
Linear Regression with Strongly Correlated Designs

Using Ordered Weigthed `1

(
OWL

)
Regularization

Mário A. T. Figueiredo

Instituto de Telecomunicações
and
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Introduction

Linear regression: classical problem in statistics, machine learning,
signal processing, with countless applications.

Observations: y = Ax + n

Design matrix: A = [a1, a2, ...,ap] ∈ Rn×p ;

Regression coefficients: x ∈ Rp;

Noise (or random perturbations): n ∈ Rn;

Goal: estimate x, from y and A.
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Regularization, Sparsity, and Variable Selection

Regularized linear regression (classical criteria):

x̂ = arg min
x

1

2
‖Ax− y‖22 + λR(x)

R(x) = ‖x‖22 ⇒ x̂ =
(
ATA + λI

)−1
ATy;

ridge regression, (Hoerl and Kennard, 1970)

R(x) = ‖x‖1;
LASSO (Tibshirani, 1996), basis pursuit denoising (Chen et al., 1995)

Sparsity! (variable selection)
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Group/Structured Sparsity

Promote certain sparsity patterns (usually groups)

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Huang and Zhang, 2010;

Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Bach, 2008)

learning the structure of graphical models (Schmidt and Murphy, 2010)
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Variable Selection and Grouping

Goal: identify all the covariates (e.g., genes, voxels,...) that are
relevant in some problem/task

Problem: with highly correlated covariates, LASSO may select an
arbitrary subset thereof

Group regularizers may solve this problem, but require a priori
knowledge of group structure

Alternatives (without predefined groups):

� Elastic net (EN)
(Zou and Hastie, 2005; De Mol et al., 2009)

� Cluster lasso
(Bühlmann et al., 2013)

� Octagonal shrinkage and clustering algorithm for regression (OSCAR)
(Bondell and Reich, 2007; Zhong and Kwok, 2012)
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Elastic Net (EN) and OSCAR

Goal of EN: including groups of correlated variables.

Goal of OSCAR: grouping correlated variables.

Elastic net:
R(x) = λ1‖x‖1 + λ2‖x‖22

OSCAR:
R(x) = λ1‖x‖1 + λ2

∑
i<j

max{|xi|, |xj |}

OSCAR is competitive with EN, LASSO, ridge, in terms of MSE;

OSCAR yields explicit variable grouping (Bondell and Reich, 2007)
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Some OSCAR Results on Synthetic Data

From (Bondell and Reich, 2007)
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Generalizing OSCAR: The OWL

OSCAR: Rλ1,λ2OSCAR(x) = λ1‖x‖1 + λ2
∑
i<j

max{|xi|, |xj |}

=

p∑
i=1

(
λ1 + λ2(p− i)

)
|x|[i],

where |x|[1] ≥ |x|[2] ≥ · · · ≥ |x|[p] (sorted entries of |x|).

The ordered weighted `1 (OWL) norm

Ωw(x) =

p∑
i=1

wi |x|[i]

= wT |x|↓

where w1 ≥ w2 ≥ · · · ≥ wp ≥ 0

and |x|↓ =
[
|x|[1], |x|[2], ..., |x|[p]

]T
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Toy example
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The OWL Norm

The ordered weighted `1 (OWL) norm

Ωw(x) =

p∑
i=1

wi |x|[i] = wT |x|↓

Proposed independently by:

� Bogdan et al. (2013), for false discovery rate (FDR) control in variable
selection with weakly correlated covariates

� Zeng and Figueiredo (2014), generalizing OSCAR, for variable grouping
with strongly correlated covariates

Remaining of the talk focuses on the OWL

� Part I: covariate clustering analysis

� Part II: statistical analysis
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Some Properties of the OWL

The ordered weighted `1 (OWL) norm

Ωw(x) =

p∑
i=1

wi |x|[i] = wT |x|↓

Ωw : Rp → R+ is indeed a norm, iff w1 > 0.

Relationship with `1

w̄ ‖x‖1 ≤ Ωw(x) ≤ w1 ‖x‖1;

where w̄ = 1
p

∑p
i=1wi, with equalities if w1 = w2 = · · · = wp.

Obviously, Ωw(x) ≥ w1 ‖x‖∞ (equality if w2 = w3 = · · · = wp = 0).

Proximity operator (O(p log p)), projection onto an OWL-ball
(O(p log p)), atomic formulation are all known (yesterday’s poster).
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Atoms
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Atoms
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Part I: Clustering Analysis
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Majorization and Schur Convexity

Definition (Majorization (Marshall et al., 2011))

Consider x,y ∈ Rp. It is said that x majorizes y, denoted x � y, if

p∑
i=1

xi =

p∑
i=1

yi and

j∑
i=1

x[i] ≥
j∑
i=1

y[i], for j = 1, ..., p− 1. (1)

Examples: (4, 0, 0, 0) � (3, 1, 0, 0) � (2, 1, 1, 0) � (1, 1, 1, 1)

Definition (Schur-convexity (Marshall et al., 2011))

Let A ⊆ RP ; a function f : A → R is Schur-convex in A if,

∀x,y ∈ A, x � y ⇒ f(x) ≥ f(y),

and strictly Schur-convex, if the second inequality is strict when x is not a
permutation of y.
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Strong Schur Convexity

Definition (Pigou-Dalton transfer (Marshall et al., 2011))

Consider x ∈ Rp+ and two components, xi, xj , s.t. xi > xj . We say that y
(y ≺ x) results from a Pigou-Dalton transfer of size ε ∈

(
0, (xi− xj)/2

)
if

yi = xi − ε, yj = xj + ε, yk = xk, for k 6= i, j.

The Pigou-Dalton transfer (a.k.a. Robin-Hood transfer) is used in the
study of measures of economic inequality (Dalton, 1920; Pigou, 1912).

Definition (Strong Schur convexity (Figueiredo and Nowak, 2014))

Function f is S-strongly Schur-convex if there exists a constant S > 0, s.t.

f(x)− f(y) ≥ εS,

whenever y ≺ x result from a Pigou-Dalton transfer of size ε applied to x.
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Strong Schur Convexity of Ωw and Exact Grouping

Lemma (Figueiredo and Nowak (2014))

Consider Ωw, with w1 ≥ w2 ≥ · · · ≥ xp ≥ 0, and let

∆ = min{w1 − w2, w2 − w3, . . . , wp−1 − wp}.

Then, Ωw is ∆-strongly Schur-convex.

This lemma underlies the proof of the following theorem

Theorem (Exact grouping (Figueiredo and Nowak, 2014))

Let x̂ ∈ arg min 1
2‖y −Ax‖22 + Ωw(x); then,

(i) ‖ai − aj‖2 < ∆/‖y‖2 ⇒ x̂i = x̂j

(ii) ‖ai + aj‖2 < ∆/‖y‖2 ⇒ x̂i = −x̂j
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Exact Grouping Corollaries

Corollary (Standardized Columns (Figueiredo and Nowak, 2014))

Let x̂ ∈ arg min 1
2‖y −Ax‖22 + Ωw(x), assume the columns of A have

zero-mean 1Tak = 0 and unit norm ‖ak‖2 = 1, and ρij = aTi aj . Then,

(i)
√

2− 2 ρij < ∆/‖y‖2 ⇒ x̂i = x̂j

(ii)
√

2 + 2 ρij < ∆/‖y‖2 ⇒ x̂i = −x̂j

Recovers the theorem by Bondell and Reich (2007) for OSCAR
(∆ = λ2), but under much weaker conditions.

Similar results can be proved for the absolute error loss.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 17 / 27



Exact Grouping Corollaries

Corollary (Standardized Columns (Figueiredo and Nowak, 2014))

Let x̂ ∈ arg min 1
2‖y −Ax‖22 + Ωw(x), assume the columns of A have

zero-mean 1Tak = 0 and unit norm ‖ak‖2 = 1, and ρij = aTi aj . Then,

(i)
√

2− 2 ρij < ∆/‖y‖2 ⇒ x̂i = x̂j

(ii)
√

2 + 2 ρij < ∆/‖y‖2 ⇒ x̂i = −x̂j

Recovers the theorem by Bondell and Reich (2007) for OSCAR
(∆ = λ2), but under much weaker conditions.

Similar results can be proved for the absolute error loss.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 17 / 27



Exact Grouping Corollaries

Corollary (Standardized Columns (Figueiredo and Nowak, 2014))

Let x̂ ∈ arg min 1
2‖y −Ax‖22 + Ωw(x), assume the columns of A have

zero-mean 1Tak = 0 and unit norm ‖ak‖2 = 1, and ρij = aTi aj . Then,

(i)
√

2− 2 ρij < ∆/‖y‖2 ⇒ x̂i = x̂j

(ii)
√

2 + 2 ρij < ∆/‖y‖2 ⇒ x̂i = −x̂j

Recovers the theorem by Bondell and Reich (2007) for OSCAR
(∆ = λ2), but under much weaker conditions.

Similar results can be proved for the absolute error loss.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 17 / 27



Part II: Statistical Analysis
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Statistical Bounds

Scenario and assumptions

y = Ax? + n

‖x?‖1 ≤
√
s ‖x‖2 (e.g., x? is s-sparse)

1
n‖n‖1 ≤ ε (no other assumptions on the noise)

Rows of A ∈ Rn×p are i.i.d. N (0,CTC)

..equivalently, A = BC, with rows of B ∈ Rn×r i.i.d. N (0, I), and
C ∈ Rr×p

Illustration (exactly replicated columns):
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Another Illustration: Highly Correlated Groups of Columns

Notice that rank(A) ≤ r
Similar columns are contiguous
only for visualization
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Statistical Bound

Theorem ( Figueiredo and Nowak (2014))

Let y, A, x?, and ε be as defined above, and x̂ be a solution to one of the
two following problems:

min
x∈Rp

Ωw(x) subject to
1

n
‖Ax− y‖22 ≤ ε2

min
x∈Rp

Ωw(x) subject to
1

n
‖Ax− y‖1 ≤ ε.

Then (with γ(C) = min{‖C‖1, ‖C‖2})

E‖C(x̂− x?)‖2 ≤
√

8π
(√

32 γ(C) ‖x?‖2
w1

w̄

√
s log p

n
+ ε
)
,

Proof based on techniques and tools by Vershynin (2014).

Key step: extension of the general M? bound for A = BC.
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Statistical Bound: Insight From a Special Case

Columns of A are either identical or uncorrelated.

Let x̄? have identical components, for identical columns of A.

In this case, the theorem claims that

E ‖x̂− x̄?‖2 ≤
√

8π
(

4
√

2 ‖x?‖2
w1

w̄

√
s log p

n
+ ε
)
.

i.e., number of samples sufficient to achieve a given precision grows as

n ∼ s log p

as in bounds with stronger assumptions, e.g., RIP or i.i.d. design
(Candès et al., 2006; Candès and Tao, 2007; Donoho, 2006; Haupt and

Nowak, 2006; Vershynin, 2014)

No price is paid for the colinearities in A
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Conclusions

OSCAR: a regularizer that aims at identifying groups of correlated
variables in linear regression.

OSCAR is a particular case of the OWL norm.

Exact clustering properties of OWL regularization

Statistical sample complexity bounds for OWL regularization with
correlated designs

Ongoing work: how to select the weights?

Ongoing work: other losses, e.g. logistic, hinge,...
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Thank you.
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Bühlmann, P., Rüttiman, P., van de Geer, S., and Zhang, C.-H. (2013). Correlated variables in
regression: Clustering and sparse estimation. Journal of Statistical Planning and Inference,
pages 1835–1858.

Candès, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much
larger than n. Annals of Statistics, 35:2313–2351.

Candès, E., Romberg, J., and Tao, T. (2006). IEEE Transactions on Information Theory,
52:489–509.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Chen, S., Donoho, D., and Saunders, M. (1995). Atomic decomposition by basis pursuit.
Technical report, Department of Statistics, Stanford University.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 25 / 27



References II

Dalton, H. (1920). The measurement of the inequality of incomes. The Economic Journal,
30:348–361.

De Mol, C., De Vito, E., and Rosasco, L. (2009). Elastic-net regularization in learning theory.
Journal of Complexity, 25:201–230.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,
52:1289–1306.

Figueiredo, M. and Nowak, R. (2014). Sparse estimation with strongly correlated variables using
ordered weighted `1 regularization. Technical report, available at
http://arxiv.org/abs/1409.4005.

Haupt, J. and Nowak, R. (2006). Signal reconstruction from noisy random projections. IEEE
Transactions on Information Theory, 52:4036–4048.

Hoerl, A. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 42:80–86.

Huang, J. and Zhang, T. (2010). Annals of Statistics, 38:1978–2004.

Marshall, A., Olkin, I., and Arnold, B. (2011). Inequalities: Theory of Majorization and Its
Applications. Springer, New York.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011). Structured
Sparsity in Structured Prediction. In Proc. of Empirical Methods for Natural Language
Processing.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 26 / 27

http://arxiv.org/abs/1409.4005


References III

Obozinski, G., Taskar, B., and Jordan, M. (2010). Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, 20(2):231–252.

Pigou, A. (1912). Wealth and Welfare. Macmillan, London.

Schmidt, M. and Murphy, K. (2010). Convex structure learning in log-linear models: Beyond
pairwise potentials. In Proc. of AISTATS.

Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals
with an optimal number of measurements. Signal Processing, IEEE Transactions on,
57(8):3075–3085.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society B., pages 267–288.

Vershynin, R. (2014). Estimation in high dimensions: A geometric perspective. Technical
report, available at http://arxiv.org/abs/1405.5103.

Zeng, X. and Figueiredo, M. (2014). Decreasing weighted sorted `1 regularization. IEEE Signal
Processing Letters, 21:1240–1244.

Zhong, L. and Kwok, J. (2012). Efficient sparse modeling with automatic feature grouping.
IEEE Transactions on Neural Networks and Learning Systems, 23:1436–1447.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B (Statistical Methodology), 67(2):301–320.

M. Figueiredo (IT, IST, U Lisboa) Ordered Weighted `1 (OWL) SPARS’2015 27 / 27

http://arxiv.org/abs/1405.5103

