Modeling and Recovering Non-Transitive Pairwise Comparison Matrices

Dehui Yang and Michael B. Wakin

Electrical Engineering and Computer Science
Colorado School of Mines
Rank Aggregation

- Goal is to produce a single ranked list of n items (or candidates, teams, etc.) that best reflects the collective preferences of multiple voters.

<table>
<thead>
<tr>
<th></th>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Worst</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

- Classical problem well studied in social choice theory, computer science, etc.
 - Arrow’s impossibility theorem
Rank Aggregation via Pairwise Comparisons

Two steps [Gleich and Lim, 2011]:

1. Distill voter preferences into **pairwise comparisons**
 - most voters prefer item A over item B
 - most voters prefer item D over item C
 - etc.

2. Form ranked list based on pairwise comparisons
Pairwise Comparison Matrices

• Let \(Y \) denote an \(n \times n \) matrix where \(Y(i,j) \) represents the strength of preference of item \(i \) over item \(j \).

• Typically, \(Y(i,j) = -Y(j,i) \), making \(Y \) skew-symmetric:

\[
Y = -Y^T.
\]

• How to create a pairwise comparison matrix?
 – implicitly: aggregating voter rankings, ratings databases, etc.
 – explicitly: direct surveys, polling, competitions, etc.

• Data may be noisy, incomplete.
Special Case

- Suppose each item has an intrinsic value $s(i)$ and the comparison $Y(i,j)$ simply equals

$$Y(i, j) = s(i) - s(j).$$

Then the matrix Y will be rank two. In particular,

$$Y = se^T - es^T,$$

where $s = [s(1) \ s(2) \ \ldots \ s(n)]^T$ and $e = [1 \ 1 \ \ldots \ 1]^T$.

- This makes Y a natural candidate for recovery via Nuclear Norm Minimization [Gleich and Lim, 2011; see also Massimino and Davenport, 2013].
Transitivity

• Such pairwise comparisons are \textbf{transitive}:

\[Y(i, j) = Y(i, k) + Y(k, j) \text{ for all } i, j, k. \]

• Indeed, transitivity holds only in this special case where

\[Y(i, j) = s(i) - s(j) \]

for some score vector \(s \).
Realistic Pairwise Comparisons

• Condorcet paradox: Collective preferences may be cyclic.

<table>
<thead>
<tr>
<th></th>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Worst</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

• Moreover, an individual’s own preferences may not even be transitive. Individual preferences are often determined using multiple factors.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Appearance</th>
<th>Practicality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Worst</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Non-transitive Pairwise Comparison Matrices

- Our interest: Modeling and recovering Y itself, rather than flattening to a one-dimensional ranking.

- Questions:
 - What structure can we anticipate in Y?
 - Can non-transitive matrices be low rank?

- Contributions:
 - New model for non-transitive pairwise comparisons.
 - Low-rank analysis of resulting pairwise comparison matrices.
 - Discussing the recovery of these matrices.
New Model for Pairwise Comparisons

• Recall: Transitive model

\[Y(i, j) = s(i) - s(j). \]

• New: Suppose

\[Y(i, j) = s(i)a(j) - s(j)a(i), \]

where \(s(i) \) represents a latent “value” for item \(i \) as before, but \(a(j) \) is a “weight” determined by item \(j \) that can inhibit this value.
Interactions and Competition

• In the model

\[Y(i, j) = s(i)a(j) - s(j)a(i), \]

item \(j \) affects how item \(i \) is evaluated, and vice versa.

• Possible examples:
 – Competitions and sporting events
 • \(s(i) \) = offensive strength of team \(i \) (higher is better)
 • \(a(j) \) = defensive strength of team \(j \) (lower is better)
 • \(Y(i, j) \) = anticipated margin of victory for team \(i \) over team \(j \)
 • similar models have been proposed/discovered in linear regression of sporting outcomes [Pfitzner et al., 2009; Guo et al., 2012]
Example

• Vectors and resulting matrix:

\[
\begin{bmatrix}
-0.5749 \\
0.7154 \\
1.8577 \\
0.0780 \\
\end{bmatrix}
\quad
\begin{bmatrix}
0.1 \\
0.5 \\
0.5 \\
1 \\
\end{bmatrix}
\quad
\begin{bmatrix}
0 & -0.359 & -0.473 & -0.583 \\
0.359 & 0 & -0.571 & 0.676 \\
0.473 & 0.571 & 0 & 1.819 \\
0.583 & -0.676 & -1.819 & 0 \\
\end{bmatrix}
\]

• Non-transitive sign changes:

\[
Y(1, 2) + Y(2, 4) = 0.317 > -0.583 = Y(1, 4)
\]

\[
Y(1, 3) + Y(3, 4) = 1.346 > -0.583 = Y(1, 4)
\]
Non-transitivity

• The degree of non-transitivity in a pairwise comparison matrix can be measured [Jiang et al., 2010].

• For a skew-symmetric Y, define

$$R(Y) = \min_{\tilde{s}} \|Y - (\tilde{s}e^T - e\tilde{s}^T)\|_F$$

to be the distance between Y and the closest transitive matrix. The closest transitive matrix is generated using the score vector

$$\tilde{s} = \frac{1}{n} Ye.$$
Non-transitivity

• Under our model, where

\[Y(i, j) = s(i)a(j) - s(j)a(i), \]

we can show that

\[R(Y) \leq 2 \| s \|_2 \| a \|_2 \sin \angle(\{a\}, \{s, e\}) \]

• So the degree of non-transitivity is low if \(a \) is close to \(\text{span}\{s, e\} \).
Extension to Multiple Factors

• Suppose there are \(r \) latent factors on which pairwise comparisons are based:

\[
Y(i, j) = \sum_{k=1}^{r} s_k(i) a_k(j) - s_k(j) a_k(i).
\]

• We can write

\[
Y = \sum_{k=1}^{r} s_k a_k^T - a_k s_k^T,
\]

showing that \(Y \) is skew-symmetric and has rank at most \(2r \).
Non-transitivity

• Under our multi-factor model, where

\[Y = \sum_{k=1}^{r} s_k a_k^T - a_k s_k^T, \]

we can show that

\[R(Y) \leq 2 \sum_{k=1}^{r} \| s_k \|_2 \| a_k \|_2 \sin \angle(\{a_k\}, \{s_k, e\}) \]

• So the degree of non-transitivity is low if all \(a_k \) are close to \(\text{span}\{s_k, e\} \).
Low-rank Structure

• In fact, any skew-symmetric matrix Y with rank at most $2r$ can be decomposed as

$$Y = \sum_{k=1}^{r} s_k a_k^T - a_k s_k^T,$$

for some s_k and a_k [Brualdi et al., 2010].

• Therefore, any low-rank, skew-symmetric pairwise comparison matrix must fit our model, although the factors are not uniquely recoverable from the matrix itself.
Singular Value Decomposition

- The SVD of a skew-symmetric matrix Y with rank at most $2r$ is given by

\[
Y = X \begin{bmatrix}
0 & 1 & 0 & \ldots \\
1 & 0 & 1 & \ldots \\
0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\end{bmatrix} \begin{bmatrix}
\lambda_1 & & & \\
& \lambda_1 & & \\
& & \lambda_r & \\
& & & \lambda_r \\
\end{bmatrix} \begin{bmatrix}
-1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\end{bmatrix} X^T
\]

where X is a matrix with orthonormal columns [Gleich and Lim, 2011].
Analysis

• Key to analysis:

\[
\text{colspan}(Y) = \text{rowspan}(Y) = \text{colspan}(X) = \text{span}\{s_1, s_2, \ldots, s_r, a_1, a_2, \ldots, a_r\}
\]

• Coherence of \(Y \) can be determined from any orthobasis for \(\text{span}\{s_1, s_2, \ldots, s_r, a_1, a_2, \ldots, a_r\} \).
Recovery Algorithms

1. SVP [Jain et al., 2010]
 - Advantages: Output matrix guaranteed to be skew-symmetric [Gleich and Lim, 2011].
 - Disadvantages: Speed, lack of theoretical guarantees.

2. Alternating minimization [Jain et al., 2013]

 \[
 \min_{U, V \in \mathbb{R}^{n \times 2r}} \| P_\Omega(Y - UV^T) \|_F^2
 \]

 - Advantages: Speed, theoretical guarantees.
 - Disadvantages: Not guaranteed to preserve skew-symmetry.
Example Recovery Result

- Suppose $s_1, s_2, \ldots, s_r, a_1, a_2, \ldots, a_r$ are orthonormal with coherence μ, and that

$$Y = \sum_{k=1}^{r} \lambda_k (s_k a_k^T - a_k s_k^T).$$

Then with

$$m = O \left(\mu^2 \left(\frac{\lambda_1}{\lambda_r} \right)^6 r^7 n \log n \log \frac{r\|Y\|_F}{\epsilon} \right)$$

random samples, with high probability Altmin returns an estimate \hat{Y} after $\log(1/\epsilon)$ iterations that satisfies

$$\|Y - \hat{Y}\|_F \leq \epsilon.$$
Recovery Algorithms [ctd.]

3. Skew-symmetric alternating minimizing

\[
\min_{P, Q \in \mathbb{R}^{n \times r}} \| P \Omega (Y - (PQ^T - QP^T)) \|_F^2
\]

- Implementation: Fix \(\hat{P} \) and solve the least-squares problem

\[
\min_{Q \in \mathbb{R}^{n \times r}} \| \text{vec}(P \Omega Y) - M_{\hat{P}} \text{vec}(Q) \|_2^2
\]

Then fix \(\hat{Q} \) and solve for \(P \).

- Advantages: Speed, preserves skew-symmetry.
- Disadvantages: Lack of theoretical guarantees.
Performance

- \(n = 100; \quad r = 1 \) (rank \(= 2\))
- \(s_1, a_1 \) random with entries \(U[0,1] \)
- coherence: low
- non-transitivity:
 \[
 \frac{R(Y)}{\|Y\|_F} \approx 0.37
 \]
Performance

- \(n = 100; \ r = 2 \) (rank = 4)
- \(s_1, s_2, a_1, a_2 \) random with entries \(U[0,1] \)
- coherence: low
- non-transitivity:
 \[
 \frac{R(Y)}{\|Y\|_F} \approx 0.37
 \]
Performance

- \(n = 64; \ r = 2 \) (rank = 4)
- low coherence: \(s_k, a_k \) random with entries \(U[0,1] \)
- high coherence: \(s_1 \) from identity matrix; \(s_2, a_k \sim iid \ U[0,1] \)
NFL Game Outcomes (1978-2013)

$n \approx 30$

teams

$m \approx 200$

unique matchups

low-rank prediction of game outcomes
NFL Pregame Lines (1978-2013)

$n \approx 30$
teams

$m \approx 200$
unique
matchups

low-rank prediction of pregame lines
Conclusions

• Low-rank models can support non-transitivity

• Matrix structure determined by feature vectors
 – could also give insight into leverage score sampling

• Skew-symmetric Altmin preserves structure, performs well

• Ongoing work
 – algorithm analysis
 – evaluating model for real data sets
IEEE Journal of Selected Topics in Signal Processing (J-STSP)

Special Issue on
Structured Matrices in Signal and Data Processing

- Low-rank matrix recovery
- Blind deconvolution and phase retrieval
- Matrix-based recommendation systems and collaborative filtering
- Non-negative matrix factorization
- Blind source separation
- Computer vision
- Matrix structures in radar and sensor array signal processing
- Subspace identification and tracking
- Dictionary learning and sparse coding

Manuscript submission due: July 15, 2015 July 30, 2015

mines.edu/~mwakin
Proof by Induction

- Suppose that Y is transitive and for some $s(1), s(2), s(3)$,

$$Y = \begin{bmatrix}
0 & s(1) - s(2) & s(1) - s(3) & Y(1, 4) \\
s(2) - s(1) & 0 & s(2) - s(3) & Y(2, 4) \\
s(3) - s(1) & s(3) - s(2) & 0 & Y(3, 4) \\
-Y(1, 4) & -Y(2, 4) & -Y(3, 4) & 0
\end{bmatrix}$$

- Define $s(4) := s(1) - Y(1,4)$. Then for any $i = 1, 2, 3$,

\[
Y(i, 4) = Y(i, 1) + Y(1, 4) \quad \text{(by transitivity)}
\]

\[
= (s(i) - s(1)) + Y(1, 4)
\]

\[
= s(i) - (s(1) - Y(1, 4))
\]

\[
= s(i) - s(4).
\]