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Single particle reconstruction in Cryo-EM
Imaging process in cryo-electron microscopy
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The cryo-EM problem

tomographic image 3-D structure



The heterogeneity problem

What if the molecule has more than one possible structure?

(Image source: H. Liao and J. Frank, Classification by bootstrapping in single particle methods, Proceedings of the
2010 IEEE international conference on biomedical imaging, 2010.)



Experimental data: 70S Ribosome

10000 image dataset (130-by-130), courtesy Joachim Frank (Columbia
University)

Class 1 Class 2

Morphing video



Problem formulation

» Let X4,...,X, € RP be a set of i.i.d. discrete random
variables representing volumes in a Cryo-EM dataset. The
number of possible states is C « p.

» Let M : RP — RY project a volume along a viewing
direction Rs € SO(3) and filter an image by the contrast
transfer function hs.

» Set of projection images given by
IS:MSXS+E37 3:1,...,n,

where E4, ..., E, € RYis a set of i.i.d. Gaussian white
noise variables of variance o°.

» Given realizations I, ..., I, of l1,...,1,, goal is to cluster
according to corresponding state of Xj, ..., Xx.



Subspace approach

» If X5 has C possible values, volumes reside in a
C — 1-dimensional affine space U centered in E[Xs] and
spanned by Var[Xs]'.

» Basic algorithm:

1.
2.
3.
4.

5.

Estimate viewing directions Rs for all images assuming
single molecule.

Find E[X,] and Var[X;]; construct U.

Project /s onto M;U and use coordinates «; to cluster.
Reconstruct a volume for each cluster using standard
techniques.

Re-estimate viewing directions and repeat (optional).

» Given realizations /y,. .., I, estimate E[Xs] and Var[Xs].

Principal component analysis from noisy projections ‘

"Penczek et al. (2009), Liao & Frank (2010)



Least-squares estimators

» From lg = MsX;s + Eg, we have
Ells] = MsE[Xs], Var[ls] = MsVar[Xs]M! + 621,

» Given a set of realizations I, .. ., I, define

1
fin = argmin- Z I1ls — Mispa|® ++ Al| ]2,
m

s=1

and
1 n
¥, = argmin_ > Nl = Mspun)(Js — Mspn)
* s=1
— (MsZMZ' + 0%19)|[F + A Z|1%.

» For uniform distribution of viewing directions, hs(w) = 1,
and A =0, £, 2% Var[Xs] as n — oo.



Normal equations
Mean estimator satisfies Anun = bn, where

1 — 1
:EZMng‘i_)\Iq, andbn:EZMgIS.

s=1 s=1

For covariance, L,(X,) = Bj, where L, : RPXP — RPXP is
defined by

1 n
Lo(¥) = > MSMsEMG M + AT
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Inversion of L,

» Direct inversion of matrix intractable; costs
O(p®) = O(N'®), since p = O(N®) for resolution N.

» Katsevich et al (2015) designed a basis in which L, is
approximated by a block-diagonal operator. This requires
uniform distribution of viewing directions and no CTF.

» Another approach is to use iterative methods to invert L,
such as the algebraic reconstruction technique (ART), also
known as the Kaczmarz method?.

» We use conjugate gradient (CG) method to calculate
L,1(B,) through repeated application of Lp,.

» Non-uniform fast Fourier transforms allow us to calculate
L, in O(nN®log N), so T iterations cost O(nTN® log N).

2Liao et al. (2014)



Convolution operator
» The operator MY Ms projects, then backprojects, so it can
be written as a convolution. As a result
Y — MYMEME Ms,

is a convolution along the rows and columns of .

» Plugging this into the expression for L, we have

1 n
Ln(x) = - > MEMsEM{Ms + A%

s=1
=3 x Ker + \X

where Ker is a convolution kernel in six dimensions.



Convolution operator (cont.)

» Precalculating Ker in one pass through the dataset takes
O(nN®log N), but once calculated, applying L, amounts to
a convolution costing only O(N® log N).

» Solving L,(X,) = By then has computational complexity
O((n+ T)N®log N).

» We can also approximate convolution by circular
convolution. In the Fourier domain, we then solve

Ker 9] Zn — Bn,

where o is the elementwise matrix product. Complexity for
this method is just O(nN® log N).



Low-rank approximation

» However, these methods all have complexity of at least
O(N®log N), severely limiting resolution.

» Katsevich et al (2015) showed that

2
6 x &l
for hs(w) = 1 and uniformly distributed Rs.

lim Ker(&, &) =
n—oo

» The eigenvalues decay as 1/k, so Ker is approximately
low-rank.

» For asmall C, Var[Xs] has low rank C — 1. Therefore B, is
also of low rank, since By is the elementwise product of
two low-rank matrices Var[Xs] and Ker.



Low-rank approximation (cont.)

» Being the sum of rank-one matrices, B, can be applied to
vectors fast.

» Probablistic matrix decompositions techniques thus allow
for efficient low-rank approximation®.

» Asymptotically, 1/Ker(¢7,&2) ~ 3|1 x &]|, so we expect

1

T(—\ W - = - S
et ) = e @) A

to be smooth and therefore low-rank. The Nystrom method
provides a low-rank approximation of iKer by calculating a
subset of its columns and interpolating®.

“Halko et al (2011)
“Williams & Seeger (2001)



Low-rank approximation (cont.)

» We can now calculate
fn = iKer o By,

where ¥, is a sum of rank-one matrices, since the
elementwise product of two rank-one matrices is also
rank-one.

» Using this representation, we can apply standard
eigendecomposition algorithms to ¥, to capture its
principal eigenvectors.

» Letting r be the rank of B, and iKer, complexity is now
O(rnN?3log N). This is a significant improvement over
previous methods.



Conjugate gradient deconvolution: 70S ribosome

Dataset of 10000 images (130-by-130), 2 classes, courtesy
Joachim Frank (Columbia University). Downsampled to N = 17.

Largest 32 eigenvalues Coordinate histogram

0

Took 18 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 88% with respect to dataset labeling.



Low-rank deconvolution: 70S ribosome

Dataset of 10000 images (130-by-130), 2 classes, courtesy
Joachim Frank (Columbia University). Downsampled to N = 17.

Largest 32 eigenvalues Coordinate histogram

0

Took 5 min on a 2.9 GHz, 16-core CPU with 96 GB of memory.

Clustering accuracy 84% with respect to dataset labeling.



Conclusions

» Principal component analysis of volumes from noisy
projections using a least-squares estimator provides a
powerful measure of variability in Cryo-EM volumes.

» Precalculating convolutional kernel coupled with conjugate
gradient allows for efficient calculating of least-squares
covariance estimator.

» Leveraging the low rank of the covariance matrix and
convolution kernel significantly reduces complexity in time
and memory.
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