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Blind Deconvolution

PSF 

         signal: 𝑢       ⊛       filter: 𝑣     =     measurement: 𝑧  

Both u and v are unknown =⇒ Ill-posed bilinear inverse problem
Solved with “good” priors (e.g., subspace, sparsity)

X Empirical success in various applications (e.g., blind image deblurring,
speech dereverberation, seismic data analysis, etc.)

– Theoretical results are limited. =⇒ The focus of this presentation
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Problem Statement

Signal: u0 ∈ Cn

Filter: v0 ∈ Cn

Measurement: z = u0 ~ v0 ∈ Cn

find (u, v)

s.t. u~ v = z,

u ∈ ΩU , v ∈ ΩV .

Three scenarios:
1 Subspace constraints
2 Sparsity constraints
3 Mixed constraints
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Problem Statement

Signal: u0 = Dx0, the columns of D ∈ Cn×m1 form a basis or a frame
Filter: v0 = Ey0, the columns of E ∈ Cn×m2 form a basis or a frame
Measurement: z = u0 ~ v0 = (Dx0) ~ (Ey0) ∈ Cn

(BD) find (x, y)

s.t. (Dx) ~ (Ey) = z,

x ∈ ΩX , y ∈ ΩY .

Three scenarios:
1 Subspace constraints:

ΩX = Cm1 and ΩY = Cm2

2 Sparsity constraints:
ΩX = {x ∈ Cm1 : ‖x‖0 ≤ s1} and ΩY = {y ∈ Cm2 : ‖y‖0 ≤ s2}

3 Mixed constraints:
ΩX = {x ∈ Cm1 : ‖x‖0 ≤ s1} and ΩY = Cm2
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Identifiability up to Scaling, and Lifting

Definition (Identifiability up to scaling)
For (BD), the pair (x0, y0) is identifiable up to scaling from the measurement
(Dx0) ~ (Ey0), if every solution (x, y) satisfies x = σx0 and y = 1

σy0 for some
nonzero scalar σ.

Lifting
Define GDE : Cm1×m2 → Cn such that GDE(xyT ) = (Dx) ~ (Ey), and
M0 = x0y

T
0 ∈ ΩM = {xyT : x ∈ ΩX , y ∈ ΩY}.

(BD) find (x, y),

s.t. (Dx) ~ (Ey) = z,

x ∈ ΩX , y ∈ ΩY .

=⇒ (Lifted BD) find M,

s.t. GDE(M) = z,

M ∈ ΩM.
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Previous Results (all based on a lifting formulation)
Identifiability analysis

I [Choudhary and Mitra, 2014]: canonical sparsity constraints

– Lacks sample-complexity type interpretation

Guaranteed recovery algorithms
I [Ahmed, Recht, and Romberg, 2014]: nuclear norm minimization
I [Ling and Strohmer, 2015]: `1 norm minimization
I [Lee, Y. Li, Junge, and Bresler, 2015]: alternating minimization
I [Chi, 2015]: atomic norm minimization

X Constructive proof of uniqueness
– Requires probabilistic assumptions and interpretations

Goal
Identifiability in BD with more general bases or frames
Algebraic analysis with minimal and deterministic assumptions
Optimality in terms of sample complexities
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Sample Complexities for Uniqueness in BD
z

n =

D x0

m1

s1

~

E y0

m2

1

Mixed constraints

z = (Dx0) ~ (Ey0)

Theorem (Generic bases or frames)
The pair (x0, y0) is identifiable up to scaling from (Dx0) ~ (Ey0)
for almost all D ∈ Cn×m1 and E ∈ Cn×m2 if:

(subspace constraints) n ≥ m1m2

(sparsity constraints) n ≥ 2s1s2

(mixed constraints) n ≥ 2s1m2
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Proof Sketch (Subspace Constraints, Generic D & E)
Lemma

If n ≥ m1m2, then for almost all D ∈ Cn×m1 and E ∈ Cn×m2 , the following matrix
GDE has full column rank:

GDE vec(xyT ) = (Dx) ~ (Ey)

Lemma [Harikumar and Bresler, 1998] “Proof by Example”

Suppose the entries of GDE are polynomials in the entries of D and E.

Suppose GDE has full column rank for at least one choice of D and E.

Then GDE has full column rank for almost all D and E.

One good choice of D & E for n ≥ m1m2

Fn

DFT matrix

z = (FnD

D̃

x)� (FnE

Ẽ

y) = FnGDE

G̃DE

vec(xyT ) – In frequency domain

D̃ =

m1

Ẽ =

m2

=⇒ G̃DE =

m1m2

m1m2
n

Full rank
submatrices

1
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Optimality?

Theorem (Generic bases or frames)
The pair (x0, y0) is identifiable up to scaling from (Dx0) ~ (Ey0) for almost all
D ∈ Cn×m1 and almost all E ∈ Cn×m2 if:

(subspace constraints) n ≥ m1m2

(sparsity constraints) n ≥ 2s1s2

(mixed constraints) n ≥ 2s1m2

Suspect this is suboptimal (# df = m1 +m2 − 1 for subspace constraints)
Q: Can we get optimal sample complexities?
A: Yes, if we consider more specialized scenarios.
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Sub-band Structured Basis

Definition
Ẽ(:,k) := FnE

(:,k) – the DFT of the kth atom (column) in E
Jk – the support of Ẽ(:,k)

Ĵk – passband
`k := |Ĵk| – bandwidth

DFTs of the atoms in E DFTs of some possible signals

Ẽ(:,1)

Ẽ(:,2)

Ẽ(:,3)

J1

J2

J3

Ẽy1

Ẽy2

Ẽy3
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BD with a Sub-band Structured Basis
Blind Deconvolution: given D, E, & z, find x & y

(:,1)
E

(:,2)
E

(:,3)
E

Dx

(1)
y

(2)
y

(3)
y

z = (Dx) (Ey)⊛ 

Blind Gain and Phase Calibration

2J

1J

3J

zi = (Ẽφ)� (Axi),

column of A – array response
support of x – DOA
structure of Ẽ – sensor groups
entry of φ – gain and phase

Ẽ =

1
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BD with a Sub-band Structured Basis
Sufficient Conditions with (Essentially) Optimal Sample Complexities

Ẽ(:,1)

Ẽ(:,2)

Ẽ(:,3)

`1

`2

`3

n

Theorem (Sub-band structured basis)
Suppose E forms a sub-band structured basis, x0 ∈ Cm1 is nonzero, and all
the entries of y0 ∈ Cm2 are nonzero. If the sum of all the bandwidths satisfies

(subspace constraints)
∑m2

k=1 `k ≥ m1 +m2 − 1

(mixed constraints)
∑m2

k=1 `k ≥ 2s1 +m2 − 1

then for almost all D ∈ Cn×m1 , the pair (x0, y0) is identifiable up to scaling.
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Proof Sketch

Lemma [Y. Li, Lee, & Bresler, 2015] Identifiability in bilinear inverse problems: http://arxiv.org/abs/1501.06120

In (BD), the pair (x0, y0) (x0 6= 0, y0 6= 0) is identifiable up to scaling
if and only if the following two conditions are met:

1 If there exists (x, y) ∈ ΩX × ΩY such that (Dx) ~ (Ey) = (Dx0) ~ (Ey0), then
x = σx0 for some nonzero σ ∈ C.

2 If there exists y ∈ ΩY such that (Dx0) ~ (Ey) = (Dx0) ~ (Ey0), then y = y0.

Condition 2 is easy to verify.

Condition 1 relies on the following fact:
If D is generic, and (x, y) ∈ ΩX × ΩY satisfies (Dx) ~ (Ey) = (Dx0) ~ (Ey0), then

Px⊥
0
x = 0.

Hence x = σx0 for some scalar σ.
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BD with a Sub-band Structured Basis
Necessary Conditions with Optimal Sample Complexities

DFTs of the atoms in E

Ẽ(:,1)

Ẽ(:,2)

Ẽ(:,3)

n

Theorem (Necessary conditions)
If the supports Jk (1 ≤ k ≤ m2) partition the DFT frequency range,
then (x0, y0) is identifiable up to scaling only if

(subspace constraints) n ≥ m1 +m2 − 1

(mixed constraints) n ≥ s1 +m2 − 1
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Necessary Conditions with Optimal Sample Complexities
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Conclusions
The first algebraic sample complexities for unique blind deconvolution

Generic bases or frames:
I Subspace constraints: n ≥ m1m2

I Sparsity constraints: n ≥ 2s1s2

I Mixed constraints: n ≥ 2s1m2

A sub-band structured basis:
I Subspace constraints: n ≥ m1 +m2 − 1 (optimal)
I Mixed constraints: n ≥ 2s1 +m2 − 1 (nearly optimal)

Generic bases or frames⇒ violated on a set of Lebesgue measure zero

Journal version: http://arxiv.org/abs/1505.03399
Blind gain and phase calibration: http://arxiv.org/abs/1501.06120
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Thank you!
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Proof Sketch
Lemma [Y. Li, Lee, & Bresler, 2015] Identifiability in bilinear inverse problems: http://arxiv.org/abs/1501.06120

In (BD), the pair (x0, y0) (x0 6= 0, y0 6= 0) is identifiable up to scaling
if and only if the following two conditions are met:

1 If there exists (x, y) ∈ ΩX × ΩY such that (Dx) ~ (Ey) = (Dx0) ~ (Ey0), then
x = σx0 for some nonzero σ ∈ C.

2 If there exists y ∈ ΩY such that (Dx0) ~ (Ey) = (Dx0) ~ (Ey0), then y = y0.

Condition 2 is easy to verify.

Condition 1 relies on the following fact:
If D is generic, and (x, y) ∈ ΩX × ΩY satisfies (Dx) ~ (Ey) = (Dx0) ~ (Ey0), then

diag(Ẽy)D̃x = (D̃x)� (Ẽy) = (D̃x0)� (Ẽy0) = diag(Ẽy0)D̃x0.

Consider the passband Ĵk, k = 1, 2, · · · ,m2,

Px⊥
0
x ∈ x⊥0

⋂(
R(D̃(Ĵk,:)∗)

⋂
x⊥0

)⊥
= x⊥0

⋂
V⊥k .

Hence
Px⊥

0
x ∈ x⊥0

⋂
V⊥1
⋂
V⊥2
⋂
· · ·
⋂
V⊥m2

.
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Proof Sketch

Px⊥
0
x ∈ x⊥0

⋂
V⊥1
⋂
V⊥2
⋂
· · ·
⋂
V⊥m2

For a generic matrix D, the subspaces V1,V2, · · · ,Vm2 are generic subspaces of x⊥0 ,
with dim(Vk) = `k − 1. If

∑m2
k=1 `k ≥ m1 +m2 − 1, i.e.,

∑m2
k=1(`k − 1) ≥ m1 − 1, then

m2∑
k=1

Vk = x⊥0 ,

span(x0) +

m2∑
k=1

Vk = Cm1 ,

Px⊥
0
x ∈

(
span(x0) +

m2∑
k=1

Vk

)⊥
= {0}.

Hence x = σx0 for some scalar σ.
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