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Identifying Subspaces from Partial Observations

In the problem of low-rank matrix completion, we observe a certain
phenomenon in a high-dimensional ambient space, but the
phenomenon lies on or near a low-dimensional subspace.
Each observed vector has missing elements.
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Common applications for the low rank assumption...
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v 2 Rn is a snapshot of the system state
(e.g., temperature at each node)

v 2 Rn is a snapshot of the system state
(e.g., tra�c rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a

kUa � vk2
2

Compute the residual: v� = v � Uw.

Update the SVD:

[X, v] =
h

U v�
�v��

i 
S w
0 kv�k

�

� �� �


V 0
0 1

�T

Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix � > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.

If k > 2rn � r2 + �(rn � r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En) � 0 as n � �.

1

5"
Laura Balzano / PIMC / SPARS



...often have data that are not isotropic in the subspace.
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v 2 Rn is a single vectorized image
(e.g. one video frame)

Given Ut which approximates the span of the column space of data so far,
incorporate new data v�t into Ut+1.

Estimate the weights: w = arg min
a

kU�a � v�k2
2

Compute the residual: v� =

�
v � Uw on �

0 otherwise

Update the SVD:

[X, v] =
h

U v�
�v��
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S w
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Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix � > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n, with its value drawn uniformly from the non-

zero elements of the field. If k > 2rn � r2 + �(rn � r2

2 ), then the probability
that the exhaustive-search minimum rank decoder makes a mistake estimating
X, P(En) � 0 as n � �.

Theorem: Let X be an n ⇥ N matrix, N = O(np) for p � 2, whose columns
lie in the union of k ⌧ N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(�rN log N) measurements with probability at least 1 � 6kN�2(��1) log2 N .

Theorem: Let X be an n⇥N matrix whose columns lie in the union of k ⌧ N
rank r incoherent subspaces which are not “too close” to one another, and let
N = O(np) for p � 2. Then the matrix X can be perfectly reconstructed from
O(rN log N) measurements with high probability.
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Identifying Subspaces from Partial Observations

We seek the subspace S ⇢ Rn of known dimension d ⌧ n.

We observe only certain components ⌦t ⇢ {1, 2, . . . , n} of
vectors vt 2 S, t = 1, 2, . . . — the subvector [vt ]

⌦t .

…
The data are not drawn isotropically from S.
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Brief Interlude: Non-convex formulation for streaming data
applications

Supposing we collect T vectors v
1

, . . . , vT into a matrix X . We
could solve the convex problem:

minimize
M2Rn⇥T

kMk⇤ + �k[M � X ]
⌦

k2F

Or we could solve this non-convex problem incrementally:

minimize
span(U)2G(d ,n)

k[UW T � X ]
⌦

k2F =
TX

t=1

k[Uw � vt ]
⌦tk22
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With full data, use the Incremental SVD

Given matrix X = U⌃V T , form the SVD of
⇥
X vt

⇤
.

Estimate the weights: w = argmin
a

kUa � vtk2
2

Compute the residual: rt = vt � Uw .

Update the SVD:

⇥
X vt

⇤
=

h
U

rt
krtk

i 
⌃ w

0 krtk

� 
V 0
0 1

�T

and take SVD of the center matrix.
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Incremental SVD with Missing Data

Suppose now we only observe entries of v on ⌦t ⇢ {1, . . . n}. Let
subscript ⌦t restrict to the corresponding rows.

Estimate the weights: w = argmina k[Uta � vt ]
⌦tk2

2

.

Compute the residual: rt = vt � Uw on ⌦t ; zero otherwise.

Update the SVD:

h
U

rt
krtk

i 
⌃ w

0 krtk

� 
V 0
0 1

�T

and take SVD of the center matrix.
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Incremental SVD with Missing Data: SAGE GROUSE

Suppose now we only observe entries of v on ⌦t ⇢ {1, . . . n}. Let
subscript ⌦t restrict to the corresponding rows.

Estimate the weights: w = argmina k[Uta � vt ]
⌦tk2

2

.

Compute the residual: rt = vt � Uw on ⌦t ; zero otherwise.

Update the SVD:

h
U

rt
krtk

i 
Id w

0 krtk

� 
V 0
0 1

�T

and take the SVD of the center matrix. This is equivalent to the
natural incremental gradient method on the Grassmannian
(GROUSE) for a particular step size.
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Incremental SVD with Missing Data Options

projection weights w = argmina k[Uta � vt ]
⌦tk2

2

;
residual: rt = vt � Uw on ⌦t ; zero otherwise.

ISVD with interpolation:
h
U

rt
krtk

i 
⌃ w

0 krtk

� 
V 0
0 1

�T

SAGE GROUSE:
h
U

rt
krtk

i 
Id w

0 krtk

� 
V 0
0 1

�T

Brand Algorithm (�  1) :
h
U

rt
krtk

i 
�⌃ w

0 krtk

� 
V 0
0 1

�T
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Incremental SVD with Missing Data Performance
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Data that are not isotropically distributed

500 ⇥ 500 matrices, rank 5, no added noise, no missing data.
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PIMC (proposed)
GROUSE

We need a way to correct for a skew in singular values, but using
the singular value estimate directly we get killed by missing data.
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Polar Incremental Matrix Completion

To develop a di↵erent estimate for the singular values we use a
thin version of the polar decomposition, R = QS , where Q is n ⇥ d

with orthonormal columns and S is d⇥d positive semi-definite.

We will track our data matrix with the decomposition
X = UR

T = USQ

T ; our estimate of the singular values is now
flexibly represented with this PSD matrix S .

We also scale this matrix S at every step depending on the norm
of the observed data only: let s2t = s

2

t�1

+ kv
⌦tk2

2

.
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Incremental SVD with Missing Data Options

projection weights w = argmina k[Uta � vt ]
⌦tk2

2

;
residual: rt = vt � Uw on ⌦t ; zero otherwise.

ISVD with interpolation:
h
U

rt
krtk

i 
⌃ w

0 krtk

� 
V 0
0 1

�T

SAGE GROUSE:
h
U

rt
krtk

i 
Id w

0 krtk

� 
V 0
0 1

�T

Brand Algorithm:
h
U

rt
krtk

i 
�⌃ w

0 krtk

� 
V 0
0 1

�T

PIMC:
h
U

rt
krtk

i  st
kSkF S w

0 krtk

� "
kSkF
st

Q 0
0 1

#T
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Comparison of algorithms on ill-conditioned matrices.
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= 100 �
1

�
5

= 1000

Matrices were 5000 ⇥ 5000, rank 5, no noise and 95% missing entries,
with singular values that varied logarithmically from �

1

= 1 ⇥ 103 down
to �

5

. For moderately ill-conditioned matrices, ScGrad and qGeom – both
of which modify the metric on the Grassmannian order to perform well on
ill-conditioned matrices – perform as well as PIMC, but with higher
condition numbers even these algorithms have trouble.
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Structure from Motion

Observe an object from di↵erent camera angles, matching
reference points on the object from image to image.

Object is solid, so some reference points are occluded in each
photo. Missing data!

Matrix of 2d point locations has rank three, and the range
subspace reveals 3-d location of reference points.

Structure from Motion
tracked points --> 3D model

…

W =

�

��
x1,1 . . . x1,m

...
. . .

...
xn,1 . . . xn,m

�

��

frames

po
in

ts SVD

3D 
structure

camera 
motion

Measurement matrix is low rank, can be optimally factored:

⇥
S̃ 1

⇤ ⇥
M̃ �

⇤T

(Tomasi and Kanade 1992)

Structure from Motion
• Real matrices have missing data: matrix completion!!

!

!

!

!

• Well-established theory, many algorithms available 
• (Balzano et al. 2010), (Cai et al. 2008), (Candes and Tao 2010), ... 
• Can often efficiently find near-optimal solutions 
!

• Problems:!
• Most algorithms are not online 
• Most algorithms fail for ill-conditioned matrices
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Structure from Motion
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Structure from Motion: Synthetic Cylinder
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Synthetic cylinder of radius 10 and height 5000 with 500 points
tracked over 1000 frames. The cylinder rotated once every 500
frames, resulting in 80.13% missing data. This matrix has an exact
rank-4 solution with a condition number �

1

/�
4

⇡ 290.
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Thank you! Questions?

Laura Balzano / PIMC / SPARS


