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From ¢; Norm to Atomic Norms

@ The /1 norm enforces sparsity w.r.t. the canonical basis

@ The nuclear norm enforces sparsity w.r.t. rank-one matrices

@ Atomic norm generalizes these two norms and enforces sparsity
w.r.t. a general dictionary/atomic set A = {a(0) : 0 € O}
[Chandrasekaran et. al. 2010]:

x4 = inf{z i 1 x = Z \a(d;),0; € 0}

@ Connection to TV norm minimization: the atomic norm ||x|| 4 is
equal to the optimal value of

minimize
tinimiz |2l

subject to x = / a(0)du(0)
)



Example Atoms

Example
@ Canonical basis vectors a(i) = e;,i € [n]
@ Finite collection of vectors A = [a;,- - ,a,]
@ Rank-1 matrices: a(u,v) =u®v
o Line spectral signals: a(f) = [1 €27/ ... 2™/]T f € [0,1).
@ High-dimensional line spectral signals
@ Spherical harmonics
@ Rank-1 tensors: a(u,v,w) =u®v®w
e Translation-invariant signals: a(7) = [h(t; — 7)}_,
o Radar signals: a(7,v) = [¢(t; — 7)e*™4]7_,

1—|w|?

n
Zj—w ]]:1
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Single-pole linear systems: a(w) = |




Sparse Regularizer

@ Given noisy linear measurements y = ®x* + w of a signal x*,
which has a sparse representation w.r.t. A, recover x* via
[Chandrasekaran et. al.]

1
minimize §Hy — x[3 + 7[1x[| 4
X

@ To study the performance of the atomic norm regularizers, we'd
like to understand || - || 4 as we do for the ¢; and nuclear norms:

xlley = 225y il if x = > i wiei

1 X =>_yoiif X =3 ,0,u; ®v; is the SVD

J||x||¢, = {z : z = sign(x;) for z; # 0; z; € [—1, 1] otherwise}

X[ ={UV+W : |W| <LUTW =0,WVT =0}.



Atomic Decompositions

Definition
We call a finite decomposition x = Y _, A;a(6;) an atomic
decomposition if it achieves the atomic norm, i.e., ||x[|a = > i, |-

@ The representing measure 1* ="', X;0(0 — 0;) € M(O) of
an atomic decomposition is an optimal solution to the TV norm
minimization problem.



Sufficient Conditions

Many sufficient conditions for atomic decompositions have been
developed:

e Finite dictionary: restricted isometry property [Candes,
Romberg, Tao, 2004]

@ Line spectral signals: separation of frequencies [Candes,
Fernandez-Granda, 2012]

@ Rank-1 tensors: incoherence of the factors [Tang, Shah 2015]

e Translation invariant signals: separation of translations [Tang,
Recht 2013; Bendory, Dekel, Feuer 2014]

@ Spherical harmonics: separation of parameters [Bendory, Dekel,
Feuer 2014]

e Radar signals: separation of time-frequency shifts [Heckel,
Morgenshtern, and Soltanolkotabi, 2015]



Sufficient Conditions - 2

e Completion/Recovery: [Tang, Bhaskar, Shah, Recht, 2012],
[Chi, Chen, 2015]

@ Denoising: [Candes, Fernandez-Granda, 2012], [Bhaskar, Tang,
Recht, 2012], [Tang, Bhaskar, Recht, 2015]

@ Support recovery/parameter estimation: [Fernandez-Granda,
2013], [Duval, Peyré, 2014], [Denoyelle, Duval, Peyré, 2015],

e Effect of griding: [Tang, Bhaskar, Recht, 2013], [Duval, Peyré,
2015]



Questions

@ Is certain separation in parameters also necessary for a
decomposition to be an atomic decomposition?

@ Does TV norm minimization have a resolution limit?



Outline

@ Line Spectral Estimation
@ Symmetric Tensor Decomposition

@ Why is there a resolution limit?



Line Spectral Signals

@ The atomic norm of x w.r.t. the atomic set

A=A{a(f) =

1
6i27rf
oi272f

€i27rnf

- fe[01]}

e Computation of ||x||.4 can be reformulated as an SDP [Bhaskar,

Tang, Recht 2012].
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Line Spectral Signals - 2
Theorem (Candes & Fernandez-Granda 2012)

A decomposition ). c;a( f;) is an atomic decomposition if
A=minlfi — fi| > -
=min|f; — f;| > —
i# T T

regardless the sign pattern of {c;}.

Theorem (Tang 2015)

If a decomposition ), c;a(f;) is an atomic decomposition regardless

the sign pattern of {c;}, we must have

1
A =minl|f;— fi| > —.
=Sl 2
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Symmetric Tensor Decomposition
@ Symmetric tensor atoms
A={ax)=x®@x®x:x€c S" '}
@ The tensor nuclear norm

T« = inf{z ¢ T = chxj ®x; @%;4,¢; > 0,x; € S}

J J

@ An equivalent definition:

IT]l = inf{{lllry : T = /

Sn—

X ®x ® xdp, p € M(S" )}

@ Best regularizer in low-rank tensor completion, recovery, and
denoising.
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Symmetric Tensor Decomposition - 2

@ NP hard to compute in the worst case.
@ Approximate using the Lasserre/SOS hierarchy (d > 2)

minimize my;(0)
maqg

subject to P3(my,) = svec(T')
M(mgd) # 0
L(de) =0.
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Symmetric Tensor Decomposition - 3
Theorem (Tang 2015)
For > _, \ix; ® X; @ X; to be atomic tensor decompositions

regardless the sign pattern of {\;}, we must have

A — n:éln arccos(|(x;, x;)|) >
17]

Wl N

Theorem (Tang, Shah 2015)
Denote X = [x1,...,%,]. If

IX'X — I,]| < 0.0016.

then Y., \ix; @ X; ® X; is an atomic decomposition regardless the
sign pattern of {\;}.
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Symmetric Tensor Decomposition - 4

Theorem (Tang, Shah 2015)

If
IX'X — I,|| < 0.0016.

then the smallest (d = 2) SDP in the Lasserre hierarchy is exact.

@ The resolution limit condition can be (easily) extended to
higher-order and /or non-symmetric tensors.

@ The sufficient results are also likely to be extended to these
cases (but much harder).

@ Use the relaxation norm for tensor completion, denoising, and
robust principal component analysis.
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Why is there a resolution limit?

@ Using similar atoms to represent a signal is not economical in
the #; norm sense.

@ The dual problem is
maximize (q,y) subject to sup |[(q,a(8))| < 1.
q 0

llall
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Why is there a resolution limit? - 2

Dual certificate

Suppose strong duality holds, then 3 7, c;a(6;) is an atomic
decomposition iff there exists a dual “polynomial”

Q(8) == (q,a(0)) = >_,q:a;(0)
such that

Q(6;) = sign(c;), Vj
Q(6)] < 1,v8 € ©.

@ Ex: For line spectral signals, the dual polynomial is a
trigonometric polynomial Q(f) = >, qre 2™/,

@ Ex: For symmetric tensors, the dual polynomial is a third order
polynomial Q(x) = Z”k QijkTiT T
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Why is there a resolution limit? - 3

@ To simultaneously interpolate sign(c;) = +1 and sign(c;) = —1
at 6, and 0, respectively while remain bounded imposes
constraints on the derivative of Q(0):

IVQ(8)]]s > Q(6:) —Q(8;)] _ 2
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Why is there a resolution limit? - 4
o For © C R, there exists f € (fi, fj) such that

QU =2/(f; = fi)

Dual Polynomial
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Why is there a resolution limit? - 5

@ For certain classes of functions F, if the function values are
uniformly bounded by 1, this limits the maximal achievable
derivative, i.e.,

e
p

< 0.
gEF ”9”00

e For F = {trigonometric polynomials of degree at most n},

19" (F)llse < 2nl|g(f)oc-

@ This is the classical Markov-Bernstein's inequality.
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Sign Pattern

e Sign pattern of {c;} plays a big role. The argument breaks down
if, e.g., all ¢; are positive.

Theorem

? Suppose the atom components {a;(t)}"_, form a Chebyshev system
on [a,b]. Define w(t) =2 ift ¢ {a,b} and 1 otherwise. A
decomposition'y = ). c;a(t;) with ¢; >0 and 3, w(t;) <n is
unique.

2[de Castro, Gamboa 2011; Denoyelle, Duval, Peyre 2015; Bendory,
2015; Morgenshtern, Candes 2015; Tang 2015; Schiebinger, Robeva,
Recht 2015]

o Chebyshev system: no non-trivial “polynomial” """ ¢;a;(t) has
more than n distinct zeros.
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Sign Pattern - 2
Example (Chebyshev systems)

("]

("]

("]

algebraic polynomials: {t'}_, on any interval.

trigonometric polynomials: {1,sin(k#), cos(kf)}}_, on [0, 27).

1

rational functions: {; =
k2

-y with s; > 0 on (0, 00).
exponentials: {e®'}" , with o; > 0 on any interval.
Gaussian functions: {e~(5i=9°} for 55 > 0 on (—o0,00).

Totally positive kernels: A continuous function G(t, s) defined on
[a,b] X [c,d] is called a totally positive kernel if for any n and any
points (a <)tg < t1 < -+ <tp(<b), (c <)sp < 81 < -+ < sp(<d),
the determinant det([G(t;, si)|} ;) > 0. The system

{or(t) = G(t, sk)}_, is a Chebyshev system if G(t, s) is totally
positive.
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Conclusions

@ Atomic norm can only be achieved by decompositions involving
incoherent or well-separated atoms.

@ TV norm minimization has a limit in resolving parameters.

@ Positive combination of atoms typically requires no separation
condition (when there is zero noise).

e Connections to stability. [Moitra 2014]
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