Modeling and Recovering Non-Transitive Pairwise Comparison Matrices

Dehui Yang and Michael B. Wakin

Electrical Engineering and Computer Science Colorado School of Mines

Rank Aggregation

• Goal is to produce a single ranked list of n items (or candidates, teams, etc.) that best reflects the collective preferences of multiple voters.

	Voter 1	Voter 2	Voter 3
Best	А	D	С
	В	В	D
	С	Α	В
Worst	D	С	А

- Classical problem well studied in social choice theory, computer science, etc.
 - Arrow's impossibility theorem

Rank Aggregation via Pairwise Comparisons

Two steps [Gleich and Lim, 2011]:

- 1. Distill voter preferences into pairwise comparisons
 - most voters prefer item A over item B
 - most voters prefer item D over item C
 - etc.
- 2. Form ranked list based on pairwise comparisons

Pairwise Comparison Matrices

• Let Y denote an $n \times n$ matrix where Y(i,j) represents the strength of preference of item i over item j.

• Typically, Y(i,j) = -Y(j,i), making Y skew-symmetric:

$$Y = -Y^T$$
.

- How to create a pairwise comparison matrix?
 - implicitly: aggregating voter rankings, ratings databases, etc.
 - explicitly: direct surveys, polling, competitions, etc.
- Data may be noisy, incomplete.

Special Case

• Suppose each item has an intrinsic value s(i) and the comparison Y(i,j) simply equals

$$Y(i,j) = s(i) - s(j).$$

Then the matrix Y will be **rank two**. In particular,

$$Y = se^T - es^T,$$

where $s = [s(1) \ s(2) \ ... \ s(n)]^T$ and $e = [1 \ 1 \ ... \ 1]^T$.

• This makes Y a natural candidate for recovery via Nuclear Norm Minimization [Gleich and Lim, 2011; see also Massimino and Davenport, 2013].

Transitivity

Such pairwise comparisons are transitive:

$$Y(i,j) = Y(i,k) + Y(k,j)$$
 for all i, j, k .

Indeed, transitivity holds only in this special case where

$$Y(i,j) = s(i) - s(j)$$

for some score vector s.

Realistic Pairwise Comparisons

Condorcet paradox: Collective preferences may be cyclic.

	Voter 1	Voter 2	Voter 3
Best	Α	С	В
	В	Α	С
Worst	С	В	А

Moreover, an individual's own preferences may not even be transitive. Individual preferences are often determined using multiple factors.

	Cost	Appearance	Practicality
Best	Α	С	В
	В	Α	С
Worst	С	В	Α

Non-transitive Pairwise Comparison Matrices

• Our interest: Modeling and recovering Y itself, rather than flattening to a one-dimensional ranking.

Questions:

- What structure can we anticipate in Y?
- Can non-transitive matrices be low rank?

Contributions:

- New model for non-transitive pairwise comparisons.
- Low-rank analysis of resulting pairwise comparison matrices.
- Discussing the recovery of these matrices.

New Model for Pairwise Comparisons

Recall: Transitive model

$$Y(i,j) = s(i) - s(j).$$

New: Suppose

$$Y(i,j) = s(i)a(j) - s(j)a(i),$$

where s(i) represents a latent "value" for item i as before, but a(j) is a "weight" determined by item j that can inhibit this value.

Interactions and Competition

In the model

$$Y(i,j) = s(i)a(j) - s(j)a(i),$$

item j affects how item i is evaluated, and vice versa.

- Possible examples:
 - "Anchoring" in human judgment [Tversky and Kahneman, 1974]
 - Competitions and sporting events
 - s(i) = offensive strength of team i (higher is better)
 - a(j) = defensive strength of team j (lower is better)
 - Y(i,j) = anticipated margin of victory for team i over team j
 - similar models have been proposed/discovered in linear regression of sporting outcomes [Pfitzner et al., 2009; Guo et al., 2012]

Example

Vectors and resulting matrix:

$$s = \begin{bmatrix} -0.5749 \\ 0.7154 \\ 1.8577 \\ 0.0780 \end{bmatrix} a = \begin{bmatrix} 0.1 \\ 0.5 \\ 0.5 \\ 1 \end{bmatrix} Y = \begin{bmatrix} 0 & -0.359 & -0.473 & -0.583 \\ 0.359 & 0 & -0.571 & 0.676 \\ 0.473 & 0.571 & 0 & 1.819 \\ 0.583 & -0.676 & -1.819 & 0 \end{bmatrix}$$

Non-transitive sign changes:

$$Y(1,2) + Y(2,4) = 0.317 > -0.583 = Y(1,4)$$

$$Y(1,3) + Y(3,4) = 1.346 > -0.583 = Y(1,4)$$

Non-transitivity

• The degree of non-transitivity in a pairwise comparison matrix can be measured [Jiang et al., 2010].

ullet For a skew-symmetric Y, define

$$R(Y) = \min_{\tilde{s}} \|Y - (\tilde{s}e^T - e\tilde{s}^T)\|_F$$

to be the distance between Y and the closest transitive matrix. The closest transitive matrix is generated using the score vector

$$\tilde{s} = \frac{1}{n} Y e$$
.

Non-transitivity

Under our model, where

$$Y(i,j) = s(i)a(j) - s(j)a(i),$$

we can show that

$$R(Y) \le 2 \|s\|_2 \|a\|_2 \sin \angle(\{a\}, \{s, e\})$$

• So the degree of non-transitivity is low if a is close to $span\{s,e\}$.

Extension to Multiple Factors

 Suppose there are r latent factors on which pairwise comparisons are based:

$$Y(i,j) = \sum_{k=1}^{r} s_k(i) a_k(j) - s_k(j) a_k(i).$$

We can write

$$Y = \sum_{k=1}^{T} s_k a_k^T - a_k s_k^T,$$

showing that Y is skew-symmetric and has rank at most 2r.

Non-transitivity

Under our multi-factor model, where

$$Y = \sum_{k=1}^{T} s_k a_k^T - a_k s_k^T,$$

we can show that

$$R(Y) \le 2\sum_{k=1}^{r} \|s_k\|_2 \|a_k\|_2 \sin \angle(\{a_k\}, \{s_k, e\})$$

• So the degree of non-transitivity is low if all a_k are close to $span\{s_k,e\}$.

Low-rank Structure

In fact, any skew-symmetric matrix Y with rank at most 2r can be decomposed as

$$Y = \sum_{k=1}^{T} s_k a_k^T - a_k s_k^T,$$

for some s_k and a_k [Brualdi et al., 2010].

 Therefore, any low-rank, skew-symmetric pairwise comparison matrix must fit our model, although the factors are not uniquely recoverable from the matrix itself.

Singular Value Decomposition

ullet The SVD of a skew-symmetric matrix Y with rank at most 2r is given by

where X is a matrix with orthonormal columns [Gleich and Lim, 2011].

Analysis

Key to analysis:

```
colspan(Y) = rowspan(Y)
= colspan(X)
= span \{s_1, s_2, \dots, s_r, a_1, a_2, \dots, a_r\}
```

• Coherence of Y can be determined from any orthobasis for $span\{s_1, s_2, ..., s_r, a_1, a_2, ..., a_r\}$.

Recovery Algorithms

- 1. SVP [Jain et al., 2010]
 - Advantages: Output matrix guaranteed to be skew-symmetric [Gleich and Lim, 2011].
 - Disadvantages: Speed, lack of theoretical guarantees.
- 2. Alternating minimization [Jain et al., 2013]

$$\min_{U,V\in\mathbf{R}^{n\times 2r}} \|P_{\Omega}(Y-UV^T)\|_F^2$$

- Advantages: Speed, theoretical guarantees.
- Disadvantages: Not guaranteed to preserve skew-symmetry.

Example Recovery Result

• Suppose $s_1,s_2,\dots,s_r,a_1,a_2,\,\dots,a_r$ are orthonormal with coherence μ , and that

$$Y = \sum_{k=1}^{r} \lambda_k (s_k a_k^T - a_k s_k^T).$$

Then with

$$m = O\left(\mu^2 \left(\frac{\lambda_1}{\lambda_r}\right)^6 r^7 n \log n \log \frac{r||Y||_F}{\epsilon}\right)$$

random samples, with high probability Altmin returns an estimate \widehat{Y} after $\log(1/\epsilon)$ iterations that satisfies

$$||Y - \widehat{Y}||_F \le \epsilon.$$

Recovery Algorithms [ctd.]

3. Skew-symmetric alternating minimization

$$\min_{P,Q\in\mathbf{R}^{n\times r}} \|P_{\Omega}(Y - (PQ^T - QP^T))\|_F^2$$

– Implementation: Fix \widehat{P} and solve the least-squares problem

$$\min_{Q \in \mathbf{R}^{n \times r}} \| \operatorname{vec}(P_{\Omega}Y) - M_{\widehat{P}} \operatorname{vec}(Q) \|_{2}^{2}$$

Then fix \widehat{Q} and solve for P.

- Advantages: Speed, preserves skew-symmetry.
- Disadvantages: Lack of theoretical guarantees.

Performance

- n = 100; r = 1 (rank = 2)
- $s_{\scriptscriptstyle 1}$, $a_{\scriptscriptstyle 1}$ random with entries ${\rm U}[0,\!1]$
- coherence: low
- non-transitivity:

$$\frac{R(Y)}{\|Y\|_F} \approx 0.37$$

Performance

- n = 100; r = 2 (rank = 4)
- s_1 , s_2 , a_1 , a_2 random with entries $\mathrm{U}[0,1]$
- coherence: low
- non-transitivity:

$$\frac{R(Y)}{\|Y\|_F} \approx 0.37$$

Performance

- n = 64; r = 2 (rank = 4)
- ullet low coherence: s_k , a_k random with entries $\mathrm{U}[0,\!1]$
- ullet high coherence: s_1 from identity matrix; $\,s_2$, a_k ~ iid ${
 m U}[0,\!1]$

NFL Game Outcomes (1978-2013)

 $n \approx 30$ teams

 $m \approx 200$ unique matchups

NFL Pregame Lines (1978-2013)

 $n \approx 30$ teams

 $m \approx 200$ unique matchups

Conclusions

Low-rank models can support non-transitivity

- Matrix structure determined by feature vectors
 - could also give insight into leverage score sampling
- Skew-symmetric Altmin preserves structure, performs well

- Ongoing work
 - algorithm analysis
 - evaluating model for real data sets

IEEE Journal of Selected Topics in Signal Processing (J-STSP)

Special Issue on Structured Matrices in Signal and Data Processing

- Low-rank matrix recovery
- Blind deconvolution and phase retrieval
- Matrix-based recommendation systems and collaborative filtering
- Non-negative matrix factorization
- Blind source separation
- Computer vision
- Matrix structures in radar and sensor array signal processing
- Subspace identification and tracking
- Dictionary learning and sparse coding

Manuscript submission due: July 15, 2015 July 30, 2015

mines.edu/~mwakin

Proof by Induction

ullet Suppose that Yis transitive and for some $s(1),\,s(2),\,s(3)$,

$$Y = \begin{bmatrix} 0 & s(1) - s(2) & s(1) - s(3) & Y(1,4) \\ s(2) - s(1) & 0 & s(2) - s(3) & Y(2,4) \\ s(3) - s(1) & s(3) - s(2) & 0 & Y(3,4) \\ -Y(1,4) & -Y(2,4) & -Y(3,4) & 0 \end{bmatrix}$$

• Define $s(4):=s(1)-Y(1,\!4).$ Then for any $i=1,\ 2,\ 3,$

$$Y(i,4) = Y(i,1) + Y(1,4)$$
 (by transitivity)
= $(s(i) - s(1)) + Y(1,4)$
= $s(i) - (s(1) - Y(1,4))$
= $s(i) - s(4)$.