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Talk Outline 

• Motivation for Parametric SURE-AMP 

 What is approximate message passing (AMP) algorithm ? 

 Iterative Gaussian denoising nature of AMP 

 

• Parametric SURE-AMP Algorithm  

 SURE based denoiser design 

 Parameterization & optimization of denoisers 

 

• Numerical Reconstruction Examples  



What is AMP ?  

• The CS reconstruction problem               with               , 

• The Generic AMP algorithm for i.i.d Gaussian       [Donoho 09] 

• Initialized with          ,             

           For t = 0, 1…. 
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( )t Where         is the non-linear function applied element-wise to the vector tr

Onsager reaction term 



Iterative Gaussian denoising nature of AMP 

t=10 t=20 t=40 

Quantile-Quantile Plot for              against Gaussian distribution  0
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is the effective noise variance at each AMP iteration  
tc

AMP variants: 

• L1-AMP:          being the soft-thresholding function 

• Bayesian optimal AMP:          being the MMSE estimator 
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Motivation for parametric SURE-AMP 

• L1-AMP treats the signal denoising as a 1-d problem while the true 

signal pdf is visible in the noisy estimate     in the large system limit. 

 

• Reconstruction goal: achieve recovery with minimum MSE (BAMP 

reconstruction) without the prior            

 

•  Solution: 

• Fitting the prior with finite number of Gaussians iteratively 

   EM-GAMP algorithm [Vila et al. 2013] – indirect way to minimize MSE                

• Optimize the parametric denoiser iteratively 

   Parametric SURE-AMP – direct way to minimize MSE 
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Parametric SURE-AMP algorithm 

Initialized with          ,         ,         
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For t = 0,1,…. 
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parameter selection function 

parametric denoiser  



SURE: Unbiased estimate of MSE 
• Ideally we would like a denoiser with the mimimum MSE. 

Calculating MSE requires     , thus we need to find a 

surrogate for MSE   

• Let                     be the noisy observation of     with                    

   The denoised signal is obtained via 
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Theorem [Stein 1981] 

SURE is defined as the expected value over the noisy 

data alone and is the unbiased estimate of the MSE  
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Parameter Selection Function  

 The denoiser parameters are iteratively selected according to 

 

 

 

 

• The parameters optimization relies purely on the noisy  

     data and the effective noise variance.  

 

• If all MMSE estimators are included in the parametric  

    family, the parametric SURE-AMP achieves the BAMP  

    performance without prior. 
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Practical Parametric Denoiser 
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• The denoiser is parameterized as the weighted sum of 

kernel functions 

 

 

• The non-linear parameters of the kernels are tied up with 

the effective noise variance 

 

    where     is fixed  for all iterations. 

 

• The linear weight for the kernels are optimized by solving  
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Kernel Function Examples 
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Piecewise Linear Kernel [Donoho et al. 2012] Exponential Kernel [Luisier et al. 2007] 
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MMSE estimator V.S. Kernel Based Denoiser 

(x) 0.1N(0,1) 0.9 (x)p  



Reconstruction Comparison 

(x) 0.1N(0,1) 0.9 (x)p  



Reconstruction Comparison 

 

(x) 0.1N(0,1) 0.9 (0,0.01)p N 



Runtime Comparison 

20 times faster than the EM-GM-GAMP algorithm for Bernoulli-Gaussian 



Natural Images Reconstruction 

 



Natural Images Reconstruction 

 



Conclusion 

• The parametric SURE-AMP directly minimizes the MSE 

of the reconstructed signal at each iteration. 

• With proper design of the parametric family, the 

parametric SURE-AMP algorithm achieves the BAMP 

performance without the signal prior. 

• The parametric SURE is cheap in terms of the 

computational cost. 

• Further research involves considering more sophisticated 

kernel families and the rigorous proof for the state 

evolution dynamics. 

 

 


