A totally unimodular view of structured sparsity

Marwa El Halabi

marwa.elhalabi@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

SPARS 2015

Joint work with: Volkan Cevher

Linear inverse problems

Applications: Machine learning, signal processing, theoretical computer science...

Linear inverse problems

Nullspace (null) of A: $\mathbf{x}^{\natural} + \delta \rightarrow \mathbf{b}, \quad \forall \delta \in \mathsf{null}(\mathbf{A})$

We need additional information on \mathbf{x}^{\natural} ?

Thursday, June 19, 14

Sparsity to the rescue!

- $\mathbf{b} \in \mathbb{R}^n$, $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and n < p
- $\Psi \in \mathbb{R}^{p imes p}$, $\mathbf{x}^{\natural} \in \Sigma_s$, and $s < n \ll p$
- Sparsity allows tractable recovery with $n = O(p \log(p/s))$

Beyond sparsity towards model-based or *structured* sparsity

The following signals can look the same from a sparsity perspective!

Sparse image

Wavelet coefficients of a natural image

Spike train

image

In reality, these signals have additional structures beyond the simple sparsity

Sparse image

Wavelet coefficients of a natural image

Spike train

Background substracted image

Beyond sparsity towards model-based or *structured* sparsity

Sparsity model: Union of all s-dimensional canonical subspaces.

Structured sparsity model: A particular union of m_s s-dimensional canonical subspaces.

Three upshots of structured sparsity: [Baraniuk et al., 2010]

- 1. Reduced sample complexity
- 2 Better noise robustness
- 3. Better interpretability

 \mathbb{R}^{p}

A simple template for structured sparsity recovery

Find the "*sparsest*" x subject to *structure* and *data*.

Sparsity

We can generalize this desideratum to other notions of simplicity

Structure

We only allow certain sparsity patterns

Data fidelity

We have many choices of convex constraints & losses to represent data; e.g.,

$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa$

Sparse estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{0} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \|\mathbf{w}\|_{2} \right\}$$
(\$\$\mathcal{P}_{0}\$)

where $\|\mathbf{x}\|_0 := \mathbb{1}^T s, s = \mathbb{1}_{supp(\mathbf{x})}, supp(\mathbf{x}) = \{i | x_i \neq 0\}$

Sparse estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2} \right\}$$
(\$\mathcal{P}_{0}\$)

where
$$\|\mathbf{x}\|_0 := \mathbb{1}^T s, s = \mathbb{1}_{supp(\mathbf{x})}, supp(\mathbf{x}) = \{i | x_i \neq 0\}$$

 $\|\mathbf{x}\|_0$ over the unit ℓ_∞ -ball

\mathcal{P}_0 has the following characteristics:

- sample complexity: $\mathcal{O}(s)$
- computational effort: NP-Hard
- stability: No

Sparse estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2} \right\}$$
(\$\mathcal{P}_{0}\$)

where
$$\|\mathbf{x}\|_0 := \mathbb{1}^T s, s = \mathbb{1}_{supp(\mathbf{x})}, supp(\mathbf{x}) = \{i | x_i \neq 0\}$$

\mathcal{P}_0 has the following characteristics:

- sample complexity: $\mathcal{O}(s)$
- computational effort: NP-Hard
- stability: No

Convex relaxation:

Convex envelope is the largest convex lower bound.

 $\|\mathbf{x}\|_0$ over the unit ℓ_∞ -ball

A technicality: Restrict $\mathbf{x}^{\natural} \in [-1, 1]^{p}$.

Sparse estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2} \right\}$$
(\$\mathcal{P}_{0}\$)

where
$$\|\mathbf{x}\|_0 := \mathbb{1}^T s, s = \mathbb{1}_{supp(\mathbf{x})}, supp(\mathbf{x}) = \{i | x_i \neq 0\}$$

 $\|\mathbf{x}\|_1$ is the convex envelope of $\|\mathbf{x}\|_0$

\mathcal{P}_0 has the following characteristics:

- sample complexity: $\mathcal{O}(s)$
- computational effort: NP-Hard
- stability: No

Convex relaxation:

Convex envelope is the largest convex lower bound.

A technicality: Restrict $\mathbf{x}^{\natural} \in [-1, 1]^p$.

The role of convexity: Tractable & stable recovery

Basis pursuit estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{1} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \|\mathbf{w}\|_{2}, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$
(BP)

where $\|\mathbf{x}\|_1 := \mathbb{1}^T |\mathbf{x}|$

The role of convexity: Tractable & stable recovery

Basis pursuit estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{1} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \|\mathbf{w}\|_{2}, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$
(BP)

where $\|\mathbf{x}\|_1 := \mathbb{1}^T |\mathbf{x}|$

 $\|\mathbf{x}\|_1$ is the convex envelope of $\|\mathbf{x}\|_0$

BP has the following characteristics:

- sample complexity: $\mathcal{O}(s \log(\frac{p}{s}))$
- ► computational effort: Tractable; $\mathcal{O}(n^2 p^{1.5} \log(\frac{1}{\epsilon}))$ via IPM (for w = 0)
- stability: Robust to noise

A technicality: Restrict $\mathbf{x}^{\natural} \in [-1, 1]^{p}$.

Convex relaxation in general?

We encode the structure over the support by $g(\mathbf{x}) = F(\operatorname{supp}(\mathbf{x}))$

- $\operatorname{supp}(\mathbf{x}) = \{i | x_i \neq 0\}$
- $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}$

How does the current literature compute the convex relaxation of g ?

1. Case by case heuristics

2. Biconjugation (\equiv convex envelope): Fenchel conjugate of Fenchel conjugate. Fenchel conjugate: $g^*(\mathbf{y}) := \sup_{\mathbf{x}: dom(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$

Challenge: Fenchel conjugate of a general *g* is NP-Hard.

Tractable convex relaxation

Prior work:

- 1. Monotone submodular penalties [Bach, 2010]
 - Tractable biconjugation via Lovász extension
 - Limited to certain structures
- 2. ℓ_q -regularized combinatorial functions [Obozinski and Bach, 2012] $(\mu F(\operatorname{supp}(\mathbf{x})) + \nu \|\mathbf{x}\|_q)$
 - Homogeneous convex envelope
 - Tractable biconjugation even for some non-submodular functions
 - Not always tractable
 - May lose structure [El Halabi and Cevher, 2014]

Our goal:

- Easy to design priors
- Tractable biconjugation
- Applies to as many structures as possible

Tree sparsity

We seek the sparsest signal with a rooted connected tree support. [Baraniuk et al., 2010]

Objective: $\|\mathbf{x}\|_0 \equiv \mathbb{1}^T s$ s.t. $\mathbb{1}_{supp(\mathbf{x})} = s$ Linear constraint: A valid support satisfy $s_{parent} \geq s_{child}$ over tree \mathcal{T}

$$\boldsymbol{T} \mathbb{1}_{\mathrm{supp}(\mathbf{x})} := \boldsymbol{T} \boldsymbol{s} \geq \boldsymbol{0}$$

where T is the directed edge-node incidence matrix.

Key Observation: Matrix T is totally unimodular (TU).

Tree sparsity

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})}:=Ts\geq 0$$

where T is the directed edge-node incidence matrix.

 $T=egin{bmatrix} 1-1&0&0&0&0&0&0&0\ 0&1&-1&0&0&0&0&0&0\ 0&1&0&-1&0&0&0&0&0\ 0&0&0&1&1&-1&0&0&0\ 0&0&0&1&0&-1&0&0&0\ 0&0&0&0&0&0&1&-1&0\ 0&0&0&0&0&0&0&1&0&-1 \end{bmatrix}$

Key Observation: Matrix T is totally unimodular (TU).

Total unimodular (TU): $M \in \mathbb{R}^{l \times m}$ is TU iff the determinant of every square submatrix of M is 0, or ±1.

We seek the sparsest signal with a rooted connected tree support. [Baraniuk et al., 2010]

Objective: $\|\mathbf{x}\|_0 \equiv \mathbb{1}^T s$ s.t. $\mathbb{1}_{supp}(\mathbf{x}) = s$ Linear constraint: A valid support satisfy $s_{parent} \geq s_{child}$ over tree \mathcal{T}

 $T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$

where T is the directed edge-node incidence matrix.

Key Observation: Matrix T is totally unimodular (TU).

Biconjugate: Tractable! $\sum_{\mathcal{G} \in \mathfrak{G}_{\mathcal{H}}} \|x_{\mathcal{G}}\|_{\infty}$

This is known as the hierarchical group lasso [Zhao et al., 2006, Jenatton et al., 2011b].

	1	-1	0	0	0	0	0	0	0	
	0	1	-1	0	0	0	0	0	0	
	0	1	0	-1	0	0	0	0	0	
T =	0	0	0	1	-1	0	0	0	0	
	0	0	0	1	0	-1	0	0	0	
	0	0	0	0	0	0	1	-1	0	
	0	0	0	0	0	0	1	0	-1	

Recall Fenchel conjugate: $g^*(\mathbf{y}) := \sup_{\mathbf{x}: \text{dom}(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$

Recall Fenchel conjugate: $g^*(\mathbf{y}) := \sup_{\mathbf{x}: \text{dom}(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$

Recall Fenchel conjugate: $g^*(\mathbf{y}) := \sup_{\mathbf{x}: dom(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$

Convex relaxation $\beta^* \in \arg \max_{\beta \in \mathbb{R}^m} \{ \theta^T \beta : M\beta \le c, \beta \ge 0 \}$ (LP) Obtains an upperbound

Recall Fenchel conjugate: $g^*(\mathbf{y}) := \sup_{\mathbf{x}:dom(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$

Convex relaxation

$$\beta^* \in \arg \max_{\beta \in \mathbb{R}^m} \{ \theta^T \beta : M\beta \le c, \beta \ge 0 \}$$
 (LP)
Obtains an upperbound

Recall Fenchel conjugate:
$$g^*(\mathbf{y}) := \sup_{\mathbf{x}:dom(g)} \mathbf{x}^T \mathbf{y} - g(\mathbf{x}).$$
Integer program β^{\natural} $\beta^{\natural} \in \arg \max_{\beta \in \mathbb{Z}^m} \{\theta^T \beta : M\beta \leq c, \beta \geq 0\}$ (IP) β^{2} NP-Hard (in general) $M\beta \leq c$ $\theta^{T}\beta^{\natural}$ Convex relaxation β_1 $\beta^* \in \arg \max_{\beta \in \mathbb{R}^m} \{\theta^T \beta : M\beta \leq c, \beta \geq 0\}$ (LP) $P = \{\beta | M\beta \leq c, \beta \geq 0\}$ Obtains an upperbound P is an "exact" relaxation.

Polyhedra $\mathcal{P} = \{M\beta \leq c, \beta \geq 0\}$ has integer vertices when M is TU and c is integer

TU structures

TU modeling framework offers:

- ✓ General easy to design structure sparsity template,
- Tight convexifications for submodular/non-submodular examples,
- ✓ Efficient evaluation of biconjugate via LP.

Model	Convex envelope	Submodular structure	ℓ_q -regularized structure	TU structure
			=	
Minimal Group cover	Latent group lasso	×	1	✓*
Group intersection sparsity	Group lasso	1	1	_
Rooted connected tree	Hierarchical group lasso	×	?	 Image: A start of the start of
Sparse group knapsack	ℓ_1 with knapsack constraint	×	<i>≠</i>	✓*
Relaxed group knapsack	Exclusive lasso	×	√ **	✓*

 \star this is shown only for group structures that lead to TU constraints.

 $\star\star$ this is shown only for partition groups.

Template for TU structures

Sparsity and structure together [El Halabi and Cevher, 2014]

Given some weights $d \in \mathbb{R}^d, e \in \mathbb{R}^p$ and an integeral vector $c \in \mathbb{Z}^l$, we define

$$g_{TU}(\mathbf{x}) := e^T s + \min_{oldsymbol{\omega}} \{ d^T oldsymbol{\omega} : M iggl[oldsymbol{s} \] \leq c, \mathbb{1}_{ ext{supp}(\mathbf{x})} = s, oldsymbol{\omega} \in \{0,1\}^d \}$$

for all feasible \mathbf{x}, ∞ otherwise. The parameter ω is useful for latent modeling.

- *M* is TU.
- "Exact convex relaxation" of: $g^*(\mathbf{y}) = \sup_{s \in \{0,1\}^p} |\mathbf{y}|^T s F(s)$.

lions@epfl A TU view of structured sparsity | Marwa El Halabi, marwa.elhalabi@epfl.ch

Convexification of TU structures

TU convex relaxation given by LP

$$g_{TU}^{**}(\mathbf{x}) := \min_{oldsymbol{\omega},s} \{oldsymbol{d}^Toldsymbol{\omega} + oldsymbol{e}^Ts: oldsymbol{M}igg[oldsymbol{\omega}]_s \leq c, |\mathbf{x}| \leq s, oldsymbol{\omega} \in [0,1]^d, s \in [0,1]^p\}$$

for all feasible $\mathbf{x},$ ∞ otherwise.

• Usually g_{TU}^{**} have closed form solution.

Group cover sparsity: Minimal group cover

We seek the signal covered by a minimal number of groups. [Baldassarre et al., 2013, Obozinski et al., 2011, Huang et al., 2011]

Objective: $d^T \omega$ (Group sparsity) **Linear constraint:** For each non-zero coefficient, at least one group containing it is selected

$$B\omega \geq s$$

where B is the biadjacency matrix of \mathfrak{G} , i.e., $B_{ij} = 1$ iff *i*-th coefficient is in \mathcal{G}_j . When B is an interval matrix, or \mathfrak{G} has a loopless group intersection graph [Baldassarre et al., 2013], it is TU.

Group cover sparsity: Minimal group cover

 $\mathfrak{G}=\{\{1,2\},\{2,3\}\},$ unit group weights $d=\mathbb{1}.$

We seek the signal covered by a minimal number of groups. [Baldassarre et al., 2013, Obozinski et al., 2011, Huang et al., 2011]

Objective: $d^T \omega$ (Group sparsity) **Linear constraint:** For each non-zero coefficient, at least one group containing it is selected

$$B\omega \geq s$$

where **B** is the biadjacency matrix of \mathfrak{G} , i.e., $B_{ij} = 1$ iff *i*-th coefficient is in \mathcal{G}_j .

When B is an interval matrix, or \mathfrak{G} has a loopless group intersection graph [Baldassarre et al., 2013], it is TU.

Biconjugate: $g_{TU}^{**}(\mathbf{x}) = \min_{\mathbf{v}_i \in \mathbb{R}^p} \{\sum_{i=1}^M d_i \|\mathbf{v}_i\|_{\infty} : \mathbf{x} = \sum_{i=1}^M \mathbf{v}_i, \forall \operatorname{supp}(\mathbf{v}_i) \subseteq \mathcal{G}_i \}$ This is known as the Latent group lasso [Obozinski et al., 2011].

lions@epfl A TU view of structured sparsity | Marwa El Halabi, marwa.elhalabi@epfl.ch

Group knapsack sparsity

We seek the sparsest signal with group allocation constraints. [Hegde et al., 2009, Gerstner and Kistler, 2002]

Objective: $\mathbb{1}^T s$ **Linear constraints:** A valid support obeys budget constraints over \mathfrak{G}

$$oldsymbol{B}^Toldsymbol{s} \leq oldsymbol{c}_u$$

where B is the biadjacency matrix of \mathfrak{G} , i.e., $B_{ij} = 1$ iff *i*-th coefficient is in \mathcal{G}_j .

When B is an interval matrix or \mathfrak{G} has a loopless group intersection graph [Baldassarre et al., 2013], it is TU.

Group knapsack sparsity

$$B^{T} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\ & & & \ddots & & & \\ 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}_{(p-\Delta+1)\times p}$$

We seek the sparsest signal with group allocation constraints. [Hegde et al., 2009, Gerstner and Kistler, 2002]

Objective: $1^T s$ **Linear constraints:** A valid support obeys budget constraints over 6

$$oldsymbol{B}^Toldsymbol{s} \leq oldsymbol{c}_u$$

where B is the biadjacency matrix of \mathfrak{G} , i.e., $B_{ij} = 1$ iff *i*-th coefficient is in \mathcal{G}_j . When B is an interval matrix or \mathfrak{G} has a loopless group intersection graph [Baldassarre et al., 2013], it is TU.

Group knapsack sparsity

(left) $g_{TU}^{**}(\mathbf{x}) \leq 1$ (middle) $g_{TU}^{**}(\mathbf{x}) \leq 1.5$ (right) $g_{TU}^{**}(\mathbf{x}) \leq 2$ for $\mathfrak{G} = \{\{1, 2\}, \{2, 3\}\}$

We seek the sparsest signal with group allocation constraints. [Hegde et al., 2009, Gerstner and Kistler, 2002]

Objective: $1^T s$ **Linear constraints:** A valid support obeys budget constraints over \mathfrak{G}

$$oldsymbol{B}^Toldsymbol{s} \leq oldsymbol{c}_u$$

where B is the biadjacency matrix of \mathfrak{G} , i.e., $B_{ij} = 1$ iff *i*-th coefficient is in \mathcal{G}_j . When B is an interval matrix or \mathfrak{G} has a loopless group intersection graph [Baldassarre et al., 2013], it is TU.

$$\begin{array}{ll} \textbf{Biconjugate:} \ g_{TU}^{**}(\mathbf{x}) = \begin{cases} \|\mathbf{x}\|_1 & \text{if} \ B^T |\mathbf{x}| \leq c_u, \mathbf{x} \in [-1,1]^p \\ \infty & \text{otherwise} \end{cases} \end{array}$$

Group knapsack sparsity example: A stylized spike train

Figure: Recovery for n = 0.18p.

A TU view of structured sparsity | Marwa El Halabi, marwa.elhalabi@epfl.ch

Conclusions

TU modeling framework offers:

- ✓ General easy to design structure sparsity template,
- Tight convexifications for submodular/non-submodular examples,
- ✓ Efficient evaluation of biconjugate via LP.

References |

• Bach, F. (2010).

Structured sparsity-inducing norms through submodular functions. Adv. Neur. Inf. Proc. Sys. (NIPS), pages 118–126.

- Baldassarre, L., Bhan, N., Cevher, V., and Kyrillidis, A. (2013). Group-sparse model selection: Hardness and relaxations. arXiv preprint arXiv:1303.3207.
- Baraniuk, R., Cevher, V., Duarte, M., and Hegde, C. (2010). Model-based compressive sensing. IEEE Trans. Inf. Theory, 56(4):1982–2001.
- El Halabi, M. and Cevher, V. (2014). A totally unimodular view of structured sparsity. preprint. arXiv:1411.1990v1 [cs.LG].
- Gerstner, W. and Kistler, W. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press.
- Hegde, C., Duarte, M., and Cevher, V. (2009).
 Compressive sensing recovery of spike trains using a structured sparsity model.
 In Sig. Proc. with Adapative Sparse Struct. Rep. (SPARS).

References II

- Huang, J., Zhang, T., and Metaxas, D. (2011). Learning with structured sparsity.
 J. Mach. Learn. Res., 12:3371–3412.
- Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., and Thirion, B. (2011a).
 Multi-scale mining of fmri data with hierarchical structured sparsity.
 In Pattern Recognition in NeuroImaging (PRNI).
- Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011b). Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res., 12:2297–2334.
- Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and combinatorial optimization, volume 18. Wiley New York.
- Obozinski, G. and Bach, F. (2012). Convex relaxation for combinatorial penalties. arXiv preprint arXiv:1205.1240.
- Obozinski, G., Jacob, L., and Vert, J. (2011).
 Group lasso with overlaps: The latent group lasso approach. arXiv preprint arXiv:1110.0413.

References III

- Oymak, S., Thrampoulidis, C., and Hassibi, B. (2013).
 Simple bounds for noisy linear inverse problems with exact side information. arXiv:1312.0641v2 [cs.IT].
- Zhao, P., Rocha, G., and Yu, B. (2006).
 Grouped and hierarchical model selection through composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep, 703.
- Zhao, P. and Yu, B. (2006).
 On model selection consistency of Lasso.
 J. Mach. Learn. Res., 7:2541–2563.
- Zhou, H., Sehl, M., Sinsheimer, J., and Lange, K. (2010).
 Association screening of common and rare genetic variants by penalized regression. *Bioinformatics*, 26(19):2375.

