Estimating low-rank covariance matrices from tomographic projections for Cryo-EM classification

Joakim Andén, Eugene Katsevich, Amit Singer

The Program in Applied and Computational Mathematics Princeton University

SPARS, July 9, 2015

Single particle reconstruction in Cryo-EM Imaging process in cryo-electron microscopy

The cryo-EM problem

The heterogeneity problem

What if the molecule has more than one possible structure?

(Image source: H. Liao and J. Frank, Classification by bootstrapping in single particle methods, *Proceedings of the 2010 IEEE international conference on biomedical imaging*, 2010.)

Experimental data: 70S Ribosome

10000 image dataset (130-by-130), courtesy Joachim Frank (Columbia University)

Class 1

Class 2

Morphing video

Problem formulation

- Let X₁,..., X_n ∈ ℝ^p be a set of i.i.d. discrete random variables representing volumes in a Cryo-EM dataset. The number of possible states is C ≪ p.
- Let M_s : ℝ^p → ℝ^q project a volume along a viewing direction R_s ∈ SO(3) and filter an image by the contrast transfer function h_s.
- Set of projection images given by

$$\mathbf{I}_{s} = M_{s}\mathbf{X}_{s} + \mathbf{E}_{s}, \quad s = 1, \dots, n,$$

where $\mathbf{E}_1, \ldots, \mathbf{E}_n \in \mathbb{R}^q$ is a set of i.i.d. Gaussian white noise variables of variance σ^2 .

► Given realizations *I*₁,..., *I_n* of *I*₁,..., *I_n*, goal is to cluster according to corresponding state of *X*₁,..., *X_n*.

Subspace approach

- If X_s has C possible values, volumes reside in a C − 1-dimensional affine space U centered in E[X_s] and spanned by Var[X_s]¹.
- Basic algorithm:
 - 1. Estimate viewing directions *R_s* for all images assuming single molecule.
 - 2. Find $\mathbb{E}[\mathbf{X}_s]$ and $\operatorname{Var}[\mathbf{X}_s]$; construct **U**.
 - 3. Project I_s onto M_s **U** and use coordinates α_s to cluster.
 - 4. Reconstruct a volume for each cluster using standard techniques.
 - 5. Re-estimate viewing directions and repeat (optional).
- Given realizations I_1, \ldots, I_n , estimate $\mathbb{E}[\mathbf{X}_s]$ and $\operatorname{Var}[\mathbf{X}_s]$.

Principal component analysis from noisy projections

¹Penczek et al. (2009), Liao & Frank (2010)

Least-squares estimators

 $\mathbb{E}[\mathbf{I}_{s}] = M_{s}\mathbb{E}[\mathbf{X}_{s}], \quad \operatorname{Var}[\mathbf{I}_{s}] = M_{s}\operatorname{Var}[\mathbf{X}_{s}]M_{s}^{H} + \sigma^{2}I_{q}.$

• Given a set of realizations I_1, \ldots, I_n , define

$$\mu_n = \arg\min_{\mu} \frac{1}{n} \sum_{s=1}^n \|I_s - M_s \mu\|^2 + \lambda \|\mu\|^2,$$

and

$$\Sigma_n = \underset{\Sigma}{\operatorname{arg\,min}} \frac{1}{n} \sum_{s=1}^n \| (I_s - M_s \mu_n) (I_s - M_s \mu_n)^H - (M_s \Sigma M_s^H + \sigma^2 \mathbf{I}_q) \|_F^2 + \lambda \| \Sigma \|^2.$$

For uniform distribution of viewing directions, h_s(ω) = 1, and λ = 0, Σ_n ^{a.s.}→ Var[X_s] as n→∞.

Normal equations

Mean estimator satisfies $A_n\mu_n = b_n$, where

$$A_n = \frac{1}{n} \sum_{s=1}^n M_s^H M_s + \lambda I_q, \text{ and } b_n = \frac{1}{n} \sum_{s=1}^n M_s^H I_s.$$

For covariance, $L_n(\Sigma_n) = B_n$, where $L_n : \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is defined by

$$L_n(\Sigma) = \frac{1}{n} \sum_{s=1}^n M_s^H M_s \Sigma M_s^H M_s + \lambda \Sigma$$

and

$$B_n = \frac{1}{n} \sum_{s=1}^n M_s^H (I_s - M_s \mu_n) (I_s - M_s \mu_n)^H M_s$$
$$- \sigma^2 \frac{1}{n} \sum_{s=1}^n M_s^H M_s .$$

Inversion of L_n

- Direct inversion of matrix intractable; costs $O(p^6) = O(N^{18})$, since $p = O(N^3)$ for resolution *N*.
- Katsevich et al (2015) designed a basis in which L_n is approximated by a block-diagonal operator. This requires uniform distribution of viewing directions and no CTF.
- Another approach is to use iterative methods to invert L_n, such as the algebraic reconstruction technique (ART), also known as the Kaczmarz method².
- We use conjugate gradient (CG) method to calculate $L_n^{-1}(B_n)$ through repeated application of L_n .
- ► Non-uniform fast Fourier transforms allow us to calculate L_n in O(nN⁶ log N), so T iterations cost O(nTN⁶ log N).

²Liao et al. (2014)

Convolution operator

The operator M^H_s M_s projects, then backprojects, so it can be written as a convolution. As a result

$$\Sigma \mapsto M_s^H M_s \Sigma M_s^H M_s,$$

is a convolution along the rows and columns of Σ .

Plugging this into the expression for L_n, we have

$$L_n(\Sigma) = \frac{1}{n} \sum_{s=1}^n M_s^H M_s \Sigma M_s^H M_s + \lambda \Sigma$$
$$= \Sigma * \text{Ker} + \lambda \Sigma$$

where Ker is a convolution kernel in six dimensions.

Convolution operator (cont.)

- Precalculating Ker in one pass through the dataset takes O(nN⁶ log N), but once calculated, applying L_n amounts to a convolution costing only O(N⁶ log N).
- Solving $L_n(\Sigma_n) = B_n$ then has computational complexity $O((n + T)N^6 \log N)$.
- We can also approximate convolution by circular convolution. In the Fourier domain, we then solve

$$\widehat{\operatorname{Ker}}\circ\widehat{\Sigma}_n=\widehat{B}_n,$$

where \circ is the elementwise matrix product. Complexity for this method is just $O(nN^6 \log N)$.

Low-rank approximation

- However, these methods all have complexity of at least O(N⁶ log N), severely limiting resolution.
- Katsevich et al (2015) showed that

$$\lim_{n\to\infty}\widehat{\operatorname{Ker}}(\vec{\xi_1},\vec{\xi_2}) = \frac{2}{\|\vec{\xi_1}\times\vec{\xi_2}\|},$$

for $h_s(\omega) = 1$ and uniformly distributed R_s .

- The eigenvalues decay as 1/k, so Ker is approximately low-rank.
- For a small C, Var[X_s] has low rank C − 1. Therefore B_n is also of low rank, since B_n is the elementwise product of two low-rank matrices Var[X_s] and Ker.

Low-rank approximation (cont.)

- Being the sum of rank-one matrices, B_n can be applied to vectors fast.
- Probablistic matrix decompositions techniques thus allow for efficient low-rank approximation³.
- Asymptotically, $1/\widehat{\text{Ker}}(\vec{\xi_1}, \vec{\xi_2}) \approx \frac{1}{2} \|\vec{\xi_1} \times \vec{\xi_2}\|$, so we expect

$$\widehat{\mathrm{iKer}}(\vec{\xi_1},\vec{\xi_2}) = \frac{1}{\widehat{\mathrm{Ker}}(\vec{\xi_1},\vec{\xi_2}) + \lambda}$$

to be smooth and therefore low-rank. The Nyström method provides a low-rank approximation of \widehat{iKer} by calculating a subset of its columns and interpolating⁴.

⁴Halko et al (2011) ⁴Williams & Seeger (2001)

Low-rank approximation (cont.)

We can now calculate

$$\widehat{\Sigma}_n = \widehat{\mathrm{iKer}} \circ \widehat{B}_n,$$

where $\widehat{\Sigma}_n$ is a sum of rank-one matrices, since the elementwise product of two rank-one matrices is also rank-one.

- Using this representation, we can apply standard eigendecomposition algorithms to Σ_n to capture its principal eigenvectors.
- Letting r be the rank of B_n and iKer, complexity is now O(rnN³ log N). This is a significant improvement over previous methods.

Conjugate gradient deconvolution: 70S ribosome

Dataset of 10000 images (130-by-130), 2 classes, courtesy Joachim Frank (Columbia University). Downsampled to N = 17.

Took 18 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 88% with respect to dataset labeling.

Low-rank deconvolution: 70S ribosome

Dataset of 10000 images (130-by-130), 2 classes, courtesy Joachim Frank (Columbia University). Downsampled to N = 17.

Took 5 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 84% with respect to dataset labeling.

Conclusions

 Principal component analysis of volumes from noisy projections using a least-squares estimator provides a powerful measure of variability in Cryo-EM volumes.

 Precalculating convolutional kernel coupled with conjugate gradient allows for efficient calculating of least-squares covariance estimator.

 Leveraging the low rank of the covariance matrix and convolution kernel significantly reduces complexity in time and memory.

Bibliography

J. Andén, E. Katsevich, and A. Singer, "Estimating low-rank covariance matrices from tomographic projections for Cryo-EM classification," *Signal Processing with Adaptive Sparse Structured Representations workshop*, 2015.

J. Andén, E. Katsevich, and A. Singer, "Covariance estimation using conjugate gradient for 3D classification in Cryo-EM," *12th IEEE International Symposium on Biomedical Imaging*, 2015.

E. Katsevich, A. Katsevich, and A. Singer, "Covariance matrix estimation for the Cryo-EM heterogeneity problem," *SIAM Journal on Imaging Sciences*, vol. 8, no. 1, pp. 126–185, 2015.