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Some well-known results

Let A ∈ CM×Na be a dictionary with coherence µa:

‖ai‖2 = 1 for i = 1, . . . , Na
µa = maxi 6=j |aHi aj |

Let x ∈ CNa be an nx -sparse vector

nx = ‖x‖0 = number of non-zero entries in x

Theorem (Nullspace condition)

If nx < 1 + 1
µa
, then Ax 6= 0M×1

Corollary (Uniqueness condition)

Assume y = Ax. If nx < 1
2(1 +

1
µa
), then x is unique



Some well-known results (cont’d)

How can we recover x from y = Ax?

Combinatorial problem: minimize ‖x‖0 subject to y = Ax

Convex problem: minimize ‖x‖1 subject to y = Ax

Orthogonal matching pursuit (OMP)

And many more...

Theorem (Recovery guarantee)

If nx < 1
2(1 +

1
µa
), then x can be recovered from y = Ax using

`0-norm and `1-norm minimization, as well as OMP



Some well-known results (cont’d)

Let B ∈ CM×Nb be another dictionary with coherence µb:

Let µm be the mutual coherence between A and B

µm = maxi ,j |aHi bj |

Let z ∈ CNa be another nz -sparse vector

Theorem (Uncertainty relation)

Let x and z be two vectors satisfying Ax = Bz. Then, the following
holds [1− µa(nx − 1)]+[1− µb(nz − 1)]+ ≤ nxnzµ2m

Corollary (UR for pairs of orthonormal bases)

Let A and B be orthonormal bases. If Ax = Bz, then 1
µ2m
≤ nxnz



Do we really need sparsity?

Signal sparsity is ubiquitous and central in the signal-recovery
and compressive-sensing literature

Is sparsity is the key for such nullspace conditions, signal
recovery problems, and uncertainty relations?

Definition (δ-density)

For a non-zero signal x ∈ CNa , we define the δ-density as

δ(x) =
‖x‖1
‖x‖∞

.

For an all-zero signal x = 0Na×1, we define δ(x) = 0



Key properties of the δ-density

For arbitrary signals x ∈ CNa , the δ-density satisfies
0 ≤ δ(x) ≤ ‖x‖0 ≤ Na

Equality δ(x) = ‖x‖0 holds if and only if the non-zero
entries of x have constant modulus

Signals with decaying magnitude profile have δ(x) < ‖x‖0
Example: xi = αi−1, i = 1, . . . , Na with 0 < α < 1− 1/Na

δ(x) ≤ (1− α)−1 < ‖x‖0 = Na

The δ-density δ(x) behaves similarly to the sparsity ‖x‖0,
but captures properties of the signal’s magnitude



Nullspace condition for signals with low density

Theorem (`∞-norm restricted isometry)

Let A∈ CM×Na be a dictionary with coherence µa and x ∈ CNa a
nonzero signal. Then, the following inequalities hold:

1− µa(δ(x)− 1) ≤
∥∥AHAx∥∥∞
‖x‖∞

≤ 1 + µa(δ(x)− 1)

Corollary (δ-density-based nullspace condition)

If δ(x) < 1 + 1
µa
, then Ax 6= 0M×1.

Example: For the α-decaying signal xi = αi−1, i = 1, . . . ., Na,
with 0<α<1−(1+ 1µa )

−1, we have ‖x‖0 = Na but Ax 6= 0M×1

For signals with constant-modulus non-zero entries, we recover
the well-known nullspace condition δ(x) = ‖x‖0 < 1 + 1

µa



δ-density-based uncertainty relation

Theorem (Uncertainty relation)

Let x and z be two vectors satisfying Ax = Bz. Then, the following
holds [1− µa(δ(x)− 1)]+[1− µb(δ(z)− 1)]+ ≤ δ(x)δ(z)µ2m

Corollary (UR for pairs of orthonormal bases)

Let A and B be orthonormal bases. If Ax = Bz, then 1
µ2m
≤ δ(x)δ(z)

Example: For the Fourier-identity pair we have N ≤ δ(x)δ(z)

Implies that signals x and z cannot have low density in Fourier
and identity domain the same time

For signals with constant-modulus non-zero entries, we recover
the Donoho–Stark uncertainty relation N ≤ ‖x‖0‖z‖0



How about signal recovery?

Can we recover x from y = Ax if signal x has low density?

We consider orthogonal matching pursuit (OMP):

Initialize residual r(0) = y and empty support set S(0) = ∅, and
repeat the following two steps for t = 1, . . . , tmax iterations:

1 Select a column of the dictionary A according to

k̂(t) = arg max
i∈R(t−1)

|aHi r(t−1)|

The set R(t−1) = {1, . . . , Na}\S(t−1) contains all remaining
indices that are not (yet) in the support set S(t−1)

2 Add k̂(t) to set S(t) = S(t−1) ∪ k̂(t) and compute new residual

r(t) = (IM − AS(t)A
†
S(t))y



δ-density-based recovery guarantee

Theorem (Recovery guarantee)

Let the maximum number of iterations be tmax < 1 +
1
µa
. Assume

that in every iteration t = 1, . . . , tmax the entries in x satisfy

δ(xR(t−1)) <
1
2

(
1 + 1

µa
− (t − 1)

)
.

Then, OMP will always select an atom associated to the largest
coefficient from xR(t) in iteration t. Furthermore, the set S(t)
contains the indices associated to the t = |S(t)| largest entries in x.

Condition to succeed in first iteration is δ(x) < 1
2(1 +

1
µa
)

Condition to succeed in second iteration is

δ(xR(1)) <
1
2(1 +

1
µa
− 1),

whose RHS is more restrictive. However, δ(xR(1)) may be
smaller; depends on magnitude decay profile of x



Example: Recovery of α-decaying signal

For signal xi = αi−1, i = 1, . . . ., Na, we have δ(x) ≤ (1− α)−1

Removing t largest entries still satisfies δ(xR(t)) ≤ (1− α)−1

Decay condition becomes t < 2 + 1
µa
− 2(1− α)−1

For very fast coefficient decay, i.e., α→ 0, we can perform up
to tmax <

1
µa

OMP iterations

OMP is able to identify the largest tmax coefficients, even
for signals having up to Na non-zero coefficients

The condition tmax <
1
µa

is roughly 2× less restrictive than the
sparsity-based recovery condition ‖x‖0 < 1

2(1 +
1
µa
)



Extensions for signals with small block-density

We can also generalize our results to block-sparse signals

Signal model y =
∑B
b=1Abxb with B blocks

Definition (Block density)

For a non-zero signal x ∈ CNa , we define the block density as

β(x) =

∑B
b=1 ‖xb‖2

maxb=1,...,B ‖xb‖2
.

For an all-zero signal x = 0Na×1, we define β(x) = 0

Define the block coherence of A as µA = maxb 6=`
σmax(AHb A`)

σ2min(Ab)

Theorem (Nullspace condition)

If β(x) < 1 + 1
µA
, then

∑B
b=1Abxb 6= 0M×1



Extensions for signal with small block-density (cont’d)

Define the block coherence of B as µB = maxb 6=`
σmax(BHb B`)

σ2min(Bb)

Define the following mutual block coherences:

µAm = max
b,`

σmax(A
H
b B`)

σmin(Ab)
and µBm = max

b,`

σmax(A
H
b B`)

σmin(Bb)

Theorem (Uncertainty relation)

Let
∑B
b=1Abxb =

∑B′

b′=1Bb′zb′ . Then, the following holds

[1− µa(β(x)− 1)]+[1− µb(β(z)− 1)]+ ≤ β(x)β(z)µAmµBm

Generalizes our results to un-normalized matrices A and B

We can derive a block OMP recovery guarantee

We can also analyze the case of bounded measurement noise



Extensions to other density measures

There are other ways of measuring the signal density!

Definition (γ-density or “effective sparsity”)

For a non-zero signal x ∈ CNa , we define the γ-density as

γ(x) =
‖x‖21
‖x‖22

.

For an all-zero signal x = 0Na×1, we define γ(x) = 0

We can derive equivalent results by replacing δ by γ

However, the γ-density is more restrictive, i.e., we have

δ(x) ≤ γ(x) ≤ ‖x‖0



Conclusions

Sparsity is ubiquitous in the literature on signal recovery,
compressive sensing, and uncertainty relations

In practice, signals are not necessarily sparse

The decay profile of the signals of interest does matter

With a proper definition of signal density, we obtain nullspace
conditions, uncertainty relations, and recovery guarantees

The delta density δ(x) = ‖x‖1/‖x‖∞ enables us to capture
crucial magnitude information, beyond the number of nonzeros

Non-sparse signals with sufficiently fast decaying coefficients
cannot be in the nullspace of a matrix

OMP-based recovery allows up to 2× more non-zero entries if
the magnitudes decay quickly



Two open problems

Problem 1:
There is a density that is less-restrictive than the δ-density, i.e.,

σ(x) =
‖x‖22
‖x‖2∞

≤ δ(x)

Can we derive nullspace conditions, uncertainty relations, and
recovery guarantees with this σ-density?

Problem 2:
What can we say about the recovery performance of algorithms
that solve the following problem:

minimize δ(x) subject to y = Ax ?

And how can we solve such problems efficiently?

Visit csl.cornell.edu/∼studer for more information
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