ

(0 6 k 6 2) satify:

lim
λ→0

η
(k)
λ = η

(k)
0 in the sense of the uniform convergence.



28 / 14The Non Degenerate Source Condition

−1

1 η
V0

Definition
A measure m0 =

∑N
i=1 a0,iδx0,i satisfies the Non Degenerate Source Condition

if

I There exists η ∈ ImΦ∗ such that η ∈ ∂|m0|(T), or equivalently:

I there exists a solution p to D0(y),
I m0 is a solution to P0(y)

I The minimal norm certificate η0 = Φ∗p0 satisfies

I For all s ∈ T \ {x0,1, . . . x0,N}, |η0(s)| < 1,
I For all i ∈ {1, . . .N}, η′′0 (x0,i ) 6= 0.



29 / 14Conclusion

I (Almost)-stability of the support for the deconvolution problem
I As the grid stepsize refines, stability decreases
I Try the grid free approaches the Sparse Spikes Deconvolution

on Numerical tours!
www.numerical-tours.com

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution,

V. Duval & G. Peyré (JFoCM 2014)
Sparse Spikes Deconvolution on thin Grids
V. Duval & G. Peyré (ArXiv Preprint 2015)

www.numerical-tours.com
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