Identifiability of Blind Deconvolution with Subspace or Sparsity Constraints

Yanjun Li

Joint work with Kiryung Lee and Yoram Bresler

Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois, Urbana-Champaign Email: yli145@illinois.edu

SPARS 2015 July 6-9, 2015, Cambridge, UK

Blind Deconvolution

- Both u and v are unknown \implies III-posed bilinear inverse problem
- Solved with "good" priors (e.g., subspace, sparsity)
- Empirical success in various applications (e.g., blind image deblurring, speech dereverberation, seismic data analysis, etc.)
- Theoretical results are limited. \implies The focus of this presentation

- Signal: $u_0 \in \mathbb{C}^n$
- Filter: $v_0 \in \mathbb{C}^n$
- Measurement: $z = u_0 \circledast v_0 \in \mathbb{C}^n$

 $\begin{array}{l} \mbox{find} & (u,v) \\ \mbox{s.t.} & u \circledast v = z, \\ & u \in \Omega_{\mathcal{U}}, \; v \in \Omega_{\mathcal{V}}. \end{array} \end{array}$

Three scenarios:

- Subspace constraints
- Sparsity constraints
- Mixed constraints

- Signal: $u_0 \in \mathbb{C}^n$
- Filter: $v_0 \in \mathbb{C}^n$
- Measurement: $z = u_0 \circledast v_0 \in \mathbb{C}^n$

 $\begin{array}{l} \mbox{find} & (u,v) \\ \mbox{s.t.} & u \circledast v = z, \\ & u \in \Omega_{\mathcal{U}}, \; v \in \Omega_{\mathcal{V}}. \end{array} \end{array}$

Three scenarios:
Subspace constraints
Sparsity constraints
Mixed constraints

- Signal: $u_0 \in \mathbb{C}^n$
- Filter: $v_0 \in \mathbb{C}^n$
- Measurement: $z = u_0 \circledast v_0 \in \mathbb{C}^n$

 $\begin{array}{l} \mbox{find} & (u,v) \\ \mbox{s.t.} & u \circledast v = z, \\ & u \in \Omega_{\mathcal{U}}, \; v \in \Omega_{\mathcal{V}}. \end{array} \end{array}$

Three scenarios:

- Subspace constraints
- Sparsity constraints
- Mixed constraints

• Signal: $u_0 = Dx_0$, the columns of $D \in \mathbb{C}^{n \times m_1}$ form a basis or a frame

• Filter: $v_0 = Ey_0$, the columns of $E \in \mathbb{C}^{n \times m_2}$ form a basis or a frame

• Measurement: $z = u_0 \circledast v_0 = (Dx_0) \circledast (Ey_0) \in \mathbb{C}^n$

(BD) find (x, y)s.t. $(Dx) \circledast (Ey) = z$, $x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}}.$

Three scenarios:

Subspace constraints: $\Omega_{\mathcal{X}} = \mathbb{C}^{m_1}$

and $\Omega_{\mathcal{V}} = \mathbb{C}^{m_2}$

- Sparsity constraints: $\Omega_{\mathcal{X}} = \{x \in \mathbb{C}^{m_1} : ||x||_0 \le s_1\}$ a
 - and $\Omega_{\mathcal{Y}} = \{y \in \mathbb{C}^{m_2} : \|y\|_0 \le s_2\}$

Mixed constraints:

 $\Omega_{\mathcal{X}} = \{ x \in \mathbb{C}^{m_1} : \|x\|_0 \le s_1 \} \quad \text{ and } \quad \Omega_{\mathcal{Y}} = \mathbb{C}^{m_2}$

Identifiability up to Scaling, and Lifting

Definition (Identifiability up to scaling)

For (BD), the pair (x_0, y_0) is identifiable up to scaling from the measurement $(Dx_0) \circledast (Ey_0)$, if every solution (x, y) satisfies $x = \sigma x_0$ and $y = \frac{1}{\sigma} y_0$ for some nonzero scalar σ .

Lifting

Define $\mathcal{G}_{DE} : \mathbb{C}^{m_1 \times m_2} \to \mathbb{C}^n$ such that $\mathcal{G}_{DE}(xy^T) = (Dx) \circledast (Ey)$, and $M_0 = x_0 y_0^T \in \Omega_{\mathcal{M}} = \{xy^T : x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}}\}.$

 $\begin{array}{ccc} (\mathsf{BD}) & \text{find} & (x,y), \\ & \text{s.t.} & (Dx) \circledast (Ey) = z, \\ & & x \in \Omega_{\mathcal{X}}, \ y \in \Omega_{\mathcal{Y}}. \end{array} \end{array} \xrightarrow{} \begin{array}{c} (\mathsf{Lifted } \mathsf{BD}) & \text{find} & M, \\ & \text{s.t.} & \mathcal{G}_{DE}(M) = z, \\ & & M \in \Omega_{\mathcal{M}}. \end{array}$

Identifiability up to Scaling, and Lifting

Definition (Identifiability up to scaling)

For (BD), the pair (x_0, y_0) is identifiable up to scaling from the measurement $(Dx_0) \circledast (Ey_0)$, if every solution (x, y) satisfies $x = \sigma x_0$ and $y = \frac{1}{\sigma} y_0$ for some nonzero scalar σ .

Lifting

Define $\mathcal{G}_{DE} : \mathbb{C}^{m_1 \times m_2} \to \mathbb{C}^n$ such that $\mathcal{G}_{DE}(xy^T) = (Dx) \circledast (Ey)$, and $M_0 = x_0 y_0^T \in \Omega_{\mathcal{M}} = \{xy^T : x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}}\}.$

$$\begin{array}{ccc} \text{(BD)} & \text{find} & (x,y), \\ & \text{s.t.} & (Dx) \circledast (Ey) = z, \\ & x \in \Omega_{\mathcal{X}}, \ y \in \Omega_{\mathcal{Y}}. \end{array} \end{array} \xrightarrow{} \begin{array}{c} \text{(Lifted BD)} & \text{find} & M, \\ & \text{s.t.} & \mathcal{G}_{DE}(M) = z, \\ & M \in \Omega_{\mathcal{M}}. \end{array}$$

Previous Results (all based on a lifting formulation)

- Identifiability analysis
 - Choudhary and Mitra, 2014]: canonical sparsity constraints
 - Lacks sample-complexity type interpretation
- Guaranteed recovery algorithms
 - ▶ [Ahmed, Recht, and Romberg, 2014]: nuclear norm minimization
 - [Ling and Strohmer, 2015]: ℓ_1 norm minimization
 - ▶ [Lee, Y. Li, Junge, and Bresler, 2015]: alternating minimization
 - [Chi, 2015]: atomic norm minimization
 - ✓ Constructive proof of uniqueness
 - Requires probabilistic assumptions and interpretations

Goal

- Identifiability in BD with more general bases or frames
- Algebraic analysis with minimal and deterministic assumptions
- Optimality in terms of sample complexities

Previous Results (all based on a lifting formulation)

- Identifiability analysis
 - Choudhary and Mitra, 2014]: canonical sparsity constraints
 - Lacks sample-complexity type interpretation
- Guaranteed recovery algorithms
 - ► [Ahmed, Recht, and Romberg, 2014]: nuclear norm minimization
 - [Ling and Strohmer, 2015]: ℓ_1 norm minimization
 - ▶ [Lee, Y. Li, Junge, and Bresler, 2015]: alternating minimization
 - [Chi, 2015]: atomic norm minimization
 - ✓ Constructive proof of uniqueness
 - Requires probabilistic assumptions and interpretations

Goal

- Identifiability in BD with more general bases or frames
- Algebraic analysis with minimal and deterministic assumptions
- Optimality in terms of sample complexities

Sample Complexities for Uniqueness in BD

$$z = (Dx_0) \circledast (Ey_0)$$

Theorem (Generic bases or frames)

The pair (x_0, y_0) is identifiable up to scaling from $(Dx_0) \circledast (Ey_0)$ for almost all $D \in \mathbb{C}^{n \times m_1}$ and $E \in \mathbb{C}^{n \times m_2}$ if:

- (subspace constraints) $n \ge m_1 m_2$
- (sparsity constraints) $n \ge 2s_1s_2$
- (mixed constraints) $n \ge 2s_1m_2$

Proof Sketch (Subspace Constraints, Generic D & E)

Lemma

If $n \ge m_1 m_2$, then for almost all $D \in \mathbb{C}^{n \times m_1}$ and $E \in \mathbb{C}^{n \times m_2}$, the following matrix G_{DE} has full column rank: $G_{DE} \operatorname{vec}(x u^T) = (Dx) \circledast (Ey)$

Lemma [Harikumar and Bresler, 1998] "Proof by Example"

- Suppose the entries of *G*_{DE} are polynomials in the entries of *D* and *E*.
- Suppose G_{DE} has full column rank for at least one choice of D and E.
- Then G_{DE} has full column rank for almost all D and E.

One good choice of D & E for $n \ge m_1 m_2$

Theorem (Generic bases or frames)

The pair (x_0, y_0) is identifiable up to scaling from $(Dx_0) \circledast (Ey_0)$ for almost all $D \in \mathbb{C}^{n \times m_1}$ and almost all $E \in \mathbb{C}^{n \times m_2}$ if:

- (subspace constraints) $n \ge m_1 m_2$
- (sparsity constraints) $n \ge 2s_1s_2$
- (mixed constraints) $n \ge 2s_1m_2$

Suspect this is suboptimal (# df = $m_1 + m_2 - 1$ for subspace constraints)

- Q: Can we get optimal sample complexities?
- A: Yes, if we consider more specialized scenarios.

Theorem (Generic bases or frames)

The pair (x_0, y_0) is identifiable up to scaling from $(Dx_0) \circledast (Ey_0)$ for almost all $D \in \mathbb{C}^{n \times m_1}$ and almost all $E \in \mathbb{C}^{n \times m_2}$ if:

- (subspace constraints) $n \ge m_1 m_2$
- (sparsity constraints) $n \ge 2s_1s_2$
- (mixed constraints) $n \ge 2s_1m_2$

Suspect this is suboptimal (# df = $m_1 + m_2 - 1$ for subspace constraints)

Q: Can we get optimal sample complexities?

A: Yes, if we consider more specialized scenarios.

Theorem (Generic bases or frames)

The pair (x_0, y_0) is identifiable up to scaling from $(Dx_0) \circledast (Ey_0)$ for almost all $D \in \mathbb{C}^{n \times m_1}$ and almost all $E \in \mathbb{C}^{n \times m_2}$ if:

- (subspace constraints) $n \ge m_1 m_2$
- (sparsity constraints) $n \ge 2s_1s_2$
- (mixed constraints) $n \ge 2s_1m_2$

Suspect this is suboptimal (# df = $m_1 + m_2 - 1$ for subspace constraints) Q: Can we get optimal sample complexities? A: Yes, if we consider more specialized scenarios.

Theorem (Generic bases or frames)

The pair (x_0, y_0) is identifiable up to scaling from $(Dx_0) \circledast (Ey_0)$ for almost all $D \in \mathbb{C}^{n \times m_1}$ and almost all $E \in \mathbb{C}^{n \times m_2}$ if:

- (subspace constraints) $n \ge m_1 m_2$
- (sparsity constraints) $n \ge 2s_1s_2$
- (mixed constraints) $n \ge 2s_1m_2$

Suspect this is suboptimal (# df = $m_1 + m_2 - 1$ for subspace constraints)

- Q: Can we get optimal sample complexities?
- A: Yes, if we consider more specialized scenarios.

Sub-band Structured Basis

Definition

- $\widetilde{E}^{(:,k)} := F_n E^{(:,k)}$ the DFT of the *k*th atom (column) in *E*
- J_k the support of $\widetilde{E}^{(:,k)}$
- \widehat{J}_k passband
- $\ell_k := |\widehat{J}_k| bandwidth$

DFTs of some possible signals

Sub-band Structured Basis

Definition

- $\widetilde{E}^{(:,k)} := F_n E^{(:,k)}$ the DFT of the *k*th atom (column) in *E*
- J_k the support of $\widetilde{E}^{(:,k)}$
- \widehat{J}_k passband
- $\ell_k := |\widehat{J}_k| \text{bandwidth}$

DFTs of some possible signals

Sub-band Structured Basis

Definition

- $\widetilde{E}^{(:,k)} := F_n E^{(:,k)}$ the DFT of the *k*th atom (column) in *E*
- J_k the support of $\widetilde{E}^{(:,k)}$
- \widehat{J}_k passband
- $\ell_k := |\widehat{J}_k|$ bandwidth

Blind Deconvolution: given D, E, & z, find x & y

Blind Gain and Phase Calibration

$$z_i = (\widetilde{E}\phi) \odot (Ax_i),$$

Blind Deconvolution: given D, E, & z, find x & y

Blind Gain and Phase Calibration

Sufficient Conditions with (Essentially) Optimal Sample Complexities

Theorem (Sub-band structured basis)

Suppose *E* forms a sub-band structured basis, $x_0 \in \mathbb{C}^{m_1}$ is nonzero, and all the entries of $y_0 \in \mathbb{C}^{m_2}$ are nonzero. If the sum of all the bandwidths satisfies

- (subspace constraints) $\sum_{k=1}^{m_2} \ell_k \ge m_1 + m_2 1$
- (mixed constraints) $\sum_{k=1}^{m_2} \ell_k \ge 2s_1 + m_2 1$

then for almost all $D \in \mathbb{C}^{n \times m_1}$, the pair (x_0, y_0) is identifiable up to scaling.

Proof Sketch

Lemma [Y. Li, Lee, & Bresler, 2015] Identifiability in bilinear inverse problems: http://arxiv.org/abs/1501.06120

In (BD), the pair (x_0, y_0) $(x_0 \neq 0, y_0 \neq 0)$ is identifiable up to scaling if and only if the following two conditions are met:

If there exists $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ such that $(Dx) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then $x = \sigma x_0$ for some nonzero $\sigma \in \mathbb{C}$.

2 If there exists $y \in \Omega_{\mathcal{Y}}$ such that $(Dx_0) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then $y = y_0$.

Condition 2 is easy to verify.

Condition 1 relies on the following fact:

If D is generic, and $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ satisfies $(Dx) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then

 $P_{x_0^{\perp}}x = 0.$

Hence $x = \sigma x_0$ for some scalar σ .

Necessary Conditions with Optimal Sample Complexities

Theorem (Necessary conditions)

If the supports J_k ($1 \le k \le m_2$) partition the DFT frequency range, then (x_0, y_0) is identifiable up to scaling only if

- (subspace constraints) $n \ge m_1 + m_2 1$
- (mixed constraints) $n \ge s_1 + m_2 1$

Necessary Conditions with Optimal Sample Complexities

Theorem (Necessary conditions)

If the supports J_k ($1 \le k \le m_2$) partition the DFT frequency range, then (x_0, y_0) is identifiable up to scaling only if

- (subspace constraints) $n \ge m_1 + m_2 1$ $n \ge m_1 + m_2 1$
- (mixed constraints) $n \ge s_1 + m_2 1$ $n \ge 2s_1 + m_2 1$

Necessary Conditions Sufficient Conditions

Conclusions

• The first algebraic sample complexities for unique blind deconvolution

Generic bases or frames:

- Subspace constraints: $n \ge m_1 m_2$
- Sparsity constraints: $n \ge 2s_1s_2$
- Mixed constraints: $n \ge 2s_1m_2$

A sub-band structured basis:

- Subspace constraints: $n \ge m_1 + m_2 1$ (optimal)
- Mixed constraints: $n \ge 2s_1 + m_2 1$ (nearly optimal)

• Generic bases or frames \Rightarrow violated on a set of Lebesgue measure zero

Journal version: http://arxiv.org/abs/1505.03399 Blind gain and phase calibration: http://arxiv.org/abs/1501.06120 Thank you!

References

- A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming. *IEEE Trans. Inf. Theory*, 60(3):1711–1732, Mar 2014.
- Y. Chi. Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. *arXiv preprint arXiv:1506.02751*, 2015.
- S. Choudhary and U. Mitra. Sparse blind deconvolution: What cannot be done. In *ISIT*, pages 3002–3006. IEEE, June 2014.
- G. Harikumar and Y. Bresler. FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders. *IEEE Trans. Signal Process.*, 46(1): 215–218, Jan 1998.
- K. Lee, Y. Li, M. Junge, and Y. Bresler. Stability in blind deconvolution of sparse signals and reconstruction by alternating minimization. *SampTA*, 2015.
- Y. Li, K. Lee, and Y. Bresler. A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models. *arXiv preprint arXiv:1501.06120*, 2015.
- S. Ling and T. Strohmer. Self-calibration and biconvex compressive sensing. *arXiv* preprint arXiv:1501.06864, 2015.

Proof Sketch

Lemma [Y. Li, Lee, & Bresler, 2015] Identifiability in bilinear inverse problems: http://arxiv.org/abs/1501.06120

In (BD), the pair (x_0, y_0) $(x_0 \neq 0, y_0 \neq 0)$ is identifiable up to scaling if and only if the following two conditions are met:

If there exists $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ such that $(Dx) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then $x = \sigma x_0$ for some nonzero $\sigma \in \mathbb{C}$.

2 If there exists $y \in \Omega_{\mathcal{Y}}$ such that $(Dx_0) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then $y = y_0$.

Condition 2 is easy to verify.

Condition 1 relies on the following fact:

If D is generic, and $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ satisfies $(Dx) \circledast (Ey) = (Dx_0) \circledast (Ey_0)$, then

$$\operatorname{diag}(\widetilde{E}y)\widetilde{D}x = (\widetilde{D}x) \odot (\widetilde{E}y) = (\widetilde{D}x_0) \odot (\widetilde{E}y_0) = \operatorname{diag}(\widetilde{E}y_0)\widetilde{D}x_0$$

Consider the passband \hat{J}_k , $k = 1, 2, \cdots, m_2$,

$$P_{x_0^{\perp}}x \in x_0^{\perp} \bigcap \left(\mathcal{R}(\widetilde{D}^{(\widehat{J}_k,:)*}) \bigcap x_0^{\perp} \right)^{\perp} = x_0^{\perp} \bigcap \mathcal{V}_k^{\perp}.$$

Hence

$$P_{x_0^{\perp}} x \in x_0^{\perp} \bigcap \mathcal{V}_1^{\perp} \bigcap \mathcal{V}_2^{\perp} \bigcap \cdots \bigcap \mathcal{V}_{m_2}^{\perp}.$$

Proof Sketch

$$P_{x_0^{\perp}} x \in x_0^{\perp} \bigcap \mathcal{V}_1^{\perp} \bigcap \mathcal{V}_2^{\perp} \bigcap \cdots \bigcap \mathcal{V}_{m_2}^{\perp}$$

For a generic matrix D, the subspaces $\mathcal{V}_1, \mathcal{V}_2, \cdots, \mathcal{V}_{m_2}$ are generic subspaces of x_0^{\perp} , with $\dim(\mathcal{V}_k) = \ell_k - 1$. If $\sum_{k=1}^{m_2} \ell_k \ge m_1 + m_2 - 1$, i.e., $\sum_{k=1}^{m_2} (\ell_k - 1) \ge m_1 - 1$, then

$$\sum_{k=1}^{m_2} \mathcal{V}_k = x_0^{\perp},$$

$$\operatorname{span}(x_0) + \sum_{k=1}^{m_2} \mathcal{V}_k = \mathbb{C}^{m_1},$$

$$P_{x_0^{\perp}} x \in \left(\operatorname{span}(x_0) + \sum_{k=1}^{m_2} \mathcal{V}_k\right)^{\perp} = \{0\}.$$

Hence $x = \sigma x_0$ for some scalar σ .