The Lasso yields pairs of spikes on thin grids

Vincent Duval INRIA Rocquencourt MOKAPLAN Gabriel Peyré CNRS / Université Paris-Dauphine MOKAPLAN/CEREMADE

SPARS 2015 Cambridge

Observation model

- Consider a signal m₀ defined on T = ℝ/Z (i.e. [0, 1) with periodic boundary condition).
- Observation :

 $\Phi m_0 + w = \int_{\mathbb{T} \times \mathbb{T}} \varphi(\cdot, y) dm_0(y) + w$ where φ is smooth and known.

Example: Convolution

Observation model

- Consider a signal m₀ defined on T = ℝ/Z (i.e. [0,1) with periodic boundary condition).
- Observation :

 $\Phi m_0 + w = \int_{\mathbb{T} \times \mathbb{T}} \varphi(\cdot, y) dm_0(y) + w$ where φ is smooth and known.

Example: Convolution

- Goal: recover m_0 from the observation $y_0 + w = \Phi m_0 + w$ (or simply $y_0 = \Phi m_0$)
- ► Ill-posed problem:
 - the low pass filter might not be invertible ($\hat{\varphi}_n = 0$ for some frequency n)
 - ▶ even though, the problem is ill-conditioned (|\$\hat{\varphi}_n|\$ ≪ |\$\hat{\varphi}_0|\$ for high frequencies *n*)

Assumption

so that we observe $y + w = \sum_{i=1}^{N} \alpha_i \varphi(\cdot, x_i) + w$.

• Idea: Look for a sparse signal *m* such that $\Phi m \approx y_0 + w$ (or y_0).

Discretization

• Equivalent paradigm: Look for a **sparse** vector $a \in \mathbb{R}^M$ such that $\Phi_{\mathcal{G}} a \approx y_0$ (or $\Phi_{\mathcal{G}} a \approx y_0 + w$).

Discrete ℓ^1 regularization

LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$\inf_{m \in \mathcal{M}(\mathbb{T})} \lambda \|m\|_{\ell^{1}(\mathcal{G})} + \frac{1}{2} \|\Phi m - (y_{0} + w)\|_{2}^{2} \qquad (\mathcal{P}_{\lambda}^{\mathcal{G}}(y_{0} + w))$$

Discrete ℓ^1 regularization

Define $\|m\|_{\ell^{1}(\mathcal{G})} = \begin{cases} \sum_{i=0}^{M-1} |a_{i}| & \text{if } m = \sum_{i=0}^{M-1} a_{i} \delta_{i/M}, \\ +\infty & \text{otherwise.} \end{cases}$

Basis Pursuit [Chen & Donoho (94)]

$$\inf_{m \in \mathcal{M}(\mathbb{T})} \|m\|_{\ell^{1}(\mathcal{G})} \text{ such that } \Phi m = y_{0} \qquad (\mathcal{P}_{0}^{\mathcal{G}}(y_{0}))$$

LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$\inf_{m \in \mathcal{M}(\mathbb{T})} \lambda \|m\|_{\ell^{1}(\mathcal{G})} + \frac{1}{2} \|\Phi m - (y_{0} + w)\|_{2}^{2} \qquad (\mathcal{P}_{\lambda}^{\mathcal{G}}(y_{0} + w))$$

ℓ^2 -robustness (Grasmair et al. (2011))

If
$$m_0 = \sum_i a_{0,i} \delta_{i/M}$$
 is the unique solution to $\mathcal{P}_0^{\mathcal{G}}(y_0)$, and $m_{\lambda} = \sum_i a_{\lambda,i} \delta_{i/M}$ is a solution to $\mathcal{P}_{\lambda}^{\mathcal{G}}(y_0 + w)$, then $\|a_{\lambda} - a_0\|_2 = \mathcal{O}(\|w\|_2)$ for $\lambda = C \|w\|_2$.

Robustness of the support (discrete problem)

Can one guarantee that Supp $m_{\lambda} = \text{Supp } m_0$?

Robustness of the support (discrete problem)

Can one guarantee that Supp $m_{\lambda} = \text{Supp } m_0$?

- ► Sufficient conditions [Tropp (06), Dossal & Mallat (05)],
- Almost necessary and sufficient [Fuchs (04)],
- Or look at the minimal norm certificate.

Fuchs theorem

For $m_0 = \sum_{i=1}^{M} a_{0,i} \delta_{x_{0,i}}$, assume that $\Phi_{x_0} \stackrel{\text{def.}}{=} (\varphi(\cdot, x_{0,1}), \dots \varphi(\cdot, x_{0,N}))$ has full rank.

Theorem (Fuchs (04))

If $|\eta_F(\frac{k}{M})| < 1$ for all k such that $\frac{k}{M} \notin \{x_{0,1}, \ldots, x_{0,N}\}$, then m_0 is the unique solution to $\mathcal{P}_0^{\mathcal{G}}(y_0)$, and there exists $\gamma > 0$, $\lambda_0 > 0$ such that for $0 \leq \lambda \leq \lambda_0$ and $||w||_2 \leq \gamma \lambda$,

- The solution m_{λ} to $\mathcal{P}_{\lambda}^{\mathcal{G}}(y_0 + w)$ is unique.
- Supp m_{λ} = Supp m_0 , that is $m_{\lambda} = \sum_{i=1}^{N} \alpha_{\lambda,i} \delta_{\mathbf{x}_{0,i}}$, and $\operatorname{sign}(\alpha_{\lambda,i}) = \operatorname{sign}(\alpha_{0,i})$,

If $|\eta_F(\frac{k}{M})| > 1$ for some k, the support is not stable.

Fuchs theorem

For $m_0 = \sum_{i=1}^{M} a_{0,i} \delta_{x_{0,i}}$, assume that $\Phi_{x_0} \stackrel{\text{def.}}{=} (\varphi(\cdot, x_{0,1}), \dots \varphi(\cdot, x_{0,N}))$ has full rank.

$$\eta_F \stackrel{\text{def.}}{=} \Phi^* \rho_F \quad \text{where} \quad p_F \stackrel{\text{def.}}{=} \operatorname{argmin}\{\|\rho\|_{L^2(\mathbb{T})}; (\Phi^* p)(x_{0,i}) = \operatorname{sign}(\alpha_{0,i})\} \\ = \Phi_{x_0}^{+,*} s.$$

Theorem (Fuchs (04))

If $|\eta_F(\frac{k}{M})| < 1$ for all k such that $\frac{k}{M} \notin \{x_{0,1}, \ldots, x_{0,N}\}$, then m_0 is the unique solution to $\mathcal{P}_0^{\mathcal{G}}(y_0)$, and there exists $\gamma > 0$, $\lambda_0 > 0$ such that for $0 \leq \lambda \leq \lambda_0$ and $||w||_2 \leq \gamma \lambda$,

- The solution m_{λ} to $\mathcal{P}_{\lambda}^{\mathcal{G}}(y_0 + w)$ is unique.
- Supp m_{λ} = Supp m_0 , that is $m_{\lambda} = \sum_{i=1}^{N} \alpha_{\lambda,i} \delta_{\mathbf{x}_{0,i}}$, and $\operatorname{sign}(\alpha_{\lambda,i}) = \operatorname{sign}(\alpha_{0,i})$,

If $|\eta_F(\frac{k}{M})| > 1$ for some k, the support is not stable.

When the grid is too thin, the Fuchs criterion cannot hold \Rightarrow the support is *not stable*.

Question

What is the support at low noise when the Fuchs criterion does not hold?

Need to study the minimal norm certificate.

The minimal norm certificate

Assume that m_0 is a solution to $\mathcal{P}_0(y_0)$.

Define the minimal norm certificate on $\ensuremath{\mathcal{G}}$

$$\eta_0^{\mathcal{G}} \stackrel{\text{def.}}{=} \Phi^* p_0^{\mathcal{G}} \text{ where } p_0^{\mathcal{G}} \stackrel{\text{def.}}{=} \operatorname{argmin}\{\|p\|_{L^2(\mathbb{T})}; \ (\Phi^* p)(x_{0,i}) = \operatorname{sign}(\alpha_{0,i}) \text{ for } 1 \leqslant i \leqslant N$$
$$\text{ and } \left|(\Phi^* p)\left(\frac{k}{M}\right)\right| \leqslant 1 \text{ for } 0 \leqslant k \leqslant M - 1\}.$$

General principle

- ▶ If $|\eta_0^{\mathcal{G}}(\frac{k}{M})| < 1$ for all k such that $k/M \notin \{x_{0,1}, \ldots, x_{0,N}\}$, there is a low noise regime with support recovery.
- ▶ If $|\eta_0^{\mathcal{G}}(\frac{k}{M})| = 1$ for some k such that $k/M \notin \{x_{0,1}, \ldots, x_{0,N}\}$, then for arbitrary small values of λ , $||w||_{L^2(\mathbb{T})}$, a spike may appear at k/M.

The set $\{k/M; |\eta_0^{\mathcal{G}}(\frac{k}{M})| = 1\}$ is called the **extended support** on \mathcal{G} (see also [Dossal (07)]).

Working on thin grids

Consider a sequence of refining grids with vanishing stepsize:

$$\mathcal{G}_n = \left\{ \frac{k}{M_n}; \ 0 \leqslant k \leqslant M_n - 1 \right\} \subset \mathbb{T} \quad \text{ with } \left\{ \begin{array}{l} \mathcal{G}_n \subset \mathcal{G}_{n+1} \ (\text{e.g. } M_n = \frac{1}{2^n}), \\ \lim_{n \to +\infty} M_n = +\infty, \end{array} \right.$$

▶ Assume that Supp $m_0 \subset G_n$ for *n* large enough, *i.e.* $x_{0,i} \in G_n$ for all $1 \leq i \leq N$.

Working on thin grids

Consider a sequence of refining grids with vanishing stepsize:

$$\mathcal{G}_n = \left\{ \frac{k}{M_n}; \ 0 \leqslant k \leqslant M_n - 1 \right\} \subset \mathbb{T} \quad \text{ with } \left\{ \begin{array}{l} \mathcal{G}_n \subset \mathcal{G}_{n+1} \ (\text{e.g. } M_n = \frac{1}{2^n}), \\ \lim_{n \to +\infty} M_n = +\infty, \end{array} \right.$$

▶ Assume that Supp $m_0 \subset G_n$ for *n* large enough, *i.e.* $x_{0,i} \in G_n$ for all $1 \leq i \leq N$.

Proposition (Tang & Recht (13))

The solutions of $\mathcal{P}_0^{\mathcal{G}_n}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\mathcal{G}_n}(y_0 + w)$) weakly* converge (up to subsequences) towards the solutions of $\mathcal{P}_0(y_0)$ (resp. $\mathcal{P}_{\lambda}(y_0 + w)$).

 Basis Pursuit for measures [de Castro & Gamboa (12), Candes & Fernandez-Granda (13)],

1

$$\inf_{n \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

 LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et al. (13)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-(y_0+w)\|_2^2 \qquad \qquad (\mathcal{P}_\lambda(y_0+w))$$

Working on thin grids

Consider a sequence of refining grids with vanishing stepsize:

$$\mathcal{G}_n = \left\{ \frac{k}{M_n}; \ 0 \leqslant k \leqslant M_n - 1 \right\} \subset \mathbb{T} \quad \text{ with } \left\{ \begin{array}{l} \mathcal{G}_n \subset \mathcal{G}_{n+1} \ (\text{e.g. } M_n = \frac{1}{2^n}), \\ \lim_{n \to +\infty} M_n = +\infty, \end{array} \right.$$

▶ Assume that Supp $m_0 \subset G_n$ for *n* large enough, *i.e.* $x_{0,i} \in G_n$ for all $1 \leq i \leq N$.

Proposition (Duval & Peyré (13))

1

The minimal norm certificate $\eta_0^{\mathcal{G}_n}$ for $\mathcal{P}_0^{\mathcal{G}_n}(y_0)$ converges towards the minimal norm certificate of $\mathcal{P}_0(y_0)$.

 Basis Pursuit for measures [de Castro & Gamboa (12), Candes & Fernandez-Granda (13)],

$$\inf_{n \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et al. (13)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-(y_0+w)\|_2^2 \qquad \qquad (\mathcal{P}_\lambda(y_0+w))$$

Extended support on thin grids

If m_0 is "non-degenerate", for n large enough

$$\left\{ k/M; \left| \eta_0^{\mathcal{G}} \left(\frac{k}{M} \right) \right| = 1 \right\} \subseteq \bigcup_{i=1}^N \left\{ x_{0,i}, x_{0,i} + \frac{\varepsilon_{n,i}}{M_n} \right\}.$$

where $\varepsilon_{n,i} \in \{-1,1\}^N$. Define the *natural shift* as

$$\rho \stackrel{\mathsf{def.}}{=} (\Phi_{\mathsf{x}_0}^{\prime*} \mathsf{\Pi} \Phi_{\mathsf{x}_0}^{\prime})^{-1} \Phi_{\mathsf{x}_0}^{\prime*} \Phi_{\mathsf{x}_0}^{+,*} \operatorname{sign}(\alpha_0).$$

Theorem (D.-Peyré (15))

If $\rho_i \neq 0$ for all $1 \leq i \leq N$, then ε does not depend on n, and is given by

 $\varepsilon = (\operatorname{diag}(\operatorname{sign}(\alpha_0)))\operatorname{sign}(\rho).$

where Π is the orthogonal projector onto $(Im \, \Phi_{x_0})^{\perp}$. Moreover

$$\left\{ k/M; \left| \eta_0^G\left(\frac{k}{M}\right) \right| = 1 \right\} = \bigcup_{i=1}^N \left\{ x_{0,i}, x_{0,i} + \frac{\varepsilon_i}{M_n} \right\}$$

Low noise "robustness" on thin grids

Under the same hypotheses:

Theorem (D.-Peyré (15))

There exists $\gamma^{(n)} > 0$, $\lambda_0^{(n)} > 0$ such that for $0 \leqslant \lambda \leqslant \lambda_0^{(n)}$ and $\|w\|_2 \leqslant \gamma^{(n)}\lambda$,

• The solution
$$m_{\lambda}^{(n)}$$
 to $\mathcal{P}_{\lambda}^{\mathcal{G}_n}(y_0 + w)$ is unique.

► Supp
$$m_{\lambda}^{(n)} = \bigcup_{1 \leq i \leq N} \left\{ x_{0,i}, x_{0,i} + \frac{\varepsilon_i}{M_n} \right\}$$
, that is
 $m_{\lambda}^n = \sum_{i=1}^N \left(\alpha_{\lambda,i}^{(n)} \delta_{x_{0,i}} + \beta_{\lambda,i}^{(n)} \delta_{x_{0,i} + \frac{\varepsilon_i}{M_n}} \right)$, and
 $\operatorname{sign}(a_{\lambda,i}) = \operatorname{sign}(b_{\lambda,i}) = \operatorname{sign}(a_{0,i})$,
► $\begin{pmatrix} \alpha_{\lambda}^{(n)} \\ \beta_{\lambda}^{(n)} \end{pmatrix} = \begin{pmatrix} \alpha_0 \\ 0 \end{pmatrix} + \Phi_{x_0, x_0 + \varepsilon}^+ w - \lambda (\Phi_{x_0, x_0 + \varepsilon}^* \Phi_{x_0, x_0 + \varepsilon})^{-1} \begin{pmatrix} \operatorname{sign}(\alpha_{0,i}, x_0) \\ \operatorname{sign}(\alpha_{0,i}, x_0) \end{pmatrix}$

In fact
$$\gamma^{(n)} = O(1)$$
 and $\lambda_0^{(n)} = O(\frac{1}{M_n})$.

Numerical example (w = 0)

t 0 Input Signal 1 Amplitude at x2 at x_1 0.5 0 Ó0 10 λ

13 / 14

Conclusion

- (Almost)-stability of the support on thin grids
- As the grid stepsize refines, stability decreases
- For a more stable "support recovery", use the continuous approach

Papers:

Exact Support Recovery for Sparse Spikes Deconvolution, V. Duval & G. Peyré (JFoCM 2014) Sparse Spikes Deconvolution on thin Grids V. Duval & G. Peyré (ArXiv Preprint 2015) Thank you for your attention!

Continuous framework for deconvolution

Using the total variation of measures: $|m|(\mathbb{T}) = \sup \left\{ \int_{\mathbb{T}} \psi dm; \psi \in C(\mathbb{T}), \|\psi\|_{\infty} \leq 1 \right\}$

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes & Fernandez-Granda (13)],

$$\inf_{m \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0^\infty(y_0))$$

LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et al. (13)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-(y_0+w)\|_2^2 \qquad (\mathcal{P}^{\infty}_{\lambda}(y_0+w))$$

 \exists numerical methods for solving $\mathcal{P}_0(y_0)$ and $\mathcal{P}_\lambda(y_0 + w)$, see [Bredies & Pikkarainen (13), Candes & Fernandez-Granda (13)]

Limit of the functionals

We say that $m_n \in \mathcal{M}(\mathbb{T})$ weakly * converges towards $m \in \mathcal{M}(\mathbb{T})$ if

$$\forall f \in C(\mathbb{T}), \lim_{n \to +\infty} \int_{\mathbb{T}} f \mathrm{d} m_n = \int_{\mathbb{T}} f \mathrm{d} m.$$

Consider a sequence $(m_n)_{n \in \mathbb{N}} \in \mathcal{M}(\mathbb{T})^{\mathbb{N}}$ such that each m_n is a minimizer of $\mathcal{P}_0^{M_n}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{M_n}(y_0 + w)$).

Theorem ([Tang et al. 13])

The sequence $(m_n)_{n\in\mathbb{N}}$ has convergent subsequences for the weak * convergence, and each limit point is a minimizer of $\mathcal{P}_0^{\infty}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$).

Remark: In fact $\mathcal{P}_0^{M_n}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$ Γ -converges towards $\mathcal{P}_0^{\infty}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$).

Fine properties of the support

More precisely, if the solution $m^{\infty} = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$ to $\mathcal{P}^{\infty}_{\lambda}(y_0 + w)$ (resp. $\mathcal{P}^{\infty}_0(y_0)$) is "non-degenerate",

▶ then the solution m_n to P[∞]_λ(y₀ + w) (resp. P₀(y₀)) is made of pairs consecutive spikes:

$$m_n = \sum_{i=1}^{N} (a_i \delta_{k_i/M} + b_i \delta_{(k_i + \varepsilon_i)/M})$$

with sign $(a_i) = sign(b_i) = sign(\alpha_i), \varepsilon_i \in \{\pm 1\}$

 At low noise, if the original measure is on the grid, pairs of consecutive spikes (including the original one) (see Section 1).

Identifiability for discrete measures

Minimum separation distance of a measure m:

$$\Delta(m) = \min_{x, x' \in \mathsf{Supp}\, m, x \neq x'} |x - x'|$$

Ideal Low Pass filter: $\varphi(t) = \frac{\sin(2f_c+1)\pi t)}{\sin \pi t}$ i.e $\hat{\varphi}_n = 1$ for $|n| \leq f_c$, 0 otherwise.

Theorem (Candès & Fernandez-Granda (2013))

Let φ be the ideal low-pass filter. There exists a constant C > 0such that, for any (discrete) measure m_0 with $\Delta(m_0) \ge \frac{C}{f_c}$, m_0 is the unique solution of

$$\inf_{m \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

where $y_0 = \Phi m_0$.

4

Remark: $1 \leq C \leq 1.87$.

Robustness?

Weak-* robustness (Bredies & Pikkarainen (2013))

If $m_0 = \sum_i a_{0,i} \delta_{\mathbf{x}_{0,i}}$ is the unique solution to $\mathcal{P}_0(y_0)$, m_λ is a solution to $\mathcal{P}_\lambda(y_0 + w)$, then $m_\lambda \stackrel{*}{\rightharpoonup} m_0$ as $\lambda \to 0^+$, $\|w\|_2^2/\lambda \to 0$.

(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local averages in the case of the ideal LPF)

Robustness?

Weak-* robustness (Bredies & Pikkarainen (2013))

If $m_0 = \sum_i a_{0,i} \delta_{\mathbf{x}_{0,i}}$ is the unique solution to $\mathcal{P}_0(y_0)$, m_λ is a solution to $\mathcal{P}_\lambda(y_0 + w)$, then $m_\lambda \stackrel{*}{\rightharpoonup} m_0$ as $\lambda \to 0^+$, $\|w\|_2^2/\lambda \to 0$.

(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local averages in the case of the ideal LPF)

Robustness of the support (continuous problem) 21 / 14

For $m_0 = \sum_{i=1}^N a_{i_0} \delta_{x_{0,i}}$, define

$$\Gamma_{\mathbf{x_0}} = \left(\varphi(\cdot - \mathbf{x_0}, \mathbf{1}), \dots, \varphi(\cdot - \mathbf{x_0}, N), \varphi'(\cdot - \mathbf{x_0}, \mathbf{1}), \dots, \varphi'(\cdot - \mathbf{x_0}, N)\right)$$

Theorem (D.-Peyré 2013)

Assume that Γ_{x_0} has full rank, and that m_0 is non-degenerate. Then there exists, $\alpha > 0$, $\lambda_0 > 0$ such that for $0 \le \lambda \le \lambda_0$ and $||w||_2 \le \alpha \lambda$,

- the solution m_{λ} to $\mathcal{P}_{\lambda}(y + w)$ is unique and has exactly N spikes, $m_{\lambda} = \sum_{i=1}^{N} a_{\lambda,i} \delta_{x_{\lambda,i}}$,
- the mapping $(\lambda, w) \mapsto (a_{\lambda}, x_{\lambda})$ is C^{1} .
- the solution has the Taylor expansion

$$\begin{pmatrix} a_{\lambda} \\ x_{\lambda} \end{pmatrix} = \begin{pmatrix} a_{0} \\ x_{0} \end{pmatrix} + \begin{pmatrix} I & 0 \\ 0 & \text{diag } a_{0}^{-1} \end{pmatrix} (\Gamma_{x_{0}}^{*} \Gamma_{x_{0}})^{-1} \left[\begin{pmatrix} \text{sign}(a_{0}) \\ 0 \end{pmatrix} \lambda - \Gamma_{x_{0}}^{*} w \right] + o \begin{pmatrix} \lambda \\ w \end{pmatrix}$$

$$\inf_{m \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ s.t. } \Phi m = y \qquad (\mathcal{P}_{0}(y)) \qquad \inf_{m \in \mathcal{M}(\mathbb{T})} \lambda |m|(\mathbb{T}) + \frac{1}{2} \|\Phi m - y\|_{2} \quad (\mathcal{P}_{\lambda}(y))$$
$$(\mathcal{D}_{0}(y)) \qquad \qquad (\mathcal{D}_{\lambda}(y))$$

$$\inf_{\substack{m \in \mathcal{M}(\mathbb{T}) \\ m \in \mathcal{M}(\mathbb{T})}} |m|(\mathbb{T}) \text{ s.t. } \Phi m = y \qquad (\mathcal{P}_{0}(y)) \\
\sup_{\substack{m \in \mathcal{M}(\mathbb{T}) \\ \|\Phi^{*}p\|_{\infty} \leqslant 1}} \langle y, p \rangle \qquad (\mathcal{D}_{0}(y)) \\
\sup_{\substack{\|\Phi^{*}p\|_{\infty} \leqslant 1}} \langle y, p \rangle - \frac{\lambda}{2} \|p\|_{2}^{2} \qquad (\mathcal{D}_{\lambda}(y))$$

$$\inf_{\substack{m \in \mathcal{M}(\mathbb{T}) \\ m \in \mathcal{M}(\mathbb{T})}} |m|(\mathbb{T}) \text{ s.t. } \Phi m = y \qquad (\mathcal{P}_{0}(y)) \qquad \inf_{\substack{m \in \mathcal{M}(\mathbb{T}) \\ m \in \mathcal{M}(\mathbb{T})}} \lambda |m|(\mathbb{T}) + \frac{1}{2} \|\Phi m - y\|_{2} \qquad (\mathcal{P}_{\lambda}(y)) \\ \sup_{\|\Phi^{*}p\|_{\infty} \leqslant 1} \langle y, p \rangle - \frac{\lambda}{2} \|p\|_{2}^{2} \qquad (\mathcal{D}_{\lambda}(y))$$

L

Extremality relation:

$$\Phi^* p \in \partial |m|(\mathbb{T}) \qquad \qquad \left\{ egin{array}{c} \Phi^* p_\lambda \in \partial |m_\lambda|(\mathbb{T}), \ -p_\lambda = rac{1}{\lambda} (\Phi m_\lambda - y). \end{array}
ight.$$

 $\eta := \Phi^* p$ is a **certificate** for *m*

T

Extremality relation:

$$\Phi^* p \in \partial |m|(\mathbb{T}) \qquad \qquad \left\{ egin{array}{c} \Phi^* p_\lambda \in \partial |m_\lambda|(\mathbb{T}), \ -p_\lambda = rac{1}{\lambda} (\Phi m_\lambda - y). \end{array}
ight.$$

 $\eta := \Phi^* p$ is a **certificate** for *m*

Subdifferential of the total variation

$$\begin{split} \partial |m|(\mathbb{T}) &= \left\{ \eta \in \mathcal{C}(\mathbb{T}); \quad \forall m' \in \mathcal{M}(\mathbb{T}), \ |m'|(\mathbb{T}) \ge |m|(\mathbb{T}) + \langle \eta, m' - m \rangle \right\} \\ &= \left\{ \eta \in \mathcal{C}(\mathbb{T}); \ \|\eta\|_{\infty} \leqslant 1, \forall t \in \text{Supp } m_{+} \ \eta(t) = 1, \\ & \text{and } \forall t \in \text{Supp } m_{-} \ \eta(t) = -1 \right\} \end{split}$$

$$\inf_{\substack{m \in \mathcal{M}(\mathbb{T})}} |m|(\mathbb{T}) \text{ s.t. } \Phi m = y \qquad (\mathcal{P}_{0}(y)) \qquad \inf_{\substack{m \in \mathcal{M}(\mathbb{T})}} \lambda |m|(\mathbb{T}) + \frac{1}{2} \|\Phi m - y\|_{2} \quad (\mathcal{P}_{\lambda}(y)) \\ \sup_{\|\Phi^{*}p\|_{\infty} \leqslant 1} \langle y, p \rangle \qquad (\mathcal{D}_{0}(y)) \qquad \sup_{\|\Phi^{*}p\|_{\infty} \leqslant 1} \langle y, p \rangle - \frac{\lambda}{2} \|p\|_{2}^{2} \qquad (\mathcal{D}_{\lambda}(y))$$

Extremality relation:

$$\Phi^* p \in \partial |m|(\mathbb{T})$$
 $\left\{ egin{array}{c} \Phi^* p_\lambda \in \partial |m_\lambda|(\mathbb{T}), \ -p_\lambda = rac{1}{\lambda} (\Phi m_\lambda - y). \end{array}
ight.$

Find the support of $m \iff$ Find all t such that $\eta(t) := (\Phi^* p)(t) = \pm 1$

For $m = \sum_{i=1}^{N} a_i \delta_{x_i}$, $\partial |m|(\mathbb{T}) = \{ \eta \in C(\mathbb{T}); \|\eta\|_{\infty} \leq 1 \text{ and } \eta(x_i) = \operatorname{sign}(a_i) \text{ for } 1 \leq i \leq N \}.$

22 / 14

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{\rho \in L^2(\mathbb{T})} \langle y, \rho \rangle \quad \text{ s.t. } \sup_{t \in \mathbb{T}} |(\Phi^* \rho)(t)| \leqslant 1.$$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c\in\mathbb{R}^{2f_{c}+1}}\Re\langle\hat{y},c\rangle \quad \text{ s.t. } \sup_{t\in\mathbb{T}}\left|\sum_{n=-f_{c}}^{f_{c}}c_{n}e^{2i\pi nt}\right|\leqslant 1.$$

Lemma (Dumitrescu)

A causal trigonometric polynomial $\sum_{n=0}^{M-1} c_n e^{2i\pi nt}$ is bounded by one in magnitude if and only if there exists a Hermitian matrix $Q \in \mathbb{C}^{M \times M}$ such that

$$\left[\begin{array}{cc} Q & c \\ c^* & 1 \end{array}\right] \succeq 0 \text{ and } \sum_{i=1}^{M-j} Q_{i,i+j} = \left\{\begin{array}{cc} 1, j = 0 \\ 0, j = 1, 2 \dots M - 1 \end{array}\right.$$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re \langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{cc} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

г.

٦

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

►

$$\sup_{c \in \mathbb{R}^{2f_{c}+1}, Q \in \mathcal{H}_{2f_{c}+1}} \Re\langle \hat{y}, c \rangle \quad \text{s.t.} \quad \left[\begin{array}{c} Q & c \\ c^{*} & 1 \end{array} \right] \succeq 0 \text{ and } \dots$$

Find the roots of $\left| \sum_{n=-f_{c}}^{f_{c}} c_{n} X^{f_{c}+n} \right|^{2} - 1$ on the unit circle:
 $e^{2i\pi x_{1}}, \dots, e^{2i\pi x_{N}}.$

ГО

٦

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re\langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{c} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

- Find the roots of $\left|\sum_{n=-f_c}^{f_c} c_n X^{f_c+n}\right|^2 1$ on the unit circle: $e^{2i\pi x_1}, \ldots, e^{2i\pi x_N}$.
- ► Solve the system $\sum_{n=1}^{N} a_n e^{2i\pi k x_n} = \hat{y}_k$ for $-f_c \leqslant k \leqslant f_c$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re\langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{c} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

- Find the roots of $\left|\sum_{n=-f_c}^{f_c} c_n X^{f_c+n}\right|^2 1$ on the unit circle: $e^{2i\pi x_1}, \ldots, e^{2i\pi x_N}$.
- ▶ Solve the system $\sum_{n=1}^{N} a_n e^{2i\pi k x_n} = \hat{y}_k$ for $-f_c \leqslant k \leqslant f_c$

There is a variant for $\mathcal{P}_{\lambda}(y)$ (Azais et al., 2013)

EXAMPLE

The dual as a projection

The set $C = \{ p \in L^2(\mathbb{T}), \|\Phi^* p\|_{\infty} \leq 1 \}$ is non-empty closed and convex.

$$C = igcap_{t \in \mathbb{T}, arepsilon = \pm 1} \left\{ p \in L^2(\mathbb{T}); \ \langle arphi(\cdot - t), p
angle \leqslant 1
ight\}$$

Consequence

 The mapping ^y_λ → p_λ is non-expansive, and || p̃_λ - p_λ ||₂ ≤ ^{||w||₂}/_λ.
 Each "face" of C corresponds to a set of active constraints (Φ*p)(t) = ±1 and hence to a (signed) support for the solution m̃_λ.

Projection onto convex sets

Discrete case

$$C_M = \{ p \in L^2(\mathbb{T}); \ \left| (\Phi^* p)(\frac{i}{M}) \right| \leq 1 \text{ for } 0 \leq i \leq M - 1 \} \text{ is a convex polytope.}$$

The support is **locally constant**.

Continuous case

 $C = \left\{ p \in L^2(\mathbb{T}); |(\Phi^*p)(t)| \leqslant 1 \text{ for } t \in \mathbb{T} \right\}$ is convex, piecewise smooth.

The support varies smoothly.

Limit for the dual problem

Asumption : there is a solution to $\mathcal{D}_0(y)$ (OK if $dim(Im\,\Phi)<+\infty)$.

Lemma ((D.-Peyré. 2013))

Let p_{λ} the unique solution of $\mathcal{D}_{\lambda}(y)$, and p_0 be the solution of $\mathcal{D}_0(y)$ with minimal norm. Then

$$\lim_{n\to+\infty}p_{\lambda}=p_0 \text{ in } L^2(\text{strongly}).$$

Moreover, the dual certificate $\eta_{\lambda} = \Phi^* p_{\lambda}$ and its derivatives $\eta_{\lambda}^{(k)}$ ($0 \leq k \leq 2$) satify:

 $\lim_{\lambda \to 0} \eta_{\lambda}^{(k)} = \eta_{0}^{(k)}$ in the sense of the uniform convergence.

The Non Degenerate Source Condition

Definition

A measure $m_0 = \sum_{i=1}^N a_{0,i} \delta_{x_{0,i}}$ satisfies the Non Degenerate Source Condition if

- There exists $\eta \in \operatorname{Im} \Phi^*$ such that $\eta \in \partial |m_0|(\mathbb{T})$, or equivalently:
 - there exists a solution p to $\mathcal{D}_0(y)$,
 - m_0 is a solution to $\mathcal{P}_0(y)$

• The minimal norm certificate $\eta_0 = \Phi^* p_0$ satisfies

- ▶ For all $s \in \mathbb{T} \setminus \{x_{0,1}, \dots x_{0,N}\}$, $|\eta_0(s)| < 1$,
- For all $i \in \{1, ..., N\}$, $\eta_0''(x_{0,i}) \neq 0$.

Conclusion

- (Almost)-stability of the support for the deconvolution problem
- As the grid stepsize refines, stability decreases
- Try the grid free approaches the Sparse Spikes Deconvolution on Numerical tours!

www.numerical-tours.com

Papers:

Exact Support Recovery for Sparse Spikes Deconvolution, V. Duval & G. Peyré (JFoCM 2014) Sparse Spikes Deconvolution on thin Grids V. Duval & G. Peyré (ArXiv Preprint 2015) Azais, J.-M., De Castro, Y., and Gamboa, F. (2013). Spike detection from inaccurate samplings. Technical report.

- Bredies, K. and Pikkarainen, H. (2013). Inverse problems in spaces of measures. *ESAIM: Control, Optimisation and Calculus of Variations*, 19:190–218.
- Candès, E. J. and Fernandez-Granda, C. (2013). Towards a mathematical theory of super-resolution. *Communications on Pure and Applied Mathematics. To appear.*
- Chen, S. and Donoho, D. (1994). Basis pursuit. Technical report, Stanford University.
- Chen, S., Donoho, D., and Saunders, M. (1999). Atomic decomposition by basis pursuit. *SIAM journal on scientific computing*, 20(1):33–61.
- de Castro, Y. and Gamboa, F. (2012). Exact reconstruction using beurling minimal extrapolation. *Journal of Mathematical Analysis and Applications*, 395(1):336–354.
- Dossal, C. and Mallat, S. (2005). Sparse spike deconvolution with minimum scale. In *Proceedings* of *SPAPS*, pages 123–126