Nullspace Condition, Uncertainty Relation, and Recovery Guarantee for Signals with Low Density

Christoph Studer

C. Studer, "Recovery of Signals with Low Density," arXiv preprint: arxiv.org/abs/1507.02821, July 2015

Some well-known results

Let $\mathbf{A} \in \mathbb{C}^{M \times N_a}$ be a **dictionary** with coherence μ_a :

■
$$\|\mathbf{a}_i\|_2 = 1$$
 for $i = 1, ..., N_a$

$$\mathbf{\mu}_a = \max_{i \neq j} |\mathbf{a}_i^H \mathbf{a}_j|$$

Let $\mathbf{x} \in \mathbb{C}^{N_a}$ be an $n_{\mathbf{x}}$ -sparse vector

■ $n_x = \|\mathbf{x}\|_0 =$ number of non-zero entries in **x**

Theorem (Nullspace condition)

If $n_x < 1 + \frac{1}{\mu_a}$, then $\mathbf{A}\mathbf{x} \neq \mathbf{0}_{M \times 1}$

Corollary (Uniqueness condition)

Assume $\mathbf{y} = \mathbf{A}\mathbf{x}$. If $n_x < \frac{1}{2}(1 + \frac{1}{\mu_a})$, then \mathbf{x} is unique

How can we recover **x** from $\mathbf{y} = \mathbf{A}\mathbf{x}$?

- \blacksquare Combinatorial problem: minimize $\|\boldsymbol{x}\|_0$ subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$
- \blacksquare Convex problem: minimize $\| \bm{x} \|_1$ subject to $\bm{y} = \bm{A} \bm{x}$
- Orthogonal matching pursuit (OMP)
- And many more...

Theorem (Recovery guarantee)

If $n_x < \frac{1}{2}(1 + \frac{1}{\mu_a})$, then **x** can be recovered from **y** = **Ax** using ℓ_0 -norm and ℓ_1 -norm minimization, as well as OMP

Some well-known results (cont'd)

Let $\mathbf{B} \in \mathbb{C}^{M \times N_b}$ be another **dictionary** with coherence μ_b :

Let μ_m be the mutual coherence between **A** and **B**

 $\mathbf{I} \boldsymbol{\mu}_m = \max_{i,j} |\mathbf{a}_i^H \mathbf{b}_j|$

Let $\mathbf{z} \in \mathbb{C}^{N_a}$ be another n_z -sparse vector

Theorem (Uncertainty relation)

Let **x** and **z** be two vectors satisfying $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{z}$. Then, the following holds $[1 - \mu_a(n_x - 1)]^+ [1 - \mu_b(n_z - 1)]^+ \le n_x n_z \mu_m^2$

Corollary (UR for pairs of orthonormal bases)

Let **A** and **B** be orthonormal bases. If $\mathbf{Ax} = \mathbf{Bz}$, then $\frac{1}{\mu_{xx}^2} \leq n_x n_z$

Do we really need sparsity?

- Signal sparsity is ubiquitous and central in the signal-recovery and compressive-sensing literature
- Is sparsity is the key for such nullspace conditions, signal recovery problems, and uncertainty relations?

Definition (δ -density)

For a non-zero signal $\mathbf{x} \in \mathbb{C}^{N_a}$, we define the δ -density as $\|\mathbf{x}\|_1$

$$\delta(\mathbf{x}) = \frac{\|\mathbf{x}\|_{\mathbf{x}}}{\|\mathbf{x}\|_{\infty}}.$$

For an all-zero signal $\mathbf{x} = \mathbf{0}_{N_a \times 1}$, we define $\delta(\mathbf{x}) = 0$

Key properties of the δ -density

For arbitrary signals $\mathbf{x} \in \mathbb{C}^{N_a}$, the δ -density satisfies $0 < \delta(\mathbf{x}) < \|\mathbf{x}\|_0 < N_a$

- Equality δ(x) = ||x||₀ holds if and only if the non-zero entries of x have constant modulus
- Signals with decaying magnitude profile have δ(x) < ||x||₀
 Example: x_i = αⁱ⁻¹, i = 1,..., N_a with 0 < α < 1 1/N_a δ(x) ≤ (1 - α)⁻¹ < ||x||₀ = N_a

The δ -density $\delta(\mathbf{x})$ behaves similarly to the sparsity $\|\mathbf{x}\|_0$, but captures properties of the signal's magnitude

Theorem (ℓ_{∞} -norm restricted isometry)

Let $\mathbf{A} \in \mathbb{C}^{M \times N_a}$ be a dictionary with coherence μ_a and $\mathbf{x} \in \mathbb{C}^{N_a}$ a nonzero signal. Then, the following inequalities hold:

$$1 - \mu_a(\delta(\mathbf{x}) - 1) \le \frac{\left\|\mathbf{A}^H \mathbf{A} \mathbf{x}\right\|_{\infty}}{\left\|\mathbf{x}\right\|_{\infty}} \le 1 + \mu_a(\delta(\mathbf{x}) - 1)$$

Corollary (δ -density-based nullspace condition)

If
$$\delta(\mathbf{x}) < 1 + \frac{1}{\mu_a}$$
, then $\mathbf{A}\mathbf{x} \neq \mathbf{0}_{M \times 1}$.

- Example: For the α -decaying signal $x_i = \alpha^{i-1}$, $i = 1, ..., N_a$, with $0 < \alpha < 1 - (1 + \frac{1}{\mu_a})^{-1}$, we have $\|\mathbf{x}\|_0 = N_a$ but $\mathbf{A}\mathbf{x} \neq \mathbf{0}_{M \times 1}$
- For signals with constant-modulus non-zero entries, we recover the well-known nullspace condition $\delta(\mathbf{x}) = \|\mathbf{x}\|_0 < 1 + \frac{1}{\mu_2}$

Theorem (Uncertainty relation)

Let **x** and **z** be two vectors satisfying $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{z}$. Then, the following holds $[1 - \mu_a(\delta(\mathbf{x}) - 1)]^+ [1 - \mu_b(\delta(\mathbf{z}) - 1)]^+ \le \delta(\mathbf{x})\delta(\mathbf{z})\mu_m^2$

Corollary (UR for pairs of orthonormal bases)

Let **A** and **B** be orthonormal bases. If $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{z}$, then $\frac{1}{\mu_m^2} \leq \delta(\mathbf{x})\delta(\mathbf{z})$

- **Example:** For the Fourier-identity pair we have $N \leq \delta(\mathbf{x})\delta(\mathbf{z})$
- Implies that signals x and z cannot have low density in Fourier and identity domain the same time
- For signals with constant-modulus non-zero entries, we recover the Donoho–Stark uncertainty relation $N \le ||\mathbf{x}||_0 ||\mathbf{z}||_0$

Can we recover **x** from $\mathbf{y} = \mathbf{A}\mathbf{x}$ if signal **x** has low density?

We consider orthogonal matching pursuit (OMP):

■ Initialize residual r⁽⁰⁾ = y and empty support set S⁽⁰⁾ = Ø, and repeat the following two steps for t = 1,..., t_{max} iterations:

1 Select a column of the dictionary **A** according to

$$\hat{k}^{(t)} = \underset{i \in \mathcal{R}^{(t-1)}}{\arg \max} |\mathbf{a}_i^H \mathbf{r}^{(t-1)}|$$

The set $\mathcal{R}^{(t-1)} = \{1, \dots, N_a\} \setminus \mathcal{S}^{(t-1)}$ contains all remaining indices that are not (yet) in the support set $\mathcal{S}^{(t-1)}$

2 Add
$$\hat{k}^{(t)}$$
 to set $S^{(t)} = S^{(t-1)} \cup \hat{k}^{(t)}$ and compute new residual $\mathbf{r}^{(t)} = (\mathbf{I}_M - \mathbf{A}_{S^{(t)}} \mathbf{A}_{S^{(t)}}^{\dagger})\mathbf{y}$

Theorem (Recovery guarantee)

Let the maximum number of iterations be $t_{max} < 1 + \frac{1}{\mu_a}$. Assume that in every iteration $t = 1, ..., t_{max}$ the entries in **x** satisfy

$$\delta(\mathbf{x}_{\mathcal{R}^{(t-1)}}) < \frac{1}{2} \left(1 + \frac{1}{\mu_a} - (t-1)\right).$$

Then, OMP will always select an atom associated to the largest coefficient from $\mathbf{x}_{\mathcal{R}^{(t)}}$ in iteration t. Furthermore, the set $\mathcal{S}^{(t)}$ contains the indices associated to the $t = |\mathcal{S}^{(t)}|$ largest entries in \mathbf{x} .

- Condition to succeed in first iteration is $\delta(\mathbf{x}) < \frac{1}{2}(1 + \frac{1}{\mu_a})$
- Condition to succeed in second iteration is

$$\delta(\mathbf{x}_{\mathcal{R}^{(1)}}) < \frac{1}{2}(1 + \frac{1}{\mu_a} - 1),$$

whose RHS is more restrictive. However, $\delta(\mathbf{x}_{\mathcal{R}^{(1)}})$ may be smaller; depends on magnitude decay profile of \mathbf{x}

Example: Recovery of α -decaying signal

- For signal $x_i = \alpha^{i-1}$, $i = 1, ..., N_a$, we have $\delta(\mathbf{x}) \leq (1 \alpha)^{-1}$
- Removing t largest entries still satisfies $\delta(\mathbf{x}_{\mathcal{R}^{(t)}}) \leq (1-\alpha)^{-1}$
- Decay condition becomes $t < 2 + \frac{1}{\mu_a} 2(1 \alpha)^{-1}$
- For very fast coefficient decay, i.e., $\alpha \rightarrow 0$, we can perform up to $t_{\max} < \frac{1}{\mu_a}$ OMP iterations
- OMP is able to identify the largest t_{max} coefficients, even for signals having up to N_a non-zero coefficients

The condition $t_{\max} < \frac{1}{\mu_a}$ is roughly 2× less restrictive than the sparsity-based recovery condition $\|\mathbf{x}\|_0 < \frac{1}{2}(1 + \frac{1}{\mu_a})$

Extensions for signals with small block-density

- We can also generalize our results to block-sparse signals
- Signal model $\mathbf{y} = \sum_{b=1}^{B} \mathbf{A}_b \mathbf{x}_b$ with B blocks

Definition (Block density)

For a non-zero signal $\mathbf{x} \in \mathbb{C}^{N_a}$, we define the block density as $\beta(\mathbf{x}) = \frac{\sum_{b=1}^{B} \|\mathbf{x}_b\|_2}{\max_{b=1,...,B} \|\mathbf{x}_b\|_2}.$ For an all-zero signal $\mathbf{x} = \mathbf{0}_{N_a \times 1}$, we define $\beta(\mathbf{x}) = 0$

Define the block coherence of **A** as $\mu^A = \max_{b \neq \ell} \frac{\sigma_{\max}(A_b^A A_\ell)}{\sigma_{\min}^2(A_b)}$

Theorem (Nullspace condition)

If $\beta(\mathbf{x}) < 1 + \frac{1}{\mu^A}$, then $\sum_{b=1}^{B} \mathbf{A}_b \mathbf{x}_b \neq \mathbf{0}_{M \times 1}$

Extensions for signal with small block-density (cont'd)

- Define the block coherence of **B** as $\mu^B = \max_{b \neq \ell} \frac{\sigma_{\max}(\mathsf{B}_b^H \mathsf{B}_\ell)}{\sigma_{\min}^2(\mathsf{B}_b)}$
- Define the following mutual block coherences:

$$\mu_m^A = \max_{b,\ell} \frac{\sigma_{\max}(\mathbf{A}_b^H \mathbf{B}_\ell)}{\sigma_{\min}(\mathbf{A}_b)} \quad \text{and} \quad \mu_m^B = \max_{b,\ell} \frac{\sigma_{\max}(\mathbf{A}_b^H \mathbf{B}_\ell)}{\sigma_{\min}(\mathbf{B}_b)}$$

Theorem (Uncertainty relation)

Let
$$\sum_{b=1}^{B} \mathbf{A}_{b} \mathbf{x}_{b} = \sum_{b'=1}^{B'} \mathbf{B}_{b'} \mathbf{z}_{b'}$$
. Then, the following holds

$$[1 - \mu_a(\beta(\mathbf{x}) - 1)]^+ [1 - \mu_b(\beta(\mathbf{z}) - 1)]^+ \le \beta(\mathbf{x})\beta(\mathbf{z})\mu_m^A\mu_m^B$$

- Generalizes our results to un-normalized matrices A and B
- We can derive a block OMP recovery guarantee
- We can also analyze the case of bounded measurement noise

There are other ways of measuring the signal density!

Definition (γ -density or "effective sparsity")

For a non-zero signal $\mathbf{x} \in \mathbb{C}^{N_a}$, we define the γ -density as

$$\gamma(\mathbf{x}) = rac{\|\mathbf{x}\|_1^2}{\|\mathbf{x}\|_2^2}.$$

For an all-zero signal $\mathbf{x} = \mathbf{0}_{N_a imes 1}$, we define $\gamma(\mathbf{x}) = 0$

\blacksquare We can derive equivalent results by replacing δ by γ

However, the γ -density is more restrictive, i.e., we have $\delta({\bf x}) \leq \gamma({\bf x}) \leq \|{\bf x}\|_0$

Conclusions

- Sparsity is ubiquitous in the literature on signal recovery, compressive sensing, and uncertainty relations
- In practice, signals are not necessarily sparse
- The decay profile of the signals of interest does matter
- With a proper definition of signal density, we obtain nullspace conditions, uncertainty relations, and recovery guarantees

The delta density $\delta(\mathbf{x}) = \|\mathbf{x}\|_1 / \|\mathbf{x}\|_\infty$ enables us to capture crucial magnitude information, beyond the number of nonzeros

- Non-sparse signals with sufficiently fast decaying coefficients cannot be in the nullspace of a matrix
- OMP-based recovery allows up to 2× more non-zero entries if the magnitudes decay quickly

Two open problems

Problem 1:

There is a density that is less-restrictive than the δ -density, i.e.,

$$\sigma(\mathbf{x}) = \frac{\|\mathbf{x}\|_2^2}{\|\mathbf{x}\|_\infty^2} \le \delta(\mathbf{x})$$

Can we derive nullspace conditions, uncertainty relations, and recovery guarantees with this σ -density?

Problem 2:

What can we say about the recovery performance of algorithms that solve the following problem:

minimize $\delta(\mathbf{x})$ subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$?

And how can we solve such problems efficiently?

Visit csl.cornell.edu/~studer for more information

Thanks to R. Baraniuk, H. Bőlcskei, and T. Goldstein