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Spectral unmixing by NMF
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> Y = > x(t)¢F,(t): short-time Fourier transform (STFT) of temporal
signal x(t).

> 5 = |ym|?: power spectrogram.

» NMF extracts recurring spectral patterns from the data by solving

min D(S|WH).
W,H>0

» Successful applications in audio source separation and music transcription.



ltakura-Saito NMF & the Gaussian composite model

(Févotte, Bertin, and Durrieu, 2009)

> Low-rank variance model of analysis coefficients (STFT):

Yfn ~ Nc(07 [WH]fn)

v

Log-likelihood equivalent to Itakura-Saito (IS) divergence:
— log p(Y|WH) = Dis(|Y|?|WH) + cst.

v

Underlies a Gaussian composite model (GCM):

Yfn = Zk Ykfns

Vit ~ Ne(0, wachin).

v

Given estimates of W and H, latent STFT components can be estimated
by Wiener filter:

Wik hin Vi
[WH]g "™

Inverse-STFT of { ¥} produces temporal components such that

x() = 224 &(2).
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Low-rank time frequency synthesis (LRTFS)

(Févotte and Kowalski, 2014)

» Low-rank variance model of synthesis coefficients:
X(t) = an afn (bfn(t) + e(t),
afm ~ Ne(0, [WH] ),
e(t) ~ N.(0, ).
> om(t): time-frequency atom (e.g., from a Gabor frame),
> «afm: synthesis coefficient,
> e(t): residual term.

» LRTFS is a generative model of raw data x(t).
» Like in the GCM, the synthesis coefficients have a latent composite

structure:
O[fn - E k akfna

Qfn ~ Nc(07 Wfkhkn)~

» Given estimates of W of H, latent coefficients ays can be estimated from
their posterior mean and temporal components can be reconstructed as

Gk(t) = an Aiksn ¢fn(t)'



Relation to sparse Bayesian learning (SBL)

> Generative signal model in vector/matrix form:

x=®¢a +e.

> X, e: vectors of signal and residual time samples (size T),
> «: vector of synthesis coefficients a, (size FN),
> ®: time-frequency dictionary (size T X FN).

> Synthesis coefficients model in vector/matrix form:
plalv) = Ne(a]0, diag(v).
> v: vector of variance coefficients v = [WH]s, (size FN).

» Similar to sparse Bayesian learning (Tipping, 2001; Wipf and Rao, 2004)
except that the variance parameters are tied together by the low-rank

structure WH.



Estimation in LRTFS

Maximum joint likelihood (JL)

» Optimise

Cou(o, W, H, ) €~ log p(x, | W, H, \)
1

= X||x — ®al3 + Dis(|a?|v) + log(|ax|?) + cst.

» Possible EM algorithm using the procedure of (Figueiredo and Nowak, 2003)
based on the hidden variable z such that

x=®z+ ey,

z=o+/fey,

with e; ~ N:(0, Al — B®®*) and e, ~ N.(0,1) (condition applies on 3).

» Leads to a form of iterative shrinkage algorithm that scales well with
real-world signal dimension.
Shrinkage operator involves Itakura-Saito NMF of power posterior
expectation of « at each iteration.



Estimation in LRTFS

Maximum marginal likelihood (ML)

> Integration of a from the joint likelihood (like in SBL)
def
CML(W7 Hv >‘) = - |Og p(XlW, Hv )‘)

=— Iog/ p(x|e, \)p(a|WH)dx

» Possible EM algorithm treating « as the hidden variable.
Tractable algorithm but does not scale well with dimension.



Toy example
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Figure: Three representations of data.



Toy example
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Multi-resolution LRTFS

» LRTFS allows for multi-resolution hybrid representations:
x=®,a,+P,a,+e.

> &, and ®, are time-frequency dictionaries with different resolutions,
» o, and ap have their own latent low-rank structure W H,; and W,H,.

» Not possible with standard NMF !
» Previous optimisation strategies apply by concatenation:

¢ =D, &,

» Other hybrid decompositions are possible.
E.g., low-rank layer + sparse layer (forthcoming EUSIPCO paper)
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Hybrid decomposition of jazz music

’ X = <I)tonal Ottonal + <I)transient Qltransient + €

spectrogram of x log | Getransient | log | &tonal|
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Speech enhancement in applause noise

_ speech noise . speech noise
X = Pional ( QXional T Cltonal) + Ptransient <atransient + atranSiEHt) +e

Spectrograms of x with short and large resolutions

Noisy signal: long window STFT analysis Noisy signal: short window STFT analysis
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A dedication to Bill Fitzgerald

AN INTRODUCTION TO
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(my first tutorial on Bayesian inference) ”
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