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|dentifying Subspaces from Partial Observations

In the problem of low-rank matrix completion, we observe a certain
phenomenon in a high-dimensional ambient space, but the
phenomenon lies on or near a low-dimensional subspace.

Each observed vector has missing elements.
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Common applications for the low rank assumption...
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...often have data that are not isotropic in the subspace.
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|dentifying Subspaces from Partial Observations

@ We seek the subspace S C R" of known dimension d < n.

@ We observe only certain components Q; C {1,2,...,n} of
vectors v € S, t = 1,2,... — the subvector [v¢]q,.
eee

@ The data are not drawn isotropically from S.
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Brief Interlude: Non-convex formulation for streaming data
applications

Supposing we collect T vectors vq,..., vy into a matrix X. We
could solve the convex problem:

minimize [M]] Il lallz

Or we could solve this non-convex problem incrementally:

-
minimize Uw’T — Xl = Uw — 2




With full data, use the Incremental SVD

Given matrix X = UZ VT, form the SVD of [X vt].
Estimate the weights: w = arg min||Ua — v¢||3
a

Compute the residual: r; = v — Uw.

Update the SVD:

X v]=|U ||f§||H§ IIZHH\O/ HT

and take SVD of the center matrix.
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Incremental SVD with Missing Data

Suppose now we only observe entries of v on Q; C {1,...n}. Let
subscript €; restrict to the corresponding rows.

Estimate the weights: w = argmin, [|[Ura — ve]q, ||3 -
Compute the residual: r = v; — Uw on €Q; ; zero otherwise.

Update the SVD:

{U 2”% HZIIH\J HT

and take SVD of the center matrix.
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Incremental SVD with Missing Data: SAGE GROUSE

Suppose now we only observe entries of v on Q; C {1,...n}. Let
subscript €2; restrict to the corresponding rows.

Estimate the weights: w = argmin, [|[Ura — ve]q, ||3 -
Compute the residual: r = v; — Uw on Q; ; zero otherwise.
Update the SVD:
-
[ Uy o } Tg w vV 0
lIrell 0 |lrell 0 1
and take the SVD of the center matrix. This is equivalent to the

natural incremental gradient method on the Grassmannian
(GROUSE) for a particular step size.
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Incremental SVD with Missing Data Options

projection weights w = argmin, ||[[Ura — v¢]a,||3;
residual: r = v — Uw on Q; : zero otherwise.

ISVD with interpolation: U

SAGE GROUSE: [ U & || Zd W

Brand Algorithm (5 < 1): U] pr  w
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emental SVD with Missing Data Performance
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Data that are not isotropically distributed

500 x 500 matrices, rank 5, no added noise, no missing data.
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We need a way to correct for a skew in singular values, but using
the singular value estimate directly we get killed by missing data.
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Polar Incremental Matrix Completion

To develop a different estimate for the singular values we use a
thin version of the polar decomposition, R = QS, where Q is n x d
with orthonormal columns and S is dxd positive semi-definite.

We will track our data matrix with the decomposition
X = URT = USQT; our estimate of the singular values is now
flexibly represented with this PSD matrix S.

We also scale this matrix S at every step depending on the norm
of the observed data only: let s? = s2 | + ||vq,||3.




Incremental SVD with Missing Data Options

projection weights w = arg min, ||[Ura — vi]q, |13;
residual: r = v — Uw on Q; ; zero otherwise.
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Comparison of algorithms on ill-conditioned matrices.
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Matrices were 5000 x 5000, rank 5, no noise and 95% missing entries,
with singular values that varied logarithmically from o1 = 1 x 10% down
to o5. For moderately ill-conditioned matrices, ScGrad and qGeom — both
of which modify the metric on the Grassmannian order to perform well on
ill-conditioned matrices — perform as well as PIMC, but with higher
condition numbers even these algorithms have trouble.
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Structure from Motion

Observe an object from different camera angles, matching
reference points on the object from image to image.
@ Object is solid, so some reference points are occluded in each
photo. Missing datal
@ Matrix of 2d point locations has rank three, and the range
subspace reveals 3-d location of reference points.
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Structure from Motion
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Structure from Motion: Synthetic Cylinder
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Synthetic cylinder of radius 10 and height 5000 with 500 points
tracked over 1000 frames. The cylinder rotated once every 500
frames, resulting in 80.13% missing data. This matrix has an exact
rank-4 solution with a condition number o1 /04 =~ 290.




Thank you! Questions?




