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Compressive optical systems1
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If we fix our total data acquisition time to T , then we have an
explicit tradeoff between the number of projections, n, and the

number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

1
Duarte, Davenport, Laska, Sun, Takhar, Sarvotham, Baron, Wakin & Kelly, Baraniuk (2006)
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Sensing model

We observe

y ∼ Poisson(TAf∗)

yi ∼ Poisson

T p∑
j=1

Ai,jf
∗
j

 , i ∈ {1, . . . , n},

where

I y ∈ Zn+
I T ∈ R+ is the total data acquisition time

I A ∈ [0, 1]n×p is a known sensing matrix

I f∗ ∈ F , where

F =
{
f ∈ Rp+ : ‖f‖1 = 1, ‖DT f‖0 ≤ s+ 1

}
for an orthonormal basis D
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Our goal is to reconstruct f ∗ from y. How does
performance depend on n, p, T , D, and A?

What fundamentally limits our sensing
capabilities?

1. Previous work established upper bounds; were these bounds
tight?

2. Is it better to have a lot of high-noise measurements (big
n), or a few low-noise measurements?

3. What are the key ramifications of Poisson compressed
sensing? How is it different from typical settings?
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Spoilers

CS conventional wisdom (for Gaussian noise settings) tells us rates
are

I Independent of sparsifying basis

I Not much worse than if we collected non-compressive
measurements

In Poisson noise settings, because of the interaction between
physical constraints and sparsity assumptions

I Rates are highly dependent on sparsifying basis

I Depending on the sparsity assumptions, we can do far better
using non-compressive measurements
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This is not your ordinary CS problem

Sensing matrix A has several physical constraints

Think of Ai,j as likelihood of photon from location j in f∗ hitting
detector at location i:

Ai,j ∈ [0, 1]

1
>A � 1 (columns sum to at most one)

‖Af‖1 ≤ ‖f‖1 ∀f

Typical CS sensing matrices do not satisfy these constraints!
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Sensing matrix
Start with a sensing matrix Ã ∈ 1√

n
{−1, 1}n×p such that the

product ÃD satisfies the RIP:

(1− δs)‖θ‖22 ≤ ‖ÃDθ‖22 ≤ (1 + δs)‖θ‖22 ∀ 2s− sparse θ

Let

A , (Ã+
3√
n
1n×p)/4

√
n.

We observe

y ∼ Poisson(TAf∗)

∼ Poisson
(TÃf∗
4
√
n

+
3T

4n
1n×1︸ ︷︷ ︸

determines
variance

)
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n
{−1, 1}n×p such that the
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Rates for high-intensity settings (large T ) 2

Theorem:

inf
f̂

sup
f∗∈F

E[‖f̂ − f∗‖22] �
s log p

T

where

F =
{
f ∈ Rp+ : ‖f‖1 = 1, ‖DT f‖0 ≤ s+ 1

}

I The data acquisition time T , which reflects the signal-to-noise
ratio, controls the error decay

I Once the number of measurements, n, is sufficiently large to
ensure a RIP-like sensing matrix, it does not impact errors

2
Jiang, Raskutti & Willett (2014)
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MSE vs. measurements
If we fix our total data acquisition time to T , then we have an
explicit tradeoff between the number of projections, n, and the
number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

Is it better to have a lot of high-noise measurements (big n),
or a few low-noise measurements?
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MSE vs. T : An elbow in the rates
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So far we have only considered high-intensity (large T )
settings. What happens in low intensities?
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Low-intensity settings (small T ) 3

Let f∗ ≡ 1p×1/
√
p be the average of f∗. Then

E[‖f̂ − f∗‖22] � ‖f∗ − f∗‖22

Rates depend on how much f∗ deviates from its mean (“residual
energy”), subject to the constraint that ‖f∗‖1 = 1 for f∗ ∈ F .

For different sparsifying bases D, this residual energy falls in
different ranges, giving different rates.

3
Jiang, Raskutti & Willett (2014)
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MSE vs. T : An elbow in the rates
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Upper bounds for low T

I We need an upper bound on the “residual energy”:

‖f∗ − f∗‖22 ≤ smax
j,k
|Dj,k|2‖f∗‖21 = s‖D‖2max

I The quantity s‖D‖max characterizes how closely we can
approximate a δ-function with s non-zero basis coefficients.
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Lower bounds for low T

Let the first column of basis D correspond to a constant signal;
denote the remaining p− 1 columns D.

k-sparse localization constant4:

λk = λk(D) , max
β∈{−1,0,1}p−1

‖β‖0=k

‖Dβ‖∞

This quantity is the highest amplitude of any zero-mean signal
which is k-sparse in D and has uniform amplitude non-zero
coefficients.

This is where the geometry of our constraints (i.e.,
nonnegativity) and the geometry of sparsity interact. Different

bases D can have very different λk(D).

4
inspired by similar constant proposed by P. Reynaud-Bouret, 2003
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Rates for low-intensity settings (small T ) 5

Theorem:

Lower bound: Dominated by spread-out, low-amplitude signals in
F (with low residual energy), which is reflected by
the basis-dependent λk(D) for k = 1, . . . , s:

min
f̂

max
f∗∈F

E[‖f̂ − f∗‖22] ≥ C max
1≤k≤s

k

p2λ2k(D)

Upper bound: Dominated by the highest amplitude signals in F
(with high residual energy), which is reflected in the
basis-dependent ‖D‖2max:

min
f̂

max
f∗∈F

E[‖f̂ − f∗‖22] ≤ C ′min(s‖D‖2max, 1)

5
Jiang, Raskutti & Willett (2014)
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Low-intensity rates in two common bases

Lower bound Upper bound
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Fourier sparsity
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...and their rates

Red signal (residual energy 0.0191) controls lower bounds,
blue signal controls upper bounds (residual energy 0.1151)

As predicted by theory, both signals have same scaling with p
but different scaling with s
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Wavelet sparsity
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Red signal (residual energy 0.0188) controls lower bounds,
blue signal controls upper bounds (residual energy 1.0000)

As predicted by theory, signal with high amplitude yields much
slower rates than more diffuse signal
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CS can be suboptimal at low intensities

Consider the special case where our signal is sparse in a DWT
basis, and s′ of the s nonzero coefficients are at coarse scales.

We will compare the CS paradigm from earlier with a simple
downsampling system ADS:

Measuring ADSf∗ is equivalent to measuring coarse-scale Haar
wavelet coefficients of f∗.
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CS can be suboptimal at low intensities

Consider the special case where our signal is sparse in a Haar
basis, and s′ of the s nonzero coefficients are at coarse scales.

Compressive sampling
Direct measurement of

coarse-scale info

min
(
s log p
T , sp2

)
, s′n

Tp2 +
s−s′
λ2sp

2

independent of s′ dependent on s′

These curves cross; for small T and moderate s′,
downsampling can perform significantly better than

compressive sampling.
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Compressive vs. direct measurements
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Ramifications

CS conventional wisdom (for Gaussian noise settings) tells us rates
are

I Independent of sparsifying basis

I Not much worse than if we collected non-compressive
measurements

In Poisson noise settings, because of the interaction between
physical constraints and sparsity assumptions

I Rates are highly dependent on sparsifying basis

I Depending on the sparsity assumptions, we can do far better
using non-compressive measurements
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Addressing photon limitations in compressed sensing
poses exciting mathematical challenges

http://willett.ece.wisc.edu/
arXiv:1403.6532

23 / 23

http://willett.ece.wisc.edu/

