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Single particle reconstruction in Cryo-EM
Imaging process in cryo-electron microscopy

The cryo-EM problem



The heterogeneity problem

What if the molecule has more than one possible structure?

(Image source: H. Liao and J. Frank, Classification by bootstrapping in single particle methods, Proceedings of the
2010 IEEE international conference on biomedical imaging, 2010.)



Experimental data: 70S Ribosome
10000 image dataset (130-by-130), courtesy Joachim Frank (Columbia
University)
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Morphing video



Problem formulation

I Let X1, . . . ,Xn ∈ Rp be a set of i.i.d. discrete random
variables representing volumes in a Cryo-EM dataset. The
number of possible states is C � p.

I Let Ms : Rp → Rq project a volume along a viewing
direction Rs ∈ SO(3) and filter an image by the contrast
transfer function hs.

I Set of projection images given by

Is = MsXs + Es, s = 1, . . . ,n,

where E1, . . . ,En ∈ Rq is a set of i.i.d. Gaussian white
noise variables of variance σ2.

I Given realizations I1, . . . , In of I1, . . . , In, goal is to cluster
according to corresponding state of X1, . . . ,Xn.



Subspace approach

I If Xs has C possible values, volumes reside in a
C − 1-dimensional affine space U centered in E[Xs] and
spanned by Var[Xs]1.

I Basic algorithm:
1. Estimate viewing directions Rs for all images assuming

single molecule.
2. Find E[Xs] and Var[Xs]; construct U.
3. Project Is onto MsU and use coordinates αs to cluster.
4. Reconstruct a volume for each cluster using standard

techniques.
5. Re-estimate viewing directions and repeat (optional).

I Given realizations I1, . . . , In, estimate E[Xs] and Var[Xs].

Principal component analysis from noisy projections

1Penczek et al. (2009), Liao & Frank (2010)



Least-squares estimators
I From Is = MsXs + Es, we have

E[Is] = MsE[Xs], Var[Is] = MsVar[Xs]MH
s + σ2Iq.

I Given a set of realizations I1, . . . , In, define

µn = arg min
µ

1
n

n∑
s=1

‖Is −Msµ‖2 + λ‖µ‖2,

and

Σn = arg min
Σ

1
n

n∑
s=1

‖(Is −Msµn)(Is −Msµn)H

− (MsΣMH
s + σ2Iq)‖2F + λ‖Σ‖2.

I For uniform distribution of viewing directions, hs(ω) = 1,
and λ = 0, Σn

a.s.−−→ Var[Xs] as n→∞.



Normal equations
Mean estimator satisfies Anµn = bn, where

An =
1
n

n∑
s=1

MH
s Ms + λIq, and bn =

1
n

n∑
s=1

MH
s Is.

For covariance, Ln(Σn) = Bn, where Ln : Rp×p → Rp×p is
defined by

Ln(Σ) =
1
n

n∑
s=1

MH
s MsΣMH

s Ms + λΣ

and

Bn =
1
n

n∑
s=1

MH
s (Is −Msµn)(Is −Msµn)HMs

− σ2 1
n

n∑
s=1

MH
s Ms .



Inversion of Ln

I Direct inversion of matrix intractable; costs
O(p6) = O(N18), since p = O(N3) for resolution N.

I Katsevich et al (2015) designed a basis in which Ln is
approximated by a block-diagonal operator. This requires
uniform distribution of viewing directions and no CTF.

I Another approach is to use iterative methods to invert Ln,
such as the algebraic reconstruction technique (ART), also
known as the Kaczmarz method2.

I We use conjugate gradient (CG) method to calculate
L−1

n (Bn) through repeated application of Ln.

I Non-uniform fast Fourier transforms allow us to calculate
Ln in O(nN6 log N), so T iterations cost O(nTN6 log N).

2Liao et al. (2014)



Convolution operator

I The operator MH
s Ms projects, then backprojects, so it can

be written as a convolution. As a result

Σ 7→ MH
s MsΣMH

s Ms,

is a convolution along the rows and columns of Σ.

I Plugging this into the expression for Ln, we have

Ln(Σ) =
1
n

n∑
s=1

MH
s MsΣMH

s Ms + λΣ

= Σ ∗ Ker + λΣ

where Ker is a convolution kernel in six dimensions.



Convolution operator (cont.)

I Precalculating Ker in one pass through the dataset takes
O(nN6 log N), but once calculated, applying Ln amounts to
a convolution costing only O(N6 log N).

I Solving Ln(Σn) = Bn then has computational complexity
O((n + T )N6 log N).

I We can also approximate convolution by circular
convolution. In the Fourier domain, we then solve

K̂er ◦ Σ̂n = B̂n,

where ◦ is the elementwise matrix product. Complexity for
this method is just O(nN6 log N).



Low-rank approximation

I However, these methods all have complexity of at least
O(N6 log N), severely limiting resolution.

I Katsevich et al (2015) showed that

lim
n→∞

K̂er(~ξ1, ~ξ2) =
2

‖~ξ1 × ~ξ2‖
,

for hs(ω) = 1 and uniformly distributed Rs.

I The eigenvalues decay as 1/k , so K̂er is approximately
low-rank.

I For a small C, Var[Xs] has low rank C − 1. Therefore Bn is
also of low rank, since B̂n is the elementwise product of
two low-rank matrices V̂ar[Xs] and K̂er.



Low-rank approximation (cont.)

I Being the sum of rank-one matrices, Bn can be applied to
vectors fast.

I Probablistic matrix decompositions techniques thus allow
for efficient low-rank approximation3.

I Asymptotically, 1/K̂er(~ξ1, ~ξ2) ≈ 1
2‖~ξ1 × ~ξ2‖, so we expect

îKer(~ξ1, ~ξ2) =
1

K̂er(~ξ1, ~ξ2) + λ

to be smooth and therefore low-rank. The Nyström method
provides a low-rank approximation of îKer by calculating a
subset of its columns and interpolating4.

4Halko et al (2011)
4Williams & Seeger (2001)



Low-rank approximation (cont.)

I We can now calculate

Σ̂n = îKer ◦ B̂n,

where Σ̂n is a sum of rank-one matrices, since the
elementwise product of two rank-one matrices is also
rank-one.

I Using this representation, we can apply standard
eigendecomposition algorithms to Σ̂n to capture its
principal eigenvectors.

I Letting r be the rank of Bn and iKer, complexity is now
O(rnN3 log N). This is a significant improvement over
previous methods.



Conjugate gradient deconvolution: 70S ribosome
Dataset of 10000 images (130-by-130), 2 classes, courtesy
Joachim Frank (Columbia University). Downsampled to N = 17.

Largest 32 eigenvalues
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Took 18 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 88% with respect to dataset labeling.



Low-rank deconvolution: 70S ribosome
Dataset of 10000 images (130-by-130), 2 classes, courtesy
Joachim Frank (Columbia University). Downsampled to N = 17.

Largest 32 eigenvalues
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Took 5 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 84% with respect to dataset labeling.



Conclusions

I Principal component analysis of volumes from noisy
projections using a least-squares estimator provides a
powerful measure of variability in Cryo-EM volumes.

I Precalculating convolutional kernel coupled with conjugate
gradient allows for efficient calculating of least-squares
covariance estimator.

I Leveraging the low rank of the covariance matrix and
convolution kernel significantly reduces complexity in time
and memory.
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