Identifiability of Blind Deconvolution with Subspace or Sparsity Constraints

Yanjun Li

Joint work with Kiryung Lee and Yoram Bresler

Coordinated Science Laboratory
Department of Electrical and Computer Engineering
University of Illinois, Urbana-Champaign
Email: yli145@illinois.edu

SPARS 2015
July 6-9, 2015, Cambridge, UK

Blind Deconvolution

- Both u and v are unknown \Longrightarrow III-posed bilinear inverse problem
- Solved with "good" priors (e.g., subspace, sparsity)
\checkmark Empirical success in various applications (e.g., blind image deblurring, speech dereverberation, seismic data analysis, etc.)
- Theoretical results are limited. \Longrightarrow The focus of this presentation

Problem Statement

- Signal: $u_{0} \in \mathbb{C}^{n}$
- Filter: $v_{0} \in \mathbb{C}^{n}$
- Measurement: $z=u_{0} \circledast v_{0} \in \mathbb{C}^{n}$

$$
\begin{array}{ll}
\text { find } & (u, v) \\
\text { s.t. } & u \circledast v=z, \\
& u \in \Omega_{\mathcal{U}}, v \in \Omega_{\mathcal{V}} .
\end{array}
$$

Three scenarios:
(1) Subspace constraints
(2) Sparsity constraints
(3) Mixed constraints

Problem Statement

- Signal: $u_{0} \in \mathbb{C}^{n}$
- Filter: $v_{0} \in \mathbb{C}^{n}$
- Measurement: $z=u_{0} \circledast v_{0} \in \mathbb{C}^{n}$

$$
\begin{array}{ll}
\text { find } & (u, v) \\
\text { s.t. } & u \circledast v=z, \\
& u \in \Omega_{\mathcal{U}}, v \in \Omega_{\mathcal{V}} .
\end{array}
$$

Three scenarios:
(1) Subspace constraints
(2) Sparsity constraints

Problem Statement

- Signal: $u_{0} \in \mathbb{C}^{n}$
- Filter: $v_{0} \in \mathbb{C}^{n}$
- Measurement: $z=u_{0} \circledast v_{0} \in \mathbb{C}^{n}$

$$
\begin{array}{ll}
\text { find } & (u, v) \\
\text { s.t. } & u \circledast v=z, \\
& u \in \Omega_{\mathcal{U}}, v \in \Omega_{\mathcal{V}} .
\end{array}
$$

Three scenarios:
© Subspace constraints
(3) Sparsity constraints
(3) Mixed constraints

Problem Statement

- Signal: $u_{0}=D x_{0}$, the columns of $D \in \mathbb{C}^{n \times m_{1}}$ form a basis or a frame
- Filter: $v_{0}=E y_{0}$, the columns of $E \in \mathbb{C}^{n \times m_{2}}$ form a basis or a frame
- Measurement: $z=u_{0} \circledast v_{0}=\left(D x_{0}\right) \circledast\left(E y_{0}\right) \in \mathbb{C}^{n}$

$$
\begin{aligned}
\text { (BD) } \text { find } & (x, y) \\
\text { s.t. } & (D x) \circledast(E y)=z, \\
& x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}} .
\end{aligned}
$$

Three scenarios:

(1) Subspace constraints:

$$
\Omega_{\mathcal{X}}=\mathbb{C}^{m_{1}} \quad \text { and } \Omega_{\mathcal{Y}}=\mathbb{C}^{m_{2}}
$$

(2) Sparsity constraints:

$$
\Omega_{\mathcal{X}}=\left\{x \in \mathbb{C}^{m_{1}}:\|x\|_{0} \leq s_{1}\right\} \quad \text { and } \quad \Omega_{\mathcal{Y}}=\left\{y \in \mathbb{C}^{m_{2}}:\|y\|_{0} \leq s_{2}\right\}
$$

(3) Mixed constraints:

$$
\Omega_{\mathcal{X}}=\left\{x \in \mathbb{C}^{m_{1}}:\|x\|_{0} \leq s_{1}\right\} \quad \text { and } \quad \Omega_{\mathcal{Y}}=\mathbb{C}^{m_{2}}
$$

Identifiability up to Scaling, and Lifting

Definition (Identifiability up to scaling)

For (BD), the pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from the measurement $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, if every solution (x, y) satisfies $x=\sigma x_{0}$ and $y=\frac{1}{\sigma} y_{0}$ for some nonzero scalar σ.

Identifiability up to Scaling, and Lifting

Definition (Identifiability up to scaling)

For (BD), the pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from the measurement $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, if every solution (x, y) satisfies $x=\sigma x_{0}$ and $y=\frac{1}{\sigma} y_{0}$ for some nonzero scalar σ.

Lifting

Define $\mathcal{G}_{D E}: \mathbb{C}^{m_{1} \times m_{2}} \rightarrow \mathbb{C}^{n}$ such that $\mathcal{G}_{D E}\left(x y^{T}\right)=(D x) \circledast(E y)$, and $M_{0}=x_{0} y_{0}^{T} \in \Omega_{\mathcal{M}}=\left\{x y^{T}: x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}}\right\}$.
(BD) find (x, y),
s.t. $(D x) \circledast(E y)=z$, $x \in \Omega_{\mathcal{X}}, y \in \Omega_{\mathcal{Y}}$.
(Lifted BD) find M,

$$
\begin{gathered}
\text { s.t. } \mathcal{G}_{D E}(M)=z, \\
\\
M \in \Omega_{\mathcal{M}} .
\end{gathered}
$$

Previous Results (all based on a lifting formulation)

- Identifiability analysis
- [Choudhary and Mitra, 2014]: canonical sparsity constraints
- Lacks sample-complexity type interpretation
- Guaranteed recovery algorithms
- [Ahmed, Recht, and Romberg, 2014]: nuclear norm minimization
- [Ling and Strohmer, 2015]: ℓ_{1} norm minimization
- [Lee, Y. Li, Junge, and Bresler, 2015]: alternating minimization
- [Chi, 2015]: atomic norm minimization
\checkmark Constructive proof of uniqueness
- Requires probabilistic assumptions and interpretations
- Identifiability in BD with more general bases or frames
- Algebraic analysis with minimal and deterministic assumptions
- Optimality in terms of sample complexities

Previous Results (all based on a lifting formulation)

- Identifiability analysis
- [Choudhary and Mitra, 2014]: canonical sparsity constraints
- Lacks sample-complexity type interpretation
- Guaranteed recovery algorithms
- [Ahmed, Recht, and Romberg, 2014]: nuclear norm minimization
- [Ling and Strohmer, 2015]: ℓ_{1} norm minimization
- [Lee, Y. Li, Junge, and Bresler, 2015]: alternating minimization
- [Chi, 2015]: atomic norm minimization
\checkmark Constructive proof of uniqueness
- Requires probabilistic assumptions and interpretations

Goal

- Identifiability in BD with more general bases or frames
- Algebraic analysis with minimal and deterministic assumptions
- Optimality in terms of sample complexities

Sample Complexities for Uniqueness in BD

Mixed constraints

$$
z=\left(D x_{0}\right) \circledast\left(E y_{0}\right)
$$

Theorem (Generic bases or frames)

The pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$ for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and $E \in \mathbb{C}^{n \times m_{2}}$ if:

- (subspace constraints) $n \geq m_{1} m_{2}$
- (sparsity constraints) $n \geq 2 s_{1} s_{2}$
- (mixed constraints)
$n \geq 2 s_{1} m_{2}$

Proof Sketch (Subspace Constraints, Generic $D \& E$)

Lemma

If $n \geq m_{1} m_{2}$, then for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and $E \in \mathbb{C}^{n \times m_{2}}$, the following matrix $G_{D E}$ has full column rank:

$$
G_{D E} \operatorname{vec}\left(x y^{T}\right)=(D x) \circledast(E y)
$$

Lemma [Harikumar and Bresler, 1998] "Proof by Example"

- Suppose the entries of $G_{D E}$ are polynomials in the entries of D and E.
- Suppose $G_{D E}$ has full column rank for at least one choice of D and E.
- Then $G_{D E}$ has full column rank for almost all D and E.

One good choice of $D \& E$ for $n \geq m_{1} m_{2}$

Optimality?

Theorem (Generic bases or frames)
The pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$ for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and almost all $E \in \mathbb{C}^{n \times m_{2}}$ if:

- (subspace constraints) $n \geq m_{1} m_{2}$
- (sparsity constraints) $n \geq 2 s_{1} s_{2}$
- (mixed constraints) $n \geq 2 s_{1} m_{2}$

Suspect this is suboptimal (\# df $=m_{1}+m_{2}-1$ for subspace constraints)
Q: Can we get optimal sample complexities?
A: Yes, if we consider more specialized scenarios.

Optimality?

Theorem (Generic bases or frames)
The pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$ for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and almost all $E \in \mathbb{C}^{n \times m_{2}}$ if:

- (subspace constraints) $n \geq m_{1} m_{2}$
- (sparsity constraints) $n \geq 2 s_{1} s_{2}$
- (mixed constraints) $n \geq 2 s_{1} m_{2}$

Suspect this is suboptimal (\# df $=m_{1}+m_{2}-1$ for subspace constraints)
Q: Can we get optimal sample complexities?
A: Yes, if we consider more specialized scenarios.

Optimality?

Theorem (Generic bases or frames)

The pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$ for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and almost all $E \in \mathbb{C}^{n \times m_{2}}$ if:

- (subspace constraints) $n \geq m_{1} m_{2}$
- (sparsity constraints) $n \geq 2 s_{1} s_{2}$
- (mixed constraints) $n \geq 2 s_{1} m_{2}$

Suspect this is suboptimal (\#df $=m_{1}+m_{2}-1$ for subspace constraints)
Q: Can we get optimal sample complexities?
A: Yes, if we consider more specialized scenarios.

Optimality?

Theorem (Generic bases or frames)

The pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling from $\left(D x_{0}\right) \circledast\left(E y_{0}\right)$ for almost all $D \in \mathbb{C}^{n \times m_{1}}$ and almost all $E \in \mathbb{C}^{n \times m_{2}}$ if:

- (subspace constraints) $n \geq m_{1} m_{2}$
- (sparsity constraints) $n \geq 2 s_{1} s_{2}$
- (mixed constraints) $n \geq 2 s_{1} m_{2}$

Suspect this is suboptimal (\#df $=m_{1}+m_{2}-1$ for subspace constraints)
Q: Can we get optimal sample complexities?
A: Yes, if we consider more specialized scenarios.

Sub-band Structured Basis

Definition

- $\widetilde{E}^{(:, k)}:=F_{n} E^{(:, k)}$ - the DFT of the k th atom (column) in E
- J_{k} - the support of $\widetilde{E}^{(:, k)}$

DFTs of the atoms in E

DFTs of some possible signals

Sub-band Structured Basis

Definition

- $\widehat{J}_{k}-$ passband
- $\ell_{k}:=\left|\widehat{J}_{k}\right|$ - bandwidth

DFTs of the atoms in E
$\widetilde{E}^{(:, 1)}$
$\widetilde{E}^{(:, 2)}$
$\widetilde{E}^{(:, 3)}$

DFTs of some possible signals

Sub-band Structured Basis

Definition

- $\widetilde{E}^{(:, k)}:=F_{n} E^{(:, k)}$ - the DFT of the k th atom (column) in E
- J_{k} - the support of $\widetilde{E}^{(\cdot, k)}$
- \widehat{J}_{k} - passband
- $\ell_{k}:=\left|\widehat{J}_{k}\right|$ - bandwidth

BD with a Sub-band Structured Basis

Blind Deconvolution: given $D, E, \& z$, find $x \& y$

Blind Gain and Phase Calibration

$$
z_{i}=(\widetilde{E} \phi) \odot\left(A x_{i}\right)
$$

column of A - array response support of x - DOA structure of \widetilde{E} - sensor groups entry of $\phi \quad-$ gain and phase

BD with a Sub-band Structured Basis

Blind Deconvolution: given $D, E, \& z$, find $x \& y$

Blind Gain and Phase Calibration

BD with a Sub-band Structured Basis

Sufficient Conditions with (Essentially) Optimal Sample Complexities

Theorem (Sub-band structured basis)

Suppose E forms a sub-band structured basis, $x_{0} \in \mathbb{C}^{m_{1}}$ is nonzero, and all the entries of $y_{0} \in \mathbb{C}^{m_{2}}$ are nonzero. If the sum of all the bandwidths satisfies

- (subspace constraints) $\quad \sum_{k=1}^{m_{2}} \ell_{k} \geq m_{1}+m_{2}-1$
- (mixed constraints) $\quad \sum_{k=1}^{m_{2}} \ell_{k} \geq 2 s_{1}+m_{2}-1$
then for almost all $D \in \mathbb{C}^{n \times m_{1}}$, the pair $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling.

Proof Sketch

Lemma [Y. Li, Lee, \& Bresler, 2015] Identifibility in bilinear inverse problems: htep: //arxiv. org/abs/15001.06120
In (BD), the pair $\left(x_{0}, y_{0}\right)\left(x_{0} \neq 0, y_{0} \neq 0\right)$ is identifiable up to scaling if and only if the following two conditions are met:
(1) If there exists $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ such that $(D x) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then $x=\sigma x_{0}$ for some nonzero $\sigma \in \mathbb{C}$.
(2) If there exists $y \in \Omega_{y}$ such that $\left(D x_{0}\right) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then $y=y_{0}$.

Condition 2 is easy to verify.
Condition 1 relies on the following fact: If D is generic, and $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ satisfies $(D x) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then

$$
P_{x_{0}^{\perp}} x=0 .
$$

Hence $x=\sigma x_{0}$ for some scalar σ.

BD with a Sub-band Structured Basis

Necessary Conditions with Optimal Sample Complexities
DFTs of the atoms in E

Theorem (Necessary conditions)

If the supports $J_{k}\left(1 \leq k \leq m_{2}\right)$ partition the DFT frequency range, then $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling only if

- (subspace constraints)

```
n\geq\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}-1
\(n \geq s_{1}+m_{2}-1\)
```

- (mixed constraints)

BD with a Sub-band Structured Basis

Necessary Conditions with Optimal Sample Complexities
DFTs of the atoms in E

Theorem (Necessary conditions)

If the supports $J_{k}\left(1 \leq k \leq m_{2}\right)$ partition the DFT frequency range, then $\left(x_{0}, y_{0}\right)$ is identifiable up to scaling only if

- (subspace constraints)

$$
\begin{array}{ll}
n \geq m_{1}+m_{2}-1 & n \geq m_{1}+m_{2}-1 \\
n \geq s_{1}+m_{2}-1 & n \geq 2 s_{1}+m_{2}-1
\end{array}
$$

- (mixed constraints)

Conclusions

- The first algebraic sample complexities for unique blind deconvolution

Generic bases or frames:

- Subspace constraints: $n \geq m_{1} m_{2}$
- Sparsity constraints: $\quad n \geq 2 s_{1} s_{2}$
- Mixed constraints: $n \geq 2 s_{1} m_{2}$

A sub-band structured basis:

- Subspace constraints: $n \geq m_{1}+m_{2}-1$ (optimal)
- Mixed constraints: $\quad n \geq 2 s_{1}+m_{2}-1$ (nearly optimal)
- Generic bases or frames \Rightarrow violated on a set of Lebesgue measure zero

Journal version: http://arxiv.org/abs/1505.03399 Blind gain and phase calibration: http://arxiv.org/abs/1501.06120

Thank you!

References

A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming. IEEE Trans. Inf. Theory, 60(3):1711-1732, Mar 2014.
Y. Chi. Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. arXiv preprint arXiv:1506.02751, 2015.
S. Choudhary and U. Mitra. Sparse blind deconvolution: What cannot be done. In ISIT, pages 3002-3006. IEEE, June 2014.
G. Harikumar and Y. Bresler. FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders. IEEE Trans. Signal Process., 46(1): 215-218, Jan 1998.
K. Lee, Y. Li, M. Junge, and Y. Bresler. Stability in blind deconvolution of sparse signals and reconstruction by alternating minimization. SampTA, 2015.
Y. Li, K. Lee, and Y. Bresler. A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models. arXiv preprint arXiv:1501.06120, 2015.
S. Ling and T. Strohmer. Self-calibration and biconvex compressive sensing. arXiv preprint arXiv:1501.06864, 2015.

Proof Sketch

Lemma [Y. Li, Lee, \& Bresler, 2015] Identifibility in bilinear inverse problems: htep: //arxiv. org/abs/ $1501 . .06120$

In (BD), the pair $\left(x_{0}, y_{0}\right)\left(x_{0} \neq 0, y_{0} \neq 0\right)$ is identifiable up to scaling if and only if the following two conditions are met:
(1) If there exists $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ such that $(D x) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then $x=\sigma x_{0}$ for some nonzero $\sigma \in \mathbb{C}$.
(2) If there exists $y \in \Omega y$ such that $\left(D x_{0}\right) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then $y=y_{0}$.

Condition 2 is easy to verify.
Condition 1 relies on the following fact:
If D is generic, and $(x, y) \in \Omega_{\mathcal{X}} \times \Omega_{\mathcal{Y}}$ satisfies $(D x) \circledast(E y)=\left(D x_{0}\right) \circledast\left(E y_{0}\right)$, then

$$
\operatorname{diag}(\widetilde{E} y) \widetilde{D} x=(\widetilde{D} x) \odot(\widetilde{E} y)=\left(\widetilde{D} x_{0}\right) \odot\left(\widetilde{E} y_{0}\right)=\operatorname{diag}\left(\widetilde{E} y_{0}\right) \widetilde{D} x_{0} .
$$

Consider the passband $\widehat{J_{k}}, k=1,2, \cdots, m_{2}$,

$$
P_{x_{0}^{\perp}} x \in x_{0}^{\perp} \bigcap\left(\mathcal{R}\left(\widetilde{D}^{\left(\widehat{J}_{k},:\right) *}\right) \bigcap x_{0}^{\perp}\right)^{\perp}=x_{0}^{\perp} \bigcap \mathcal{V}_{k}^{\perp} .
$$

Hence

$$
P_{x_{0}^{\perp}} x \in x_{0}^{\perp} \bigcap \mathcal{V}_{1}^{\perp} \bigcap \mathcal{V}_{2}^{\perp} \bigcap \cdots \bigcap \mathcal{V}_{m_{2}}^{\perp} .
$$

Proof Sketch

$$
P_{x_{0}^{\perp}} x \in x_{0}^{\perp} \bigcap \mathcal{V}_{1}^{\perp} \bigcap \mathcal{V}_{2}^{\perp} \bigcap \cdots \bigcap \mathcal{V}_{m_{2}}^{\perp}
$$

For a generic matrix D, the subspaces $\mathcal{V}_{1}, \mathcal{V}_{2}, \cdots, \mathcal{V}_{m_{2}}$ are generic subspaces of x_{0}^{\perp}, with $\operatorname{dim}\left(\mathcal{V}_{k}\right)=\ell_{k}-1$. If $\sum_{k=1}^{m_{2}} \ell_{k} \geq m_{1}+m_{2}-1$, i.e., $\sum_{k=1}^{m_{2}}\left(\ell_{k}-1\right) \geq m_{1}-1$, then

$$
\begin{aligned}
& \sum_{k=1}^{m_{2}} \mathcal{V}_{k}=x_{0}^{\perp} \\
& \operatorname{span}\left(x_{0}\right)+\sum_{k=1}^{m_{2}} \mathcal{V}_{k}=\mathbb{C}^{m_{1}} \\
& P_{x_{0}} x \in\left(\operatorname{span}\left(x_{0}\right)+\sum_{k=1}^{m_{2}} \mathcal{V}_{k}\right)^{\perp}=\{0\} .
\end{aligned}
$$

Hence $x=\sigma x_{0}$ for some scalar σ.

