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A curious experiment

Try to learn a concise approximation: Y ≈ QX , with Q ∈ On
and X as sparse as possible.

... by solving min 1
2 ‖Y −QX‖

2
F + λ ‖X‖1 , s.t. Q ∈ On.
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A curious experiment

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On.

Objective is nonconvex: (Q,X) 7→ QX is bilinear
Combinatorially many isolated global minima: (Q,X)
or (QΠ,Π∗X) (2nn! many signed permutations Π)
Orthogonal group On is a nonconvex set
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A curious experiment

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On

Apply the naive alternating directions: starting from a random
Q0 ∈ On

Xk = arg min
X

f
(
Qk−1,X

)
Qk = arg min

Q
f (Q,Xk) , s.t. Q ∈ On.

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



5/26

A curious experiment

min f (Q,X)
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=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On

Apply the naive alternating directions: starting from a random
Q0 ∈ On

Xk = Sλ
[
Q∗k−1Y

]
Qk = UV ∗, where UΣV ∗ = SVD (Y X∗) .

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



6/26

A curious experiment

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On

Apply the naive alternating directions: starting from a random
Q0 ∈ On

Xk = Sλ
[
Q∗k−1Y

]
Qk = UV ∗, where UΣV ∗ = SVD (Y X∗) .

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



7/26

Global solutions of feature learning on real images?

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On
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Working hypothesis

Certain nonconvex optimization problems become tractable
when the input data are large and random (generic).

A Geometric Approach

Geometry of the function landscape determines algorithm
design and analysis.

... starting with sparse dictionary learning!
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This work

Sparse dictionary learning: problem formulation
Main result: dictionary learning with proportional
sparsity

A nonconvex formulation
A glimpse into high-dimensional geometry
A Riemannian trust-region method and efficiency
guarantees
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Sparse dictionary learning

Algorithmic study initialized with [Olshausen, Field. ’96] in
neuroscience.

Important algorithmic contributions from many researchers: [Lewicki,
Sejnowski.’99], [Engan et al. ’99], [Aharon, Elad, Bruckstein. ’06], many
others

Widely used in image processing, recently used in visual recognition,
compressive signal acquisition, deep architecture for signal classification
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Dictionary recovery - the complete case

Dictionary recovery – given Y generated as Y = Q0X0, recover
Q0 and X0.

Our Model
Q0 complete (square and invertible),
X0 = Ω�G,Ω ∼i.i.d. Ber (θ) ,G ∼i.i.d. N (0, 1) .

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



12/26

Dictionary recovery - the complete case

Dictionary recovery – given Y generated as Y = Q0X0, recover
Q0 and X0.

Our Model
Q0 complete (square and invertible),
X0 = Ω�G,Ω ∼i.i.d. Ber (θ) ,G ∼i.i.d. N (0, 1) .

row(Y ) = row(X0)

Find the sparse vectors in
row(Y )!

Rp

· · · · · ·

O

row(Y)

x0

Sparsest?
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Dictionary learning: the complete case

Rp

· · · · · ·

O

row(Y)

x0

Sparsest?

min ‖q∗Y ‖0 s.t. q 6= 0.

Convex relaxation:

min ‖q∗Y ‖1 s.t. ‖q∗Y ‖∞ = 1.

Solve a sequence of convex (linear) programs.
Provably succeeds when θn = O (

√
n), provably fails if

θn = Ω
(√
n log n

)
[Spielman, Wang, Wright.’12].
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Dictionary learning: the complete case

Rp

· · · · · ·

O

row(Y)

x0

Sparsest?

min ‖q∗Y ‖0 s.t. q 6= 0.

Nonconvex “relaxation”:

Model problem

min ‖q∗Y ‖1 s.t. ‖q‖22 = 1.

many precedents, e.g., [Zibulevsky-Perlmutter, ’01] in
source separation.
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Towards geometric understanding

Model problem

min 1
p ‖q∗Y ‖1 = 1

p

∑p
i=1 |q∗yi| s.t. ‖q‖22 = 1. Y ∈ Rn×p

Slightly modified model problem

min
1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Work with a smooth surrogate for |z|:

hµ (z) = µ log
ez/µ + e−z/µ

2
= µ log cosh

z

µ

Recognize the objective as a normalized
sum of independent random variables −→
expectation, asymptotically
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Why might this work?

A low-dimensional example (n = 3) of the landscape when
p→∞ Slightly%more%formally%…!

Lemma:%Suppose))))))))))))))))))),)and)))))))))))))))))).)Then…)2

…)and)so)…)every%local%optimizer%of%%%%%%%%%%%%%%%%%is%a%target%point.%+

Strongly%convex 

Nonzero%gradient 

Negative%curvature 

Every local minimizer is a target!

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



17/26

In high dimensions ... details
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Assuming A0 = I ...
Proposition: Suppose θ ∈

(
0, 12
)
, and µ < min

{
cn−5/4, c′θn−1

}
.

Then
∇2E [g (w)] � c? θµI , for ‖w‖ ≤ µ

4
√
2

w∗∇E[g(w)]
‖w‖ ≥ c?θ, for µ

4
√
2
≤ ‖w‖ ≤ R

w∗∇E[g(w)]w

‖w‖2 ≤ −c?θ, for ‖w‖ ≥ R (R = Θ (1)).

and so, every local minimizer of E [g (w)] is a target point.
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Convergence in function landscape

When does the finite-sample objective converge to the
asymptotic one, in optimization sense?

...informally, is the function geometry “nice” for some large yet
finite p?
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Finite-sample result

Objective g (w) = 1
p

∑p
i=1 hµ (q (w)∗ xi) is a sum of independent RVs.

The proof follows a typical expectation-concentration path

Theorem

Suppose θ ∈
(
0, 1

2

)
, if µ < min{cn−5/4, c′n−1}, and p ≥ Cn3

µ2θ2
log n

µθ
, it holds

uniformly w.h.p. that

∇2g (w) � c? θµI , for ‖w‖ ≤ µ

4
√

2

w∗∇g(w)
‖w‖ ≥ c?θ, for µ

4
√

2
≤ ‖w‖ ≤ R

w∗∇g(w)w

‖w‖2 ≤ −c?θ, for ‖w‖ ≥ R (R = Θ (1)).
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Algorithm design

... following intuition we build from the geometry:

No spurious local minimizers =⇒ Run
descent algorithm with an arbitrary
initial point

Need to escape saddle points =⇒ Use
second-order information. Here, via the
trust region method.

Trust-region on manifolds [Absil, Baker, Gallivan.
’07], also [Absil, Mahoney, Sepulchre. ’08]

Sun, Qu, and Wright Complete Dictionary Recovery over the Sphere



21/26

Trust region method - Riemannian Manifold

O

q
TqSn−1

δ

expq(δ)

Sn−1 f̂(δ;xk) = f(xk) + 〈∇f(xk), δ〉+
1

2
δ∗Bkδ.

expq(δ) = q cos ‖δ‖ +
δ

‖δ‖ sin ‖δ‖

Consider a function f : Sn−1 7→ R. For q ∈ Sn−1 and δ ∈ TqSn−1.
Define the function fq : TqSn−1 7→ R as fq

.
= f(expq(δ)).

Taylor’s theorem implies

f(expq(δ)) = f(q) + 〈δ,∇f(q)〉+
1

2
δ∗(∇2f(q)− 〈q,∇f(q)〉 I)δ +O(‖δ‖3)

.
= fq(δ; q) +O(‖δ‖3).

Basic Riemannian trust-region method:

δ? ∈ arg min
δ∈Tqk

Sn−1,‖δ‖≤∆

f̂qk (δ; qk)

qk+1 = expqk (δ?).
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Pull things together

Theorem (informal, exact recovery for complete dictionaries)

For any θ ∈ (0, 1/3), given Y = A0X0 with A0 a complete
dictionary and X0 ∼i.i.d. BG (θ), there is a polynomial-time
algorithm that recovers A0 and X0 with high probability (at least
1−O(p−6)) whenever p ≥ p? (n, 1/θ, κ (A0) , 1/µ) for a fixed
polynomial p? (·), where κ (A0) is the condition number of A0 and µ
is the smoothing parameter.
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Comparison with the Literature

Efficient algorithms with performance guarantees
[Spielman, Wang, Wright,’12] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Agarwal, Anandkumar, Netrapali,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora, Ge, Moitra,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora, Ge, Ma, Moitra,’15] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

Quasipolynomial algorithms with better guarantees
[Arora, Bhaskara, Ge, Ma,’14] different prob. model, θ = O (1/polylog (n))

[Barak, Kelner, Steurer,’14] sum-of-squares, θ = Õ (1)

Other theoretic work on local geometry: [Gribonval,
Schnass’11], [Geng, Wright, ’11], [Schnass’14], [Schnass’15]

This work: a polynomial algorithm for squared Q, θ = O(1).
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What we have done ...

min 1
p

∑p
i=1 hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Prove as p becomes large, the nonconvex program becomes
tractable under our probabilistic setting.
Geometry has guided our analysis and algorithm design.
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Prior work: proving nonconvex recovery

Matrix completion/recovery: [Keshevan, Oh, Montanari.’09], [Jain, Netrapali,
Sanghavi. ’13], [Hardt’13], [Hardt, Wooters. ’14], [Netrapalli et al. ’14], [Jain +
Netrapalli,’14], [Zheng + Lafferty. ’15]. Also [Meta, Jain, Dhillon.’09]

Dictionary learning: [Agarwal, Anandkumar, Netrapali. ’13 ], [Arora, Ge,
Moitra. ’13], [Agarwal, Anandkumar, Jain, Netrapali.’13], [Arora, Ge, Ma,
Moitra. ’15]

Tensor recovery: [Jain, Oh. ’13], [Anandkumar, Ge, Janzamin. ’14]

Phase retrieval: [Netrapali, Jain, Sanghavi.’13], [Candes, Li, Soltanokoltabi. ’14],
[Chen + Candes. ’15]

Also recovery in statistical sense, ..., e.g., [Loh + Wainwright’12]
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Questions?
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