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The multiple measurement vector problem

The multiple measurement vector (MMV) is given by

where
oY = [yl Y2 ... yT] € RVXT is an observation matrix
e A € RVXD s known forward model
e X =[x x ... m7]€RPXT is the desired solution
We assume

e Underdetermined regime N < D
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The multiple measurement vector problem

The multiple measurement vector (MMV) is given by

Y A X E
| | = | | +
where
oY = [yl Y2 ... yT] € RVXT is an observation matrix
e A € RVXD s known forward model
e X =[x x ... m7]€RPXT is the desired solution
We assume

e Underdetermined regime N < D

® Sparsity pattern of X is assumed to be spatial-temporally correlated
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Motivation: EEG Source Localization

e We observe a multivariate time series Y € RNVXT
X € RPXT given a forward model A € RVN*D,

and want to infer the underlying sources

Approximately sparse and
spatiotemporal structure

Forward model Noise
EEG measurement A Source magnitudes E
Y = X +

® The brain is modelled using a set of discrete current dipoles

3 DTU Compute 7.7.2015

o
—
=

M



Roadmap

® Qur goal is to formulate a probabilistic model for
incorporating the prior knowledge of the support and
apply Bayes rule for inference

(independent) spike and slab prior

® The so-called spike and slab prior is often used for
imposing sparsity in a probabilistic setting

Spatial dimension

@ T.J. Mitchell & J.J. B hamp: B. ian Variable Selection in ¥
. . . i L Temporal dimension
Linear Regression, Journal of the American Statistical Association
1988
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Roadmap

® Qur goal is to formulate a probabilistic model for
incorporating the prior knowledge of the support and
apply Bayes rule for inference

® The so-called spike and slab prior is often used for
imposing sparsity in a probabilistic setting

@ T.J. Mitchell & J.J. B hamp: Bayesian Variable Selection in
Linear Regression, Journal of the American Statistical Association
1988

e The Structured spike and slab prior is a spatial extension

@ M. R. Andersen, O. Winther & L. K. Hansen: Bayesian Inference
for Structured Spike and Slab Priors, NIPS 2014

4 DTU Compute 7.7.2015

(independent) spike and slab prior

Spatial dimension

Temporal dimension

structured spike and slab prior

Spatial dimension

3 50 60
Temporal dimension

M



Roadmap

® Qur goal is to formulate a probabilistic model for
incorporating the prior knowledge of the support and
apply Bayes rule for inference

(independent) spike and slab prior

® The so-called spike and slab prior is often used for
imposing sparsity in a probabilistic setting

Spatial dimension

@ T.J. Mitchell & J.J. Beauchamp: Bayesian Variable Selection in
. . . . . Temporal dimension
Linear Regression, Journal of the American Statistical Association
1988

structured spike and slab prior
e The Structured spike and slab prior is a spatial extension

@ M. R. Andersen, O. Winther & L. K. Hansen: Bayesian Inference
for Structured Spike and Slab Priors, NIPS 2014

Spatial dimension

3 50 60
Temporal dimension

e \We generalize it to model both spatial and temporal spatio-temporal spike and slab prior
smoothness

E

Spa

Temporal dimension
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Spike and slab priors for promoting sparsity

e First we consider the (independent) spike and slab prior

® Assume x; is composed of two variables

T, =8; ¢, 8 €40,1}, ¢ €R
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Spike and slab priors for promoting sparsity

e First we consider the (independent) spike and slab prior

® Assume x; is composed of two variables

T, =8; ¢, 8 €40,1}, ¢ €R

® |n terms of probability distributions,
p(s;) = Ber(po)
p(zilsi) = (1 — s;)8(z;) + siN (24]0,7)

5 DTU Compute 7.7.2015

o
—
=

M



Spike and slab priors for promoting sparsity

e First we consider the (independent) spike and slab prior

® Assume x; is composed of two variables

T, =8; ¢, 8 €40,1}, ¢ €R

® |n terms of probability distributions,

p(s;) = Ber (po)

p(ilsi) = (1 — s3)8(x;) + siN (24]0,7)

e Marginalizing out s;
p(zi) = (1 — po)d(z;) + poN (a:i|0, )

t

Spike Slab

5 DTU Compute 7.7.2015

o
—
=

M



The structured spike and slab prior

e Consider first the single measurement vector problem y = Ax + e
e We want to build a prior distribution for @ s.t. the binary variables s are spatially correlated

o |dea: Generate a set of correlated random variables

p(v) =N (7|p, =)
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The structured spike and slab prior

e Consider first the single measurement vector problem y = Ax + e
e We want to build a prior distribution for @ s.t. the binary variables s are spatially correlated

o |dea: Generate a set of correlated random variables

p(v) =N (v]p, =)
e and transform them into probabilities using a map ¢ : R — (0,1)
p(si|vi) = Ber (s5|¢ (v:))
p(zi|si) = (1—s5;)8(x;) +siN (:ci|0,r)
e We choose ¢ to be the standard normal CDF.
® 3 now determines the correlation structure of the support of  and

plsi=1)=¢ (\/%)
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Sampling from the structured spike and slab prior

e We can understand how the prior works by sampling from it

e Consider a signal & € R0 with support s € {0, 1}100

® We choose a smooth kernel for ¥ in v ~ N (u, X), e.g. ;5 = K1 exp (—
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Sampling from the structured spike and slab prior

e We can understand how the prior works by sampling from it

e Consider a signal & € R0 with support s € {0, 1}100

® We choose a smooth kernel for ¥ in v ~ N (u, X), e.g. ;5 = K1 exp (—

¥~ N (p, X)
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Sampling from the structured spike and slab prior

e We can understand how the prior works by sampling from it

e Consider a signal & € R0 with support s € {0, 1}100

® We choose a smooth kernel for ¥ in v ~ N (u, X), e.g. ;5 = K1 exp (—

vy ~N(p,2) Probabilities ¢ (v)
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Sampling from the structured spike and slab prior

e We can understand how the prior works by sampling from it

e Consider a signal & € R0 with support s € {0, 1}100

® We choose a smooth kernel for ¥ in v ~ N (u, X), e.g. ;5 = K1 exp (—

~y~N (g, ) Probabilities ¢ () Support s ~ ber (¢ (7))
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Sampling from the structured spike and slab prior

>
>
>
e We can understand how the prior works by sampling from it
e Consider a signal & € R0 with support s € {0, 1}100
D2,
® We choose a smooth kernel for ¥ in v ~ N (u, X), e.g. ;5 = K1 exp (— 2;2)
~y~N (g, ) Probabilities ¢ () Support s ~ ber (¢ (7)) Signal @ ~ p (x|s)
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The spatio-temporal extension
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e We model the slowly changing sparsity pattern by imposing temporal smoothness on ; using a

first order Markov process

p (ve|vi—1) =N (ve| (1 = @) po + aye—1, 8%0) ,

e « and f3 control the temporal correlation and the "innovation” of the process.
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e We model the slowly changing sparsity pattern by imposing temporal smoothness on ; using a

first order Markov process

p (ve|vi—1) =N (ve| (1 = @) po + aye—1, 8%0) ,

e « and f3 control the temporal correlation and the "innovation” of the process.

1)

e Assuming a prior distribution on p(v1) = N (‘71|;L0, Z‘O), then the marginal distribution of ~2

becomes

ply2) = / p (v2]1) P )dm = A (72| so, (@2 + B) o) -
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The spatio-temporal extension

M

e We model the slowly changing sparsity pattern by imposing temporal smoothness on ; using a
first order Markov process

p (ve|ve—1) = N (| (1 = @) po + aye—1,8%0) (1)

e « and f3 control the temporal correlation and the "innovation” of the process.

e Assuming a prior distribution on p(v1) = N (‘71|;L0, Z‘O), then the marginal distribution of ~2
becomes

ply2) = / p (v2]1) P )dm = A (72| so, (@2 + B) o) -

e Induction argument: if a and §3 satisfy a® 4+ 8 = 1, then the marginal distribution of ~; is
p(vt) =N (po, Xo) for all ¢.
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The spatio-temporal extension

M

e We model the slowly changing sparsity pattern by imposing temporal smoothness on ; using a
first order Markov process

p (ve|ve—1) =N (9] 1 — @) po + ave—1,8%0) , (1)
e « and f3 control the temporal correlation and the "innovation” of the process.

e Assuming a prior distribution on p(v1) = N (‘71|;L0, Z‘O), then the marginal distribution of ~2
becomes

ply2) = / p (v2]1) P )dm = A (72| so, (@2 + B) o) -

e Induction argument: if a and §3 satisfy a® 4+ 8 = 1, then the marginal distribution of ~; is
p(vt) =N (po, Xo) for all ¢.

o Generalization of joint sparsity and time-independent sparsity

e Joint sparsity fora =1 and B =0
e Time-independent for « =0 and 8 =1
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Sampling from the spatio-temporal prior

e Consider a signal X € R100%200 wjith support § € {0, 1}100X200

® We choose a smooth kernel for X in y1 ~ N (u, ), e.g. ;; = K1 exp (f

temporal correlation o = 0.99.
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Sampling from the spatio-temporal prior
e Consider a signal X € R100%200 with support § € {0, 1}100%200

® We choose a smooth kernel for X in v1 ~ N (u, X), e.g. B;; = K1 exp (f

temporal correlation a = 0.99.

First order Markov Process
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Sampling from the spatio-temporal prior

e Consider a signal X € R100%200 wjith support § € {0, 1}100X200

D2.
® We choose a smooth kernel for X in y1 ~ N (u, ), e.g. ;; = K1 exp (f 2;{]2) and

temporal correlation o = 0.99.

First order Markov Process Probabilities ¢ ()
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Sampling from the spatio-temporal prior
e Consider a signal X € R100%200 with support § € {0, 1}100%200

D2.
® We choose a smooth kernel for X in y1 ~ N (u, ), e.g. ;; = K1 exp (f 21;72) and

temporal correlation o = 0.99.

First order Markov Process Probabilities ¢ ()
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Sampling from the spatio-temporal prior
e Consider a signal X € R100%200 with support § € {0, 1}100%200

D2,
® We choose a smooth kernel for ¥ in v1 ~ N (u, X), e.g. 3 = Kiexp (f 2;{]2) and

temporal correlation o = 0.99.

First order Markov Process Probabilities ¢ ()
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Inference using the spatio-temporal spike and slab prior

>
>
>
® Recall the model Y = AX + E °- z :
e Assuming isotropic Gaussian noise leads to a J ~ .
posterior distribution of the form .. > °
e Joint distribution
T T D
p(Y, X, 8, T)=] [N (ve|Aze, o3 ) [ ] [(Q = si.0)8(zit) + 564N (wi,¢]0, 70)]
t=1 t=1:=1
T D T
TTT1Ber (sit|d (vie)) N (1|0, Zo) [ [V (ve|(1—)po + avi—1, BE0)
t=1i=1 t=2

10 DTU Compute 7.7.2015



o
—
=

Inference using the spatio-temporal spike and slab prior

>
>
>
® Recall the model Y = AX + E °- z :
e Assuming isotropic Gaussian noise leads to a J ~ .
posterior distribution of the form .. > °
® Posterior of interest
1 T T D
p(X,S,T|Y)= P HN (y¢| Az, 031) H H [(1 = si,6)0(zit) + 56,eN (%4,6]0,70)]
t=1 t=1:=1
T D T
H H Ber (s,¢|¢ (vi,e)) N(71|MO,EO)HN(%|(1—C¥)I—L0 + avi—1,8%0)
t=1i=1 t=2
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Inference using the spatio-temporal spike and slab prior

>
>
>
® Recall the model Y = AX + E °- z :
e Assuming isotropic Gaussian noise leads to a J ~ .
posterior distribution of the form .. > °
® Posterior of interest
1 T T D
p(X,S,T|Y)= P HN yt‘Awt,ao H H [(1 = si,6)0(zit) + 56,eN (%4,6]0,70)]
t=1 t=1:=1
T D T
TTT1Ber (sit|d (i) N (1|0, Zo) [ [V (ve| (1 =)o + avi—1, 830)
t=1i=1 t=2

e Exact inference is intractable since P (Y') is intractable due to the product over mixtures

o We resort Expectation Propagation for approximate inference
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Approximate inference using EP

M

e Expectation propagation: deterministic framework for approximating probability distributions

@ T. Minka: Exp ion Propagation for Approxii B ian Inference, 2011

® The resulting EP approximation has the form

Q(X,2z,T) HN(a:t|mt,V§g)HHBer (21t 6 (Firt) H (vl =) (@)

t=11i=1

e We obtain posterior mean values AND the associated uncertainties
e Dense posterior covariance matrices, i.e. V; & X to capture posterior correlations

® The computational bottleneck of the algorithm is the update of the covariance matrices V; and
3, which scale © (NQD) and O (TD3), respectively.

e Since SPARS2015 deadline: We introduced further approximations to get computational
complexity down to either O (KT D) or O (T'D?) for more flexible temporal model
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Evaluation of proposed method

M

® We compared the performance of the proposed method to competing methods based on
synthetic data

® We generate linear observations of X using the model Y = AX + E for

@ D =T =100 and SNR fixed to 10dB

® Undersampling ratio & € {0.05,0.10,...,0.95}
© Gaussian i.i.d forward model A;; ~ N (0,1/N)
@ Gaussian i.i.d coefficients z;|s; =1 ~ N (0,1)

@ Average over 100 realizations of coefficients and noise

o Quantification of performance using NMSE and F-measure

Dot (Xi,t — Xi,t>2 p

9 precision - recall
> X2, precision + recall”

®3)

NMSE =
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Results
1 1
BG-AMP
09 ——DCS-AMP 09k
—— Spatial EP
0.8 —— Spatial MMV EP 0.8
—— Spatiotemporal EP
0.7 0.71
06 © 067
w 5
@
g 0.5 S 051
z E
0.4 W 0.4f
0.3 0.3F
BG-AMP
0.2 0.2F ——DCS-AMP
—— Spatial EP
0.1 0.1r —— Spatial MMV EP
o —— Spatiotemporal EP
00 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Undersampling ratio N/D Undersampling ratio N/'D
(c) (d)

Figure: Normalized mean square error & F-measure error as a function of undersampling ratio.
The data are generated fromY = AX + E , where D = 100,7 = 100 and SNR = 10dB. The
entries in A are Gaussian i.i.d, i.e. A;; ~N (0,1/N). The results are averaged over 100
realizations.

@ J. P. Vila & P. Schniter: Exp ion-Maximization Gaussian-Mixture Approxi M Passing, 2013

@ J. Ziniel & P. Schniter: Dy ic Compressive Sensing of Time-Varying Signals via Approxir M Passing, 2013

@ M. R. Andersen, O. Winther & L. K. Hansen: Bayesian Inference for Structured Spike and Slab Priors, 2014
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Reconstructions for N/D = 0.4

M

20 40 60 80 100

(b) 1.I.D (c) Joint sparsity

20 40 60 80 100

(d) Temporal (e) Spatial (f) Spatiotemporal

Figure: True and reconstructed support. The undersampling ratio is N/D = 0.4 and

D =100,T7 = 100 and SNR = 10dB. a) True support, b) BG-AMP (NMSE = 0.805, F = 0.450),
c) Spatial MMV EP (NMSE = 0.833, F = 0.663), d) Spatial EP (NMSE = 0.658, F = 0.902), )
DCS-AMP (NMSE = 0.777, F = 0.763), f) Spatio-temporal EP (NMSE = 0.618, F = 0.935).
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Preliminary results for EEG source localization

EEG measurement i Forward model Source magnitudes Noise
Y = A X + E

® Number of sources D = 5124, number of EEG sensors N = 128 and number of time points
T =161, i.e. X € R5124X161 apd Yy ¢ R128x161,

® Subjects are presented with pictures of faces and "scrambled” faces

e Data is preprocessed and averaged over trials and subjects (difference contrast)

® Results obtained with EP and slightly more flexible temporal model
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Active sources as a function of time

e Number of active sources as a function of time, i.e. >, p(s4,t|Y) vs. t.
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Active sources as a function of time
e Number of active sources as a function of time, i.e. >, p(s;,|Y) vs. t.
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Conclusion

M

o We proposed a probabilistic model to incorporate prior knowledge of spatial and temporal
smoothness of the support for MMV problems

e We derived an Expectation propagation based algorithm for approximate Bayesian inference

o We demonstrated the performance of our model based on numerical experiments with synthetic
and real data
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Thank you for listening!
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Approximate inference using Expectation Propagation (EP)

o By defining 8 2 ({z¢},, {s¢}; . {7¢};). the desired posterior can be written as

p(X,8,TY) o [[fa(6a), 6acCO

e EP approximates each factor with a term from the exponential family

Q(X,S5,T) = Hfa (oll)
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Approximate inference using Expectation Propagation (EP)

M

o By defining 8 2 ({z¢},, {s¢}; . {7¢};). the desired posterior can be written as

p(X,8,TY) o [[fa(6a), 6acCO (4)

e EP approximates each factor with a term from the exponential family

Q(X,S,F):Hfa(ea) (5)

e EP updates each term f; as follows:
@ Obtain cavity distribution by removing f, from global approximation

Q(6)

_$(0) x =
9-(0) fo (6p)

(6)
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Approximate inference using Expectation Propagation (EP)

M

o By defining 8 2 ({z¢},, {s¢}; . {7¢};). the desired posterior can be written as

p(X,8,TY) o [[fa(6a), 6acCO (4)

e EP approximates each factor with a term from the exponential family

Q(X,S,F):Hfa(ea) (5)

e EP updates each term f; as follows:

@ Obtain cavity distribution by removing f, from global approximation

Q(6)
(0 = 6
Qb()(xfb(eb) (6)
® Combine with exact term f3 (0p) Q_p (0) and minimize KL divergence
argmin KL (£ (80) Q4 (8) 12 (61) Q5 (8) ) (7
b
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