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Observation model 2/1a

> Consider a signal mo defined on T =R/Z (i.e. [0,1) with periodic
boundary condition).

> Observation :
dmo + w = / o(+,y)dmo(y) + w where ¢ is smooth and known.
TxT
» Example: Convolution

mo * P + w = Yot+w
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boundary condition).

» Observation :

dmo + w = / o(+,y)dmo(y) + w where ¢ is smooth and known.
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» Example: Convolution

mo * © + w = Yot+w
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> Goal: recover mg from the observation yo + w = ®mg + w (or simply
Yo = ®mo)
> |ll-posed problem:

> the low pass filter might not be invertible (¢, = 0 for some frequency n)
> even though, the problem is ill-conditioned (|@n| < |@o| for high
frequencies n)



Assumption 3 /14

> Assumption: the signal mg is sparse

14
VIVies

mo *
" l 1t o5

_|_

0
Original Signal Low-pass filter Noise Observation
N ai €R,
mo = Z a;bx, Wwhere xi €T,
i=1 N € N is small.

so that we observe y +w = SV ;o (-, x1) + w.

> Idea: Look for a sparse signal m such that ®m = yo + w (or yo).



Discretization 4/14

Define a finite grid G = {ﬁ 0<i<M-—1} CT, and consider signals of the
form m = Z;Aial aidi.
M

> Write
M—-1 . T [
bm = aip | -, i

i=0 Candidate Signal

ao

1 M—1 a

= @ (s ) (")

am—1

g —

a
> Equivalent paradigm: Look for a sparse vector a € RM such that
dga~ yo (or Pga = yo+ w).



Discrete ¢* regularization 5 /14

Define
E,Aigl |a,—| ifm= Zf\ial aiai/M, mo = Y215 a0.i0i/m
lmllesg) = +o0 otherwise.
> Basis Pursuit [Chen & Donoho (94)] 0 1t
meiﬁc(m [[ml|¢2(g) such that ®m = yo (P§ (v0))
> LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]
. 1 2
f A = |om— g
nfAlmlla) + 510m = (0 + w13 (PS (3o + )



Discrete ¢ regularization 5/ 14

Define 1 M1
— . —_— M—1
Imllexgy = Yico lail ifm=37"0"aidi/m, ™ = Limo axidim
© +00 otherwise.

> Basis Pursuit [Chen & Donoho (94)]

meiﬂfm [[ml|¢2(g) such that ®m = yo (P§ (v0))

> LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

. 1 » o
nfAlmlla) + 510m— (o + w13 (PS (3o + )

(?-robustness (Grasmair et al. (2011))

If mo = 3", a0,i0;/m is the unique solution to Pg (yo), and
my =Y, ax,idi/m is a solution to PY (yo + w), then
llax — aoll2 = O([|wl|2) for A = C[[w|l>.




Robustness of the support (discrete problem) 6/ 14

M-1
mo =) k—o 30.k0k/m

No support recovery Support recovery

Can one guarantee that Supp my = Supp mg?
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M-1
mo =) k—o 30.k0k/m

No support recovery Support recovery

Can one guarantee that Supp my = Supp mg?

» Sufficient conditions [Tropp (06), Dossal & Mallat (05)],
» Almost necessary and sufficient [Fuchs (04)],

» Or look at the minimal norm certificate.
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Fuchs theorem

M—1
mo = Ek:o 80,k5k/M

For mg = Z,Ail a0,i0x, ;, assume that lwll
def.
(DXO = (‘P(',XO,I)7~~<P('7XO,N)) i
has full rank. T
Ik 2 O W
0 Ao Gt

Theorem (Fuchs (04))

If Ine(5)| < 1 for all k such that & ¢ {xo,1,...,%o,n}, then mo is the unique
so/utlon to P§ (yo), and there ex:sts v >0, /\o > 0 such that for 0 < X < Ao

and ||wl|2 < 7,
> The solution my to PY(yo + w) is unique.
» Supp mx = Supp mo, that is my = Z,Nﬂ ax,i0x, ;, and
sign(ax,i) = sign(ao,i),
> ay = o + Pl w — NP, Py ) ! sign(ao).
If Ine(45)| > 1 for some k, the support is not stable. )
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Fuchs theorem

For mo = 3™, a0,i0x, ;, assume that ! /TA\
def.
(DXO = ((p(.7X0y1)7"‘<p(.7X07N)) 0 I AN
has full rank.
—1

def. . « def. . * .
nF = & pr where  pr = argmin{||pl|i2r); (¢7p)(x0.i) = sign(co.i)}
=0/ "s.

Theorem (Fuchs (04))

If Ine(5)| < 1 for all k such that & ¢ {xo,1,...,%o,n}, then mo is the unique
so/utlon to P§ (vo), and there ex:sts v >0, /\o > 0 such that for 0 < X < Ao

and ||wlj2 < A,
> The solution my to PY(yo + w) is unique.
» Supp mx = Supp mo, that is my = Z,Nﬂ ax,i0x, ;, and
sign(ax,i) = sign(ao,i),
> ay = o + P w — NP, Py ) sign(ao).
If Ine(%5)| > 1 for some k, the support is not stable. )
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—

AR A

When the grid is too thin, the Fuchs criterion cannot hold
= the support is not stable.

What is the support at low noise when the Fuchs criterion does not
hold?

Need to study the minimal norm certificate.



The minimal norm certificate 9/ 14

Assume that mo is a solution to Po(yo). “ A

Define the minimal norm certificate on G

ns def " pg where p§ def argmin{||p|2(r); (" p)(x0,i) = sign(ao,i) for 1 <i < N

(¢ p) <M) ’ 1 for 0 < —1}.

and

General principle

> If ’nog(ﬁﬂ < 1 for all k such that k/M ¢ {xo0,1,...,xo,n}, there is a low
noise regime with support recovery.

> If ’ng(ﬁﬂ =1 for some k such that k/M ¢ {xo0,1,...,xo,n}, then for
arbitrary small values of X, |w|2(r), a spike may appear at k/M.

The set {k/M; ’ng(ﬁﬂ =1} is called the extended support on G (see
also [Dossal (07)]).



Working on thin grids 10/ 14

> Consider a sequence of refining grids with vanishing stepsize:

k . Gn C Gny1 (g My = 2%)
= —_— < < — 2n /7
Gn {Mn’ 0< k<M, l}C'JI‘ Wlth{ limns oo My — +00,

> Assume that Supp mo C G, for n large enough, i.e. xo,;i € G, for all
1<i<N.



Working on thin grids 10/ 14

> Consider a sequence of refining grids with vanishing stepsize:

k . Gn C Gop1 (e-g- M, = ln)
={—:0< k<M, - e
gn { Mn f 0 X k X Mn 1} C T Wlth { Iimn_>+oo M,, — +OO,

> Assume that Supp mo C G, for n large enough, i.e. xo,;i € G, for all
1<i<N.

Proposition (Tang & Recht (13))

The solutions of Pg"(yo) (resp. PY"(yo + w)) weakly* converge (up to
subsequences) towards the solutions of Po(yo) (resp. Pa(yo + w)).

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes &
Fernandez-Granda (13)],

meljrcj(m |m|(T) such that dm = yo (Po(yo))

> LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et
al. (13)]

. 1
inf AlmI(T) + 5 19m — (o + w)l3 (Pa(yo +w))

me
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> Consider a sequence of refining grids with vanishing stepsize:

k . Gn C Gop1 (e-g- M, = ln)
={—:0< k<M, - e
gn { Mn f 0 X k X Mn 1} C T Wlth { Iimn_>+oo M,, — +OO,

> Assume that Supp mo C G, for n large enough, i.e. xo,;i € G, for all
1<i<N.

Proposition (Duval & Peyré (13))

The minimal norm certificate ng" for Py (yo) converges towards the minimal
norm certificate of Po(yo).

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes &
Fernandez-Granda (13)],

meljr\]j(m |m|(T) such that dm = yo (Po(yo))

> LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et
al. (13)]

. 1
inf AlmI(T) + 5 19m — (o + w)l3 (Pa(yo +w))

me



Extended support on thin grids 11/ 14

If mo is “non-degenerate”, for n large enough

N
k En,i
g n,i
—J|=1pC iy X0,i .
where ¢, € {—1,1}".

Define the natural shift as

{k/M;

def. * _ * -
p = (PenNdl) oL ol " sign(ao).

Theorem (D.-Peyré (15))
If pi #0 for all 1 < i < N, then € does not depend on n, and is given by
e = (diag(sign(aw))) sign (p) -

where T is the orthogonal projector onto (Im ®,,)™*

Moreover
k N €i
g _ fl | . . !
no (M)‘_l}_ {XO,”XO,’JF M"}

i=1

{k/M;




Low noise “robustness’ on thin grids 12 / 14

Under the same hypotheses: » mo = X1 20,465

A. purT

Theorem (D.-Peyré (15))

There exists v\ > 0, )\(") > 0 such that for 0 < A < )\g") and ||wl2 < "),
> The solution m)\) to PY"(yo + w) is unique.
> SUPP m(") U1</<N {Xg iy Xo,i + M } that is

mA:EII\Il(a()\)I XOIJ’_ﬂ)\IXo M)'and
sign(ax,;) = sign(bx,i) = sign(ao,i),

(m) R
a _1 (sign(ao,r)

In fact 4(" = O(1) and \; ) — O(M )-




Numerical example (w = 0)

Amplitude

—
0\ ’ 1t
Input Signal

at xo

at x1

13 / 14
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> (Almost)-stability of the support on thin grids
> As the grid stepsize refines, stability decreases

» For a more stable “support recovery”, use the continuous
approach

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution,
V. Duval & G. Peyré (JFoCM 2014)
Sparse Spikes Deconvolution on thin Grids
V. Duval & G. Peyré (ArXiv Preprint 2015)



Thank you for your attention!



Continuous framework for deconvolution 16/ 14

Using the total variation of measures:

|m|(T) = SUP{fT Ydm;y € C( ”77[}”00 X }

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes &
Fernandez-Granda (13)],

inf T h that dm = >
Lk mI(T) such that &m = yy (P& (%))

» LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais
et al. (13)]

, 1
'nf( Alm|(T) + S[®m = (yo + w)|3 (PR (vo + w))

meM(T)

3 numerical methods for solving Po(y0) and Px(yo + w), see [Bredies &
Pikkarainen (13), Candes & Fernandez-Granda (13)]



Limit of the functionals 17/ 14

We say that m, € M(T) weakly * converges towards m € M(T) if

vVf e C(T), lim /fdm,,—/fdm
n——+00

Consider a sequence (m;)neny € M(T)YN such that each m,, is a
minimizer of Péw"(yo) (resp. P\ (yo + w)).

Theorem ([Tang et al. 13])

The sequence (my,)nen has convergent subsequences for the weak *
convergence, and each limit point is a minimizer of P§°(yo)

(resp. P(y0 + w)).

Remark: In fact Py""(yo) (resp. P{°(yo + w) M-converges towards
P57 (yo) (resp. P (o0 + w)).
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Fine properties of the support

More precisely, if the solution
m>® — ZlNzl a;dy; to PP(yo + w) (resp. I s
P§°(0)) is “non-degenerate”, !
> then the solution m, to P°(yo + w) (resp. Po(yo)) is made
of pairs consecutive spikes:
N
mp = Z(aiék,-/M + bil(k+e;)/M)
i=1
with sign(a;) = sign(b;) = sign(«;),e; € {+1}

» At low noise, if the original measure is on the grid, pairs of
consecutive spikes (including the original one) (see Section 1) .



|dentifiability for discrete measures 19/ 14

Minimum separation distance of a measure m:

N
. m=>";ailx
A(m) = min Ix — X/| Zim
x,x" €Supp m,x#x' T
. . _ sin(2fc+1)wt) ol & R
Ideal Low Pass filter: o(t) = =27 *—iA(m)

i.e n =1 for |n| < £, 0 otherwise.

Theorem (Candés & Fernandez-Granda (2013))

Let ¢ be the ideal low-pass filter. There exists a constant C > 0
such that, for any (discrete) measure mg with A(mg) > % mg is
the unique solution of

inf T h that dm = P
mel/rc/t(T)|m|( ) such that ®m = yy (Po(y0))

where yo = dmyg.

Remark: 1 < C € 1.87.



Robustness? 20/ 14

Weak-* robustness (Bredies & Pikkarainen (2013))

If mo =3, a0,i0x,, is the unique solution to Po(yo), my is a solution to
Pa(yo + w), then my = mg as A — 0%, ||w|3/\ — 0.

(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local
averages in the case of the ideal LPF)

N
mo = Zi:O aO,i(Sxo,,-

L o

X1 & x03 |t

o 1
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Weak-* robustness (Bredies & Pikkarainen (2013))

If mo=75"; a0,i0x, ; is the unique solution to Po(¥), my is a solution to
Px(yo + w), then my = mg as A — 0%, [|w|j3/\ — 0.

(see also [Azais et al. (13), Fernandez-Granda (13)] for robustness of local
averages in the case of the ideal LPF)

N
mo =g 30,i5><o,,-

P

J 0 X0,1 él on]‘- t

X X0,
0,1 & 031t

0|

No Support recovery “Support recovery”



Robustness of the support (continuous problem) 21/ 14

[wll

N .
For mo = Y. ajg0x,;, define

xo = (90(' —x0,1)s - (- — xo,n), @' (- — x0,1), .- @' (- — XO,N))

Theorem (D.-Peyré 2013)

Assume that ., has full rank, and that mq is non-degenerate.
Then there exists, & > 0, o > 0 such that for 0 < A < Ao and |[w||2 < o,

> the solution my to Px(y + w) is unique and has exactly N spikes,
mx = Z,N:l aA,i(;xA,,,

> the mapping (A, w) — (ax,x») is C .
> the solution has the Taylor expansion

()= () + (o wagige) rer [(*5) 2 v ()
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1
- _ inf T) + Ljom— P
mel/rc/fm Im|(T) st. dm=y  (Po(y)) me'RA(T)MmK )+ 2” m—yl2 (Pxa(y))

(Do(y)) (Dr(y))
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1
- _ inf T) + Ljom— P
mel/rc/fm Im|(T) st. dm=y  (Po(y)) me'RA(T)MmK )+ 2” m—yl2 (Pxa(y))

sup_ (v, p) @) | s op -4l (D)

¢*plloc <1 [®*plloo <1
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. . 1
m€|/r\1j(T)\m|(’H‘) st. dm=y  (Po(y)) melm’(mklml(T)Jr sIem=yl2 (PA(y))

sp (¥, ) I I A R 1 S (2N ()

* <
16* plloo <1 (9% Pl
Extremality relation:

d*py €0 T),
%" p € H|mI(T) { P € 0lma|(T)

—pr = 5(®mx —y).

n := ®*p is a certificate for m



Duality 22/ 14

. . 1
me.RAf(T)\mKT) st. dm=y  (Po(y)) melgj(T)Alml(T)Jr Slem—yla (Pa(y))

sup  (y, p) (Do(y)) ~ M2 D
[0 pllew <1 0P P = 3lel (Paly))
Extremality relation:
. ®"px € 0lmy[(T),

n := ®*p is a certificate for m

Subdifferential of the total variation

dlml(T) = {n € C(T);  VYm' € M(T), [nr|(T) > |m|(T) + (n, m — m)}
= {n € C(T); [Inlles <1,Vt € Suppmy n(t) =1,
and Vt € Supp m_ n(t) = —1}




Duality

inf T) s.t. dm =
nf_ml(T) st m =y

sup (v, p)
6% plloo <1

" p € 9|m(T)

(Po(y))
(Do(y))

22 / 14

) 1
me.%) Alm|(T) + S1®m = yl2 (P(y))

swp (v p) - SlpE (DA

[®*plloo <1

Extremality relation:

®*px € 9my[(T),
—pxr = 3 (Pmx —y).

Find the support of m «~ Find all t such that n(t) := (®*p)(t) = £1

N
For m=>3".", aidx,

AIm|(T) = {n € C(T); ||n]loc <1 and n(x;) = sign(a;) for 1 <i < N}.

1




A|gor|th M (Candés & Fernandez-Granda) 23/ 14

How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup (y,p) s.t. sup|(®*p)(t)] < 1.
peL2(T) teT
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

fe
sup %6}, C> s.t. sup Z Cne2l7rnt <1

p
ceER2fct1 teT n——f.

Lemma (Dumitrescu)

A causal trigonometric polynomial ZHM:BI c,€%™ s bounded by one in

magnitude if and only if there exists a Hermitian matrix @ € CM*M such that

M—j ;
Q «c I
|2 f]rom X an={§i20, w_s

i=1
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup R(y,c) st [ y ;}EOand...

C€R2f5+17Q€H2fC+1
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup R(y,c) st [

C€R2f5+17Q€H2fC+1

c
—
N 1}_Oand

(@)

2
» Find the roots of Z,’:C:_fc c,Xft"|" — 1 on the unit circle:

e2l7’l’X1’ .

. e2l7’l’XN.
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» Solve the system Z,’Yzl ape2™on = g for —f. < k < f,
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

C

sup R(y,c) st [

c€R?fe+1 QeHor 11

c
—
N 1}_Oand

2
» Find the roots of Z,’:C:_fc cpXfetn

e2l7’l’X1’ .

— 1 on the unit circle:

. e2l7’l’XN.

» Solve the system Z,’Yzl ape2™on = g for —f. < k < f,

There is a variant for Py(y) (Azais et al., 2013)
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EXAMPLE



The dual as a projection

The set C = {p € L%(T), ||®*p|l < 1} is non-empty closed and

convex.
Yo+w 2
X .
;2 Rewite s (y.p) -5l (DAY)
R [0° ploo<
RN as inf Hp—XH2 (D (y))
peC A2 A

- y
— projection of X onto Cl!

C= [\ {pelX(T); (¢(-—1),p) <1}

teT,e==+1

Consequence

» The mapping ¥ — p is non-expansive, and
lIwll2

18y — palla < 52

» Each "face" of C corresponds to a set of active constraints
(@*p)(t) = £1 and hence to a (signed) support for the
solution .

25 / 14



Projection onto convex sets 26/ 14

G Ca C=yen Cn

Discrete case

Cm = {p € LA(T); |[(®*p)(#)| <1lfor0<i<M-—1}isa
convex polytope.
The support is locally constant.

Continuous case

C ={pe L¥T);|(®*p)(t)| < 1for t € T} is convex, piecewise
smooth.
The support varies smoothly.




Limit for the dual problem 27 / 14
Asumption : there is a solution to Dy(y) (OK if
dim(Im ®) < 400) .

Lemma ((D.-Peyré. 2013))

Let py the unique solution of Dy(y), and py be the solution of
Do(y) with minimal norm. Then

lim px = po in L2(strongly).

n——+o00

Moreover, the dual certificate ny = ®*py and its derivatives nf\k)
(0 < k < 2) satify:

)I\lmo n(k) = n(()k)in the sense of the uniform convergence.
%




The Non Degenerate Source Condition 2/ 14

e Y

A measure mo = >, a0,i0x, ; satisfies the Non Degenerate Source Condition
if

> There exists 7 € Im ®* such that n € 9|mo|(T), or equivalently:

> there exists a solution p to Do(y),
> mg is a solution to Py(y)

> The minimal norm certificate 7o = ®* po satisfies

» Forall s € T\ {x01,...xon}, [M0(s)] <1,
» Forall i € {1,... N}, nf(x0,i) # 0.




COﬂClUSiOﬂ 29 / 14

» (Almost)-stability of the support for the deconvolution problem

> As the grid stepsize refines, stability decreases

» Try the grid free approaches the Sparse Spikes Deconvolution
on Numerical tours!

WWW.numerical-tours.com

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution,
V. Duval & G. Peyré (JFoCM 2014)
Sparse Spikes Deconvolution on thin Grids
V. Duval & G. Peyré (ArXiv Preprint 2015)


www.numerical-tours.com
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