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Some well-known results

Let A € CM*Na be a dictionary with coherence

mjajlo=1fori=1,..., N,

_ H
B g = MaX£;j |a,- aj|
Let x € CNe be an ny-sparse vector

m nyx = ||X||o = number of non-zero entries in x

Theorem (Nullspace condition)

Ifn, <1+ ir then Ax # Opx1

Corollary (Unigueness condition)

Assumey = Ax. If n, < (1 + i), then x is unique



Some well-known results (cont'd)

How can we recover x from y = Ax?
= Combinatorial problem: minimize ||x||op subject to y = Ax
= Convex problem: minimize ||x|; subject to y = Ax
= Orthogonal matching pursuit (OMP)

m And many more...

Theorem (Recovery guarantee)

If ny < %(1 F ﬁa), then x can be recovered fromy = Ax using
Lo-norm and ¢1-norm minimization, as well as OMP



Some well-known results (cont'd)

Let B € CM*No be another dictionary with coherence

Let u, be the mutual coherence between A and B

" U, = max;|alb)|

Let z € CNe be another n,-sparse vector

Theorem (Uncertainty relation)

Let x and z be two vectors satisfying Ax = Bz. Then, the following
holds [ — pa(me = DI = po(nz = DIT < nanzuiy

Corollary (UR for pairs of orthonormal bases)

Let A and B be orthonormal bases. If Ax = Bz, then ;712- < nyny



Do we really need sparsity?

m Signal sparsity is ubiquitous and central in the signal-recovery
and compressive-sensing literature

m Is sparsity is the key for such nullspace conditions, signal
recovery problems, and uncertainty relations?

Definition (6-density)
For a non-zero signal x € CNa, we define the 5-density as

o(x) = ALY

RES
For an all-zero signal x = Op,x1, we define 6(x) =0



Key properties of the §-density

m For arbitrary signals x € CNe, the §-density satisfies
0 <6(x) < lIxllo < Na

m Equality §(x) = ||x||o holds if and only if the non-zero
entries of x have constant modulus

m Signals with decaying magnitude profile have 0(x) < [|x]||o
m Example: x;=a'"!, i=1,..., N, with0 < a <1-1/N,
5(x) < (L—a)™t < xllo = N,

The §-density 0(x) behaves similarly to the sparsity ||x]|o,
but captures properties of the signal’s magnitude



Nullspace condition for signals with low density

Theorem (£4,-norm restricted isometry)

Let Ac CM*Na pe a dictionary with coherence i, and x € CNe a
nonzero signal. Then, the following inequalities hold:
|A7Ax|
1—pa(d(x) —1) < Ww < 1+pa(6(x) —1)
o0

Corollary (6-density-based nullspace condition)

Ifo(x) <1+ Mia then Ax # Q1.

m Example: For the a-decaying signal x; =a/~1, i=1,...., N,
with O<a<1—(1+i)_1, we have ||x]lo = N, but Ax # 0px1

m For signals with constant-modulus non-zero entries, we recover
the well-known nullspace condition 6(x) = [|x[lo < 1+ -



0-density-based uncertainty relation

Theorem (Uncertainty relation)

Let x and z be two vectors satisfying Ax = Bz. Then, the following
holds 11 — 1, (8(x) = DIF[1 = wp(6(2) — DI < 5(x)0(2)s,

Corollary (UR for pairs of orthonormal bases)

Let A and B be orthonormal bases. If Ax = Bz, then - < 6(x)é(2)

m Example: For the Fourier-identity pair we have N < §(x)d(z)

m Implies that signals x and z cannot have low density in Fourier
and identity domain the same time

m For signals with constant-modulus non-zero entries, we recover
the Donoho-Stark uncertainty relation N < ||x||o||zlo



How about signal recovery?

Can we recover x from y = Ax if signal x has low density?

We consider orthogonal matching pursuit (OMP):

m Initialize residual r® =y and empty support set S = &, and
repeat the following two steps for t =1, ..., tmax iterations:
Select a column of the dictionary A according to

k® = arg max |alr(t=Y)]
ieR(E-1)

The set R = {1, ..., N, NS¢ contains all remaining
indices that are not (yet) in the support set S(t=1)
Add k® to set S = S(t=1 U k®) and compute new residual
) = (Iy — Ao Ajg(t))y



0-density-based recovery guarantee

Theorem (Recovery guarantee)

Let the maximum number of iterations be tmax < 1+ i Assume

that in every iteration t = 1, ..., tmax the entries in x satisfy
§(Xpe-n) < 3(1+ £ — (t—1)).

Then, OMP will always select an atom associated to the largest
coefficient from X In iteration t. Furthermore, the set S ()
contains the indices associated to the t = |S(9)| largest entries in x.

= Condition to succeed in first iteration is 6(x) < 3(1 + i)
m Condition to succeed in second iteration is
d(xpm) < %(1 + i - 1),

whose RHS is more restrictive. However, d(xg(1)) may be
smaller; depends on magnitude decay profile of x



Example: Recovery of a-decaying signal

For signal x; =a'™1, i=1,...., N,, we have §(x) < (1 —a)~!

Removing t largest entries still satisfies d(xz1) < (1 —a)™?

Decay condition becomes t < 2 + i —2(1—a)t

For very fast coefficient decay, i.e., &« — 0, we can perform up
10 tmax < i OMP iterations

OMP is able to identify the largest t,,,x coefficients, even
for signals having up to N, non-zero coefficients

The condition tmayx < I-%a is roughly 2x less restrictive than the
sparsity-based recovery condition [|x||o < (1 + ‘%a)



Extensions for signals with small block-density

m We can also generalize our results to block-sparse signals

m Signal model y = Zle Apxp, with B blocks

Definition (Block density)

For a non-zero signal x € CNa, we define the block density as

B
B(X) _ ZbZI ||Xb||2 .
maxp=1,...8 |[Xpl|2

For an all-zero signal x = O, x1, we define B(x) =0

Umax(AZ’AZ)
U%in(Ab)

Theorem (Nullspace condition)

IfB(x) < 1+ 2, then ¢y Apxp # O

m Define the block coherence of A as ,uA = Maxpxg



Extensions for signal with small block-density (cont'd)

. B __ U'max(BHBZ)
= Define the block coherence of B as u= = maxp, T(éb)
m Define the following mutual block coherences:

H H
A Umax(Ab BZ) B Umax(Ab BZ)
wy =max ——=>—= and U, =max ————>—=
m b4 Umin(Ab) m b4 Umin(Bb)

Theorem (Uncertainty relation)

Let Zle Apxp = Zf,/zl Byzy. Then, the following holds
[1— pa(B(x) — DIT[1 — us(B(z) — V)] < BX)B@)umut
m Generalizes our results to un-normalized matrices A and B

m We can derive a block OMP recovery guarantee

m We can also analyze the case of bounded measurement noise



Extensions to other density measures

There are other ways of measuring the signal density!

Definition (y-density or “effective sparsity”)

For a non-zero signal x € CNa, we define the ~y-density as

[1x[|2
Y(X) = =15
[1x[13

For an all-zero signal x = Op,x1, we define y(x) =0

m We can derive equivalent results by replacing § by -y

m However, the «y-density is more restrictive, i.e., we have

o(x) <v(x) <Ixllo



Conclusions

m Sparsity is ubiquitous in the literature on signal recovery,
compressive sensing, and uncertainty relations

m In practice, signals are not necessarily sparse
m The decay profile of the signals of interest does matter

m With a proper definition of signal density, we obtain nullspace
conditions, uncertainty relations, and recovery guarantees

m The delta density 6(x) = ||x||1/||x|l enables us to capture
crucial magnitude information, beyond the number of nonzeros

m Non-sparse signals with sufficiently fast decaying coefficients
cannot be in the nullspace of a matrix

m OMP-based recovery allows up to 2x more non-zero entries if
the magnitudes decay quickly



Two open problems

Problem 1:

m There is a density that is less- restr|ct|ve than the d-density, i.e.,

()_|:|||||2 <00

m Can we derive nullspace conditions, uncertainty relations, and
recovery guarantees with this o-density?

Problem 2:

m What can we say about the recovery performance of algorithms
that solve the following problem:
minimize 6(x) subject toy = Ax 7
m And how can we solve such problems efficiently?

Visit csl.cornell.edu/~studer for more information
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