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Rank Aggregation

e Goalis to produce a single ranked list of n items (or
candidates, teams, etc.) that best reflects the collective
preferences of multiple voters.

T et | voter2 | voters
A D C

Best
B B D
C A B
Worst D C A

e Classical problem well studied in social choice theory,
computer science, etc.

— Arrow’s impossibility theorem



Rank Aggregation via Pairwise Comparisons

Two steps [Gleich and Lim, 2011]:

1. Distill voter preferences into pairwise comparisons
e most voters prefer item A over item B
e most voters prefer item D over item C
e etc.

2. Form ranked list based on pairwise comparisons



Pairwise Comparison Matrices

* Let Ydenote an n x n matrix where Y(%,7) represents the
strength of preference of item 7 over item 3.

o Typically, Y(¢,7) =-Y{(7,7), making Y skew-symmetric:
Yy =-Y71.

e How to create a pairwise comparison matrix?
— implicitly: aggregating voter rankings, ratings databases, etc.
— explicitly: direct surveys, polling, competitions, etc.

 Data may be noisy, incomplete.



Special Case

» Suppose each item has an intrinsic value s(7) and the
comparison Y(z,7) simply equals

Y (i, j) = s(i) — ().

Then the matrix Y will be rank two. In particular,

Y = se! —est,

where s = [s(1) s(2) ... s(n)]f ande =11 ... 1]
 This makes Y a natural candidate for recovery via Nuclear

Norm Minimization [Gleich and Lim, 2011; see also
Massimino and Davenport, 2013].



Transitivity

e Such pairwise comparisons are transitive:

Y(,7) =Y, k) + Y(k,y) for all 4, 3, k.

* |ndeed, transitivity holds only in this special case where
Y(i,5) =s(i) —s(J)

for some score vector s.



Realistic Pairwise Comparisons

 Condorcet paradox: Collective preferences may be cyclic.

e e s

Best
B A C
Worst C B A

 Moreover, an individual’s own preferences may not even be
transitive. Individual preferences are often determined
using multiple factors.

Best

Worst C B A



Non-transitive Pairwise Comparison Matrices

e QOur interest: Modeling and recovering Y itself, rather than
flattening to a one-dimensional ranking.

* Questions:
— What structure can we anticipate in Y?

— Can non-transitive matrices be low rank?

e Contributions:

— New model for non-transitive pairwise comparisons.
— Low-rank analysis of resulting pairwise comparison matrices.
— Discussing the recovery of these matrices.



New Model for Pairwise Comparisons

» Recall: Transitive model
Y(i,7) = s(1) — 5(j)
* New: Suppose
Y(i,7) = s(i)a(j) — s(7)ali),

where s(7) represents a latent “value” for item ¢ as before,

but a(j) is a “weight” determined by item 5 that can inhibit
this value.



Interactions and Competition

e |nthe model

Y(i,5) = s(i)a(y) — s(5)a(i),

item j affects how item 7 is evaluated, and vice versa.

e Possible examples:

— “Anchoring” in human judgment [Tversky and Kahneman, 1974]

— Competitions and sporting events

s() = offensive strength of team i (higher is better)
a(j) = defensive strength of team j (lower is better)
Y(4,7) = anticipated margin of victory for team i over team j

similar models have been proposed/discovered in linear regression of
sporting outcomes [Pfitzner et al., 2009; Guo et al., 2012]



e Vectors and resulting matrix:
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 Non-transitive sign changes:

Y(1,2) + Y (2,4) = 0.317 > —0.583 = Y (1,4)

Y(1,3) + Y (3,4) = 1.346 > —0.583 = Y (1, 4)
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Non-transitivity

* The degree of non-transitivity in a pairwise comparison
matrix can be measured [Jiang et al., 2010].

e For a skew-symmetric Y, define

R(Y)=min||Y — (¢! —ed")||p
S
to be the distance between Y and the closest transitive
matrix. The closest transitive matrix is generated using the

score vector



Non-transitivity

e Under our model, where

Y(i,7) = s(t)a(j) — s(5)a(?),

we can show that

R(Y) < 2{s|; [lallysin Z(1a}, 15, e})

* So the degree of non-transitivity is low if a is close to
span{s,e}.



Extension to Multiple Factors

 Suppose there are r latent factors on which pairwise
comparisons are based:

Y (i,5) = > sk()ar(j) — sk(j)ar(i).
k=1
e We can write

T
Y = E Spai — QLS .
k=1

showing that Yis skew-symmetric and has rank at most 2r.



Non-transitivity

e Under our multi-factor model, where

T
Y = E Spai — QLS .
k=1
we can show that

R(Y)<2) |lsklly laxllysin £({ar}, {sk, e})
k=1

* So the degree of non-transitivity is low if all a, are close to
span{s,,e}.



Low-rank Structure

* |n fact, any skew-symmetric matrix Y with rank at most 2r
can be decomposed as

T
Y = E Skl — RSy,
k=1

for some s, and a, [Brualdi et al., 2010].

 Therefore, any low-rank, skew-symmetric pairwise
comparison matrix must fit our model, although the
factors are not uniquely recoverable from the matrix itself.



Singular Value Decomposition

e The SVD of a skew-symmetric matrix Y with rank at
most 27 is given by
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where X is a matrix with orthonormal columns [Gleich and
Lim, 2011].



Analysis

e Key to analysis:
colspan(Y) = rowspan(Y)
= colspan(X)

= span{si,S2,...,87,Q1,02,...,0}

e Coherence of Y can be determined from any orthobasis
for span{sy, sy, ..., S,, @y, Gg, ..., Q. }.



Recovery Algorithms

1. SVP [Jain et al., 2010]

— Advantages: Output matrix guaranteed to be skew-symmetric
[Gleich and Lim, 2011].

— Disadvantages: Speed, lack of theoretical guarantees.

2. Alternating minimization [Jain et al., 2013]

j Po(Y —UVH)|?
L | Pof )| %

— Advantages: Speed, theoretical guarantees.
— Disadvantages: Not guaranteed to preserve skew-symmetry.



Example Recovery Result

* Suppose sy, Sq, ..., S, Ay, Gqy, ..., @, are orthonormal with
coherence u, and that

Y = Z e (skar — agsy ).
k=1

Then with
6
Y
m = O (,u? (%) r7n10gn10g ul |F)
r €

random samples, with high probability Altmin returns an
estimate Yafter log(1/¢€) iterations that satisfies

Y —Y|r <e.



Recovery Algorithms [ctd.]

3. Skew-symmetric alternating minimization

' Po(Y — (PO — QP*'))||?
P,Qfgﬁlnw” oY — (PQ" —QP"))|F7

— Implementation: Fix PP and solve the least-squares problem

' PoY) — M~ 2
Qéﬂﬁgxrl\ved QY) — Mz vec(Q)|]

Then fix Cj and solve for P.

— Advantages: Speed, preserves skew-symmetry.
— Disadvantages: Lack of theoretical guarantees.



Performance

n = 100; r = 1 (rank = 2)
s., a, random with entries U[0,1]

coherence: low
non-transitivity:

R(Y)
1Yl 7

~ 0.37
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Performance

e n=100; r = 2 (rank = 4)
* s,S,,a,, a,random with entries U|0,1]

e coherence: low

* non-transitivity:
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Performance

e n=064;, r = 2 (rank = 4)
* low coherence: s,, a, random with entries U|0,1]
* high coherence: s, from identity matrix; s,, a, ~ iid U[0,1]
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NFL Game Outcomes (1978-2013)

low-rank prediction of game outcomes
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NFL Pregame Lines (1978-2013)

low-rank prediction of pregame lines
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Conclusions

Low-rank models can support non-transitivity

Matrix structure determined by feature vectors
— could also give insight into leverage score sampling

Skew-symmetric Altmin preserves structure,
performs well

Ongoing work
— algorithm analysis
— evaluating model for real data sets



IEEE Journal of Selected Topics in Signal Processing (J-STSP)

Special Issue on
Structured Matrices in Signal and Data Processing

 Low-rank matrix recovery

 Blind deconvolution and phase retrieval

 Matrix-based recommendation systems and collaborative
filtering

 Non-negative matrix factorization

 Blind source separation

« Computer vision

 Matrix structures in radar and sensor array signal processing

 Subspace identification and tracking

* Dictionary learning and sparse coding
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Proof by Induction

* Suppose that Yis transitive and for some s(1), s(2), s(3),

__________________________________________________

I 07 ) B ) R v G

* Define s(4) :=s(1)—Y(1,4). Then foranyi=1, 2, 3,

Y(,4) = Y(i,1)+Y(1,4) (by transitivity)
) —s(1)) +Y(1,4)
1

4))





