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From `1 Norm to Atomic Norms
The `1 norm enforces sparsity w.r.t. the canonical basis
The nuclear norm enforces sparsity w.r.t. rank-one matrices
Atomic norm generalizes these two norms and enforces sparsity
w.r.t. a general dictionary/atomic set A = {a(θ) : θ ∈ Θ}
[Chandrasekaran et. al. 2010]:

‖x‖A = inf{
∑
i

|λi| : x =
∑
i

λia(θi),θi ∈ Θ}

Connection to TV norm minimization: the atomic norm ‖x‖A is
equal to the optimal value of

minimize
µ∈M(Θ)

‖µ‖TV

subject to x =

∫
Θ

a(θ)dµ(θ)
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Example Atoms
Example

Canonical basis vectors a(i) = ei, i ∈ [n]

Finite collection of vectors A = [a1, · · · , an]

Rank-1 matrices: a(u,v) = u⊗ v

Line spectral signals: a(f) = [1 ei2πf · · · ei2πnf ]T , f ∈ [0, 1).

High-dimensional line spectral signals

Spherical harmonics

Rank-1 tensors: a(u,v,w) = u⊗ v ⊗w

Translation-invariant signals: a(τ) = [h(tj − τ)]nj=1

Radar signals: a(τ, ν) = [ψ(tj − τ)ei2πνtj ]nj=1

Single-pole linear systems: a(w) = [1−|w|2
zj−w ]nj=1
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Sparse Regularizer

Given noisy linear measurements y = Φx? + w of a signal x?,
which has a sparse representation w.r.t. A, recover x? via
[Chandrasekaran et. al.]

minimize
x

1

2
‖y − Φx‖2

2 + τ‖x‖A

To study the performance of the atomic norm regularizers, we’d
like to understand ‖ · ‖A as we do for the `1 and nuclear norms:

‖x‖`1 =
∑n

i=1 |xi| if x =
∑n

i=1 xiei
‖X‖∗ =

∑r
i=1 σi if X =

∑r
i=1 σiui ⊗ vi is the SVD

∂‖x‖`1 = {z : zi = sign(xi) for xi 6= 0; zi ∈ [−1, 1] otherwise}
∂‖X‖∗ = {UV +W : ‖W‖ ≤ 1, UTW = 0,WV T = 0}.
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Atomic Decompositions

Definition
We call a finite decomposition x =

∑r
i=1 λia(θi) an atomic

decomposition if it achieves the atomic norm, i.e., ‖x‖A =
∑r

i=1 |λi|.

The representing measure µ? =
∑r

i=1 λiδ(θ − θi) ∈M(Θ) of
an atomic decomposition is an optimal solution to the TV norm
minimization problem.
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Sufficient Conditions
Many sufficient conditions for atomic decompositions have been
developed:

Finite dictionary: restricted isometry property [Candès,
Romberg, Tao, 2004]

Line spectral signals: separation of frequencies [Candès,
Fernandez-Granda, 2012]

Rank-1 tensors: incoherence of the factors [Tang, Shah 2015]

Translation invariant signals: separation of translations [Tang,
Recht 2013; Bendory, Dekel, Feuer 2014]

Spherical harmonics: separation of parameters [Bendory, Dekel,
Feuer 2014]

Radar signals: separation of time-frequency shifts [Heckel,
Morgenshtern, and Soltanolkotabi, 2015]
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Sufficient Conditions - 2

Completion/Recovery: [Tang, Bhaskar, Shah, Recht, 2012],
[Chi, Chen, 2015]

Denoising: [Candès, Fernandez-Granda, 2012], [Bhaskar, Tang,
Recht, 2012], [Tang, Bhaskar, Recht, 2015]

Support recovery/parameter estimation: [Fernandez-Granda,
2013], [Duval, Peyré, 2014], [Denoyelle, Duval, Peyré, 2015],

Effect of griding: [Tang, Bhaskar, Recht, 2013], [Duval, Peyré,
2015]
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Questions

Is certain separation in parameters also necessary for a
decomposition to be an atomic decomposition?

Does TV norm minimization have a resolution limit?
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Outline

Line Spectral Estimation

Symmetric Tensor Decomposition

Why is there a resolution limit?
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Line Spectral Signals

The atomic norm of x w.r.t. the atomic set

A = {a(f) =


1

ei2πf

ei2π2f

...
ei2πnf

 : f ∈ [0, 1]}

Computation of ‖x‖A can be reformulated as an SDP [Bhaskar,
Tang, Recht 2012].
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Line Spectral Signals - 2
Theorem (Candès & Fernandez-Granda 2012)

A decomposition
∑

i cia(fi) is an atomic decomposition if

∆ = min
i 6=j
|fi − fj| >

4

n

regardless the sign pattern of {ci}.

Theorem (Tang 2015)

If a decomposition
∑

i cia(fi) is an atomic decomposition regardless
the sign pattern of {ci}, we must have

∆ = min
i 6=j
|fi − fj| ≥

1

nπ
.
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Symmetric Tensor Decomposition

Symmetric tensor atoms

A = {a(x) = x⊗ x⊗ x : x ∈ Sn−1}

The tensor nuclear norm

‖T‖∗ = inf{
∑
j

cj : T =
∑
j

cjxj ⊗ xj ⊗ xj, cj > 0,xj ∈ Sn−1}

An equivalent definition:

‖T‖∗ = inf{‖µ‖TV : T =

∫
Sn−1

x⊗ x⊗ xdµ, µ ∈M(Sn−1)}

Best regularizer in low-rank tensor completion, recovery, and
denoising.
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Symmetric Tensor Decomposition - 2

NP hard to compute in the worst case.

Approximate using the Lasserre/SOS hierarchy (d ≥ 2)

minimize
m2d

m2d(0)

subject to P3(m2d) = svec(T )

M(m2d) < 0

L(m2d) = 0.
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Symmetric Tensor Decomposition - 3
Theorem (Tang 2015)

For
∑r

i=1 λixi ⊗ xi ⊗ xi to be atomic tensor decompositions
regardless the sign pattern of {λi}, we must have

∆ = min
i 6=j

arccos(|〈xi,xj〉|) ≥
2

3
.

Theorem (Tang, Shah 2015)

Denote X = [x1, . . . ,xr]. If

‖X ′X − Ir‖ ≤ 0.0016.

then
∑r

i=1 λixi ⊗ xi ⊗ xi is an atomic decomposition regardless the
sign pattern of {λi}.
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Symmetric Tensor Decomposition - 4

Theorem (Tang, Shah 2015)

If
‖X ′X − Ir‖ ≤ 0.0016.

then the smallest (d = 2) SDP in the Lasserre hierarchy is exact.

The resolution limit condition can be (easily) extended to
higher-order and/or non-symmetric tensors.

The sufficient results are also likely to be extended to these
cases (but much harder).

Use the relaxation norm for tensor completion, denoising, and
robust principal component analysis.
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Why is there a resolution limit?

Using similar atoms to represent a signal is not economical in
the `1 norm sense.

The dual problem is

maximize
q

〈q,y〉 subject to sup
θ
|〈q, a(θ)〉|︸ ︷︷ ︸
‖q‖∗A

≤ 1.
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Why is there a resolution limit? - 2
Dual certificate
Suppose strong duality holds, then

∑r
j=1 cja(θj) is an atomic

decomposition iff there exists a dual “polynomial”

Q(θ) := 〈q, a(θ)〉 =
∑

iqia
∗
i (θ)

such that

Q(θj) = sign(cj),∀j
|Q(θ)| ≤ 1,∀θ ∈ Θ.

Ex: For line spectral signals, the dual polynomial is a
trigonometric polynomial Q(f) =

∑
k qke

−i2πkf .
Ex: For symmetric tensors, the dual polynomial is a third order
polynomial Q(x) =

∑
i,j,k qijkxixjxk.
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Why is there a resolution limit? - 3

To simultaneously interpolate sign(ci) = +1 and sign(cj) = −1
at θi and θj respectively while remain bounded imposes
constraints on the derivative of Q(θ):

‖∇Q(θ̂)‖2 ≥
|Q(θi)−Q(θj)|

∆i,j

=
2

∆i,j
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Why is there a resolution limit? - 4
For Θ ⊂ R, there exists f̂ ∈ (fi, fj) such that

Q′(f̂) = 2/(fj − fi)
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Why is there a resolution limit? - 5

For certain classes of functions F , if the function values are
uniformly bounded by 1, this limits the maximal achievable
derivative, i.e.,

sup
g∈F

‖g′‖∞
‖g‖∞

<∞.

For F = {trigonometric polynomials of degree at most n},

‖g′(f)‖∞ ≤ 2πn‖g(f)‖∞.

This is the classical Markov-Bernstein’s inequality.
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Sign Pattern

Sign pattern of {cj} plays a big role. The argument breaks down
if, e.g., all cj are positive.

Theorem
a Suppose the atom components {ai(t)}ni=0 form a Chebyshev system
on [a, b]. Define ω(t) = 2 if t /∈ {a, b} and 1 otherwise. A
decomposition y =

∑
j cja(tj) with cj > 0 and

∑
j ω(tj) ≤ n is

unique.

a[de Castro, Gamboa 2011; Denoyelle, Duval, Peyre 2015; Bendory,
2015; Morgenshtern, Candès 2015; Tang 2015; Schiebinger, Robeva,
Recht 2015]

Chebyshev system: no non-trivial “polynomial”
∑n

i=0 ciai(t) has
more than n distinct zeros.
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Sign Pattern - 2
Example (Chebyshev systems)

algebraic polynomials: {ti}ni=0 on any interval.

trigonometric polynomials: {1, sin(kθ), cos(kθ)}nk=1 on [0, 2π).

rational functions: { 1
si+t
}ni=0 with si > 0 on (0,∞).

exponentials: {eαit}ni=0 with αi > 0 on any interval.

Gaussian functions: {e−(sj−t)2} for sj > 0 on (−∞,∞).

Totally positive kernels: A continuous function G(t, s) defined on
[a, b]× [c, d] is called a totally positive kernel if for any n and any
points (a ≤)t0 < t1 < · · · < tn(≤ b), (c ≤)s0 < s1 < · · · < sn(≤ d),
the determinant det([G(tj , sk)]

n
j,k=0) > 0. The system

{φk(t) = G(t, sk)}nk=0 is a Chebyshev system if G(t, s) is totally
positive.
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Conclusions

Atomic norm can only be achieved by decompositions involving
incoherent or well-separated atoms.

TV norm minimization has a limit in resolving parameters.

Positive combination of atoms typically requires no separation
condition (when there is zero noise).

Connections to stability. [Moitra 2014]
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