Near Optimal Compressed Sensing without Priors: Parametric SURE Approximate Message Passing

Chunli Guo, University College London Mike E. Davies, University of Edinburgh

1

Talk Outline

- Motivation for Parametric SURE-AMP
 - What is approximate message passing (AMP) algorithm ?
 - Iterative Gaussian denoising nature of AMP
- Parametric SURE-AMP Algorithm
 - SURE based denoiser design
 - Parameterization & optimization of denoisers
- Numerical Reconstruction Examples

What is AMP?

- The CS reconstruction problem $y = \Phi x_0$ with $\Phi \in \mathbb{R}^{m \times n}$, m < n
- The Generic AMP algorithm for i.i.d Gaussian Φ [Donoho 09]
- Initialized with $\hat{x}^0 = 0$, $z^0 = y$

For t = 0, 1....

$$r^{t} = \hat{x}^{t} + \Phi^{T} z^{t}$$

$$\hat{x}^{t+1} = \eta_{t} (r^{t})$$

$$z^{t+1} = y - \Phi \hat{x}^{t+1} + \frac{n}{m} z^{t} < \eta_{t}^{'} (r^{t}) > \longleftarrow \text{ Onsager reaction term}$$

Where $\eta_t(\bullet)$ is the non-linear function applied element-wise to the vector r^t

Iterative Gaussian denoising nature of AMP

Quantile-Quantile Plot for $r^{t} - x_{0}$ against Gaussian distribution

 C^{t} is the effective noise variance at each AMP iteration

AMP variants:

- L1-AMP: $\eta_t(\bullet)$ being the soft-thresholding function
- Bayesian optimal AMP: $\eta_t(\bullet)$ being the MMSE estimator

Motivation for parametric SURE-AMP

- L1-AMP treats the signal denoising as a 1-d problem while the true signal pdf is visible in the noisy estimate r^{t} in the large system limit.
- Reconstruction goal: achieve recovery with minimum MSE (BAMP reconstruction) without the prior $p(x_0)$
- Solution:
- Fitting the prior with finite number of Gaussians iteratively EM-GAMP algorithm [Vila et al. 2013] – indirect way to minimize MSE
- Optimize the parametric denoiser iteratively
 Parametric SURE-AMP direct way to minimize MSE

Parametric SURE-AMP algorithm

Initialized with $\hat{x}^{0} = 0$, $z^{0} = y$, $c^{0} = ||z^{0}||^{2} >$

For t = 0,1,....

 $r^{t} = \hat{x}^{t} + \Phi^{T} z^{t}$ $\boldsymbol{\upsilon}^{t+1} = \left\langle f_t'(\boldsymbol{r}^t, \boldsymbol{c}^t \mid \boldsymbol{\theta}^t) \right\rangle$ $z^{t+1} = y - \Phi \hat{x}^{t+1} + \frac{n}{-} \upsilon^{t+1} z^{t}$ m $c^{t+1} = \left\langle \left\| z^{t+1} \right\|^2 \right\rangle$

SURE: Unbiased estimate of MSE

- Ideally we would like a denoiser with the mimimum MSE.
 Calculating MSE requires *x*₀, thus we need to find a surrogate for MSE
- Let $r = x_0 + w\sqrt{c}$ be the noisy observation of x_0 with $w \sim N(0,1)$ The denoised signal is obtained via

$$\hat{x} = f(r, c \mid \theta) = r + g(r, c \mid \theta)$$

Theorem [Stein 1981]

SURE is defined as the expected value over the noisy data alone and is the unbiased estimate of the MSE

$$E_{\hat{x},x_0}\left\{ \left(\hat{x} - x_0 \right)^2 \right\} = E_{x_0,\gamma} \left\{ \left[f(r,c \mid \theta) - x_0 \right]^2 \right\}$$
$$= c + E_r \left\{ g^2(r,c \mid \theta) + 2cg'(r,c \mid \theta) \right\}$$

Parameter Selection Function

The denoiser parameters are iteratively selected according to

$$\theta^{t} = H_{t}(r^{t}, c^{t})$$

= $\underset{\theta}{argmin} \left\langle g^{2}(r^{t}, c^{t} | \theta) + 2c^{t}g'(r^{t}, c^{t} | \theta) \right\rangle$

- The parameters optimization relies purely on the noisy data and the effective noise variance.
- If all MMSE estimators are included in the parametric family, the parametric SURE-AMP achieves the BAMP performance without prior.

Practical Parametric Denoiser

 The denoiser is parameterized as the weighted sum of kernel functions

$$f(\gamma, c \mid \theta) = r + g(\gamma, c \mid \theta) = \sum_{i=1}^{\kappa} \lambda_i f_i(r \mid \Delta_i(c))$$

• The non-linear parameters of the kernels are tied up with the effective noise variance $\Delta_i(c) = \omega_i c$

where ω_i is fixed for all iterations.

• The linear weight for the kernels are optimized by solving

$$\varepsilon = c + \left\langle g^{2}(r,c \mid \theta) + 2cg'(r,c \mid \theta) \right\rangle$$
$$\frac{d\varepsilon}{d\lambda_{i}} = \left\langle 2g(r,c \mid \theta) \frac{d}{d\lambda_{i}} g(r,c \mid \theta) + c \frac{d}{d\lambda_{i}} g'(r,c \mid \theta) \right\rangle = 0$$

Kernel Function Examples

Piecewise Linear Kernel [Donoho et al. 2012]

$$\alpha_1 = 2\sqrt{c}, \quad \alpha_2 = 4\sqrt{c}$$

Exponential Kernel [Luisier et al. 2007]

$$f_1(\gamma) = \gamma, f_2(\gamma \mid \mathbf{T}) = \gamma e^{-\frac{\gamma^2}{2T^2}}$$
$$T = 6\sqrt{c}$$

MMSE estimator V.S. Kernel Based Denoiser

 $p(\mathbf{x}) = 0.1 \,\mathrm{N}(0, 1) + 0.9 \,\delta(\mathbf{x})$

Reconstruction Comparison

Reconstruction Comparison

 $p(\mathbf{x}) = 0.1 \operatorname{N}(0, 1) + 0.9 \operatorname{N}(0, 0.01)$

20 times faster than the EM-GM-GAMP algorithm for Bernoulli-Gaussian

Natural Images Reconstruction

Natural Images Reconstruction

Boat	20 %	30 %	40 %	${f 50\%}$	60 %	70 %
ℓ_1 -AMP	13.065	13.55	14.77	14.87	15.90	17.93
EM-GM-GAMP	14.04	14.32	15.90	16.14	16.90	18.32
SURE-AMP	14.44	15.00	16.20	16.26	17.27	18.94
House	20 %	30 %	40 %	${f 50\%}$	60 %	70 %
ℓ_1 -AMP	14.33	14.87	15.33	15.53	17.14	17.64
EM-GM-GAMP	15.29	15.78	15.85	17.09	18.91	19.56
SURE-AMP	15.63	16.29	16.59	17.02	18.95	19.82
Lena	20 %	30 %	40 %	${f 50\%}$	60 %	70 %
ℓ_1 -AMP	12.04	13.18	14.12	14.62	15.56	16.40
EM-GM-GAMP	13.56	13.92	14.80	15.71	16.80	17.55
SURE-AMP	13.82	13.97	15.08	16.34	17.19	19.22
Cameraman	20 %	30 %	40 %	${f 50\%}$	60 %	70 %
ℓ_1 -AMP	12.20	12.65	13.55	14.00	14.56	16.78
EM-GM-GAMP	13.10	13.87	14.55	15.63	16.39	18.55
SURE-AMP	12.78	14.12	14.69	16.33	16.65	18.30
Bridge	20 %	30 %	40 %	${f 50\%}$	60 %	70 %
ℓ_1 -AMP	13.62	14.21	14.41	15.68	16.21	17.42
EM-GM-GAMP	14.25	15.15	15.70	16.64	18.20	18.83
SURE-AMP	14.29	15.31	16.13	16.81	18.19	18.78

Conclusion

- The parametric SURE-AMP *directly minimizes the MSE* of the reconstructed signal at each iteration.
- With proper design of the parametric family, the parametric SURE-AMP algorithm *achieves the BAMP performance without the signal prior*.
- The parametric SURE is *cheap in terms of the computational cost.*
- Further research involves considering more sophisticated kernel families and the rigorous proof for the state evolution dynamics.