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Motivation

Manipulation of dense matrices is costly in high dimension.
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Motivation

Manipulation of dense matrices is costly in high dimension.

Is it possible to do better? Clreda—
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Fast transforms as sparse factorizations

Analytic transforms (Fourier, wavelets, Hadamard, DCT...) lead to

fast algorithms because of their factorizable structure!

J
X = Hsj
j=1

DR

i
'J. Morgenstern, The Linear Complexity of Computation. J. ACM, 1975
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Our goal is to find multi-layer sparse approximations:

J=1
unknown
and get Flexible Approximate MUIti-layer Sparse Transforms
(FAuST) associated to matrices X of interest:
e Dictionaries

e Forward operators of inverse problems
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Multi-layer sparse benefits

FAuSTs have several advantages over dense matrices:
e Lower storage cost
e Higher speed of multiplication

e Improved statistical significance

Relative complexity

Gains are related to the Relative Complexity (RC) defined as:

S 1S5l

RC 2
Xl
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Optimization problem

e Input: matrix X € R"™*"
e Goal: find J sparse matrices S; such that X ~ S;...S;

M|n|m|ze HX )\HS H zJ:(ng(SJ)
j=1

e Approach:  ASi,..

Data fitting Sparsity enforcing
Sparsity enforcing term: indicator functions of sets of the

form, e.g. & = {A e RW*%+ - [JAllg < pj, [[Allp = 1},

This optimization problem is highly non-convex and non-smooth.
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PALM for Multi-layer Sparse Approximations

The Proximal Alternating Linearized Minimization (PALM)? algo-
rithm can be used with:

2
and:
5]' £ {A S Rajxaﬂ'l : ”AHO < Dj, HAHF = 1}

Algorithm 1 palm4MSA iteration
1: for j=1to J do
1+1 % i i+1 ) 7
2 Sj e P (S) - AV H(N ST L8] S)) )
3: end for

Proposition. Each bounded sequence generated by palm4MSA
converges to a stationary point of the objective.

2J. Bolte et al., Proximal alternating linearized minimization for oy

nonconvex and nonsmooth problems. Math. Program., 2013.
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Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hier-
archical factorization strategy, reminiscent of layerwise training of
neural networks>:

This hierarchical factorization is surprisingly effective and the at-
tained local minima are very good.

3G. Hinton and R. Salakhutdinov, Reducing the dimensionality of Lot

data with neural networks, Science, vol. 313, no. 5786, 2006.
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Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hier-
archical factorization strategy, reminiscent of layerwise training of
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S;_1S;,
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Inverse problems (joint work with A. Gramfort )

Data y and parameters ~ are linked through the operator M:

y =~ M~y

Recovery methods are often iterative algorithms relying on applica-
tions of the operator M, which can be costly in high dimension.

lrezia—
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Inverse problems (joint work with A. Gramfort )

Data y and parameters ~ are linked through the operator M:

~ M
YJ7

I1s

j=1

Recovery methods are often iterative algorithms relying on applica-
tions of the operator M, which can be costly in high dimension.
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Inverse problems: MEG imaging

o ~ € R3193 represents electric sources at different locations.
e y € R?% s the signal intensity measured by electrodes.

o M c R?04%8193 models the physics of the propagation
(Maxwell's equations).

Conclusion
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Inverse problems: Factorization of M

g
=2}

Relative error
o o o o
N o® = o

o
o

10 5 3.33 25 2 1.67
Relative Complexity Gain (RCG)

o
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Inverse problems: Source localization experiment

Experiment: The objective is to retrieve the location of 2 brain
sources chosen uniformly at random, activated with gaussian random
weights, giving a 2-sparse vector v € R3193,

Resolution method: Orthogonal Matching Pursuit (OMP), choos-
ing 2 atoms.

Matrix used:
e The actual matrix M.
e The FA/LSTS ﬁ25, ﬁl(;, ﬁllr ﬁg, 1/\\/17, ﬁ& where the
subscript indicates the achieved RCG (rounded to the closest
integer).

-
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Inverse problems: Source localization results

Median
— 25%:
—9%-91%

M, M, My My My My
d>8

M

My My My

M,

5<d<8

My My

My,

M

|
w ¥ v o
<

P
(wo) s82In0s pajewy

So puE BN} usBM}eq SouElsIq

1<d<5

t;l -

12 /19



Introduction Proposed approach Applications Conclusion
0000 [eleo]e} O0000e00000

Dictionary learning
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Dictionary learning: Experimental settings

Experiment: 8 x 8 noisy image patches are gathered in Y €
R64x10000 51 which a dictionary D is learned: Y ~ DT, the coef-
ficient matrix I' having 5 non-zero entries per column. The learned
dictionary is then used to denoise the whole image using OMP.

Dictionary learning methods:
o FAUST: D =[], S;
e Dense Dictionary Learning (DDL): D is unconstrained

lrezia—
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Dictionary learning: Image denoising results
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Dictionary learning: Image denoising example

Original Noisy image FAuST denoised DDL denoised
image ~ PSNR = 20.17dB PSNR = 29.27dB PSNR = 25.93dB

Croia—
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Dictionary learning: Image denoising example

FAuST chtlonary (RC 0 13) DDL chtlonar (RC=1)
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Dictionary learning: Generalization bound

General result applicable to various dictionary classes, distributions
and penalties?:

sup [Fx (D) = Exwpfx(D)] < 1a(9,D, %),
De®

with 7, o< 1/d(D). For multi-layer sparse dictionaries, we have:
J
d(®) = IISjlly-
j=1

This gives n, o< O ( Z}le ||S]-||0) instead of O (/|D],) for
classical dense dictionaries.

“R. Gribonval et al., Sample Complexity of Dictionary Learning and Lot
other Matrix Factorizations. |EEE Trans. Inf. Theory. 2015.
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Conclusion

Summary:
e A new matrix factorization method with complexity constraints.

e An improved computational efficiency with good adaptation to
the training data.

Ongoing and future work:
e Task-driven dictionary learning.
e Signal processing on graphs.

e Theoretical analysis of multi-layer sparse approximations.

Crzia—
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PALM convergence conditions

The following conditions are sufficient (not necessary) to ensure that
each bounded sequence generated by PALM converges to a station-
ary point of its objective:

1. H is smooth.

2. The &;s are semi-algebraic sets.

3. Vx, H is globally Lipschitz for all j, with Lipschitz moduli
Lj(Xl. . -Xj—I; Xj+1. . .XN).

4. Vi, c§- > L(xit. .xj.fll,xé-ﬂ. ..x%) (the inequality need not
be strict for convex f;).

lrezia—
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The palm4MSA algorithm

Algorithm 2 PALM for Multi-layer Sparse Approximations
Input: Matrix X, desired number of factors .J, constraint sets &;, j €
{1...J} and a stopping criterion.
1: for i =0 to Njer — 1 do

2. forj=1toJ do

3 Setci> ()2 |R|Z. LI

A S P (s;. — LALT(ALS!R — X)R1'>
5 end for - J

R

7: end for

Output: ANier {S¥ieer}] | = palmaMsA(X, J, {€;}7_))

Proposition. Each bounded sequence generated by palm4MSA
converges to a stationary point of the objective. Lonate
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Hierarchical factorization algorithm

Algorithm 3 Hierarchical factorization
Input: Matrix X, desired number of factors J and the constraint
sets &, ke {l...J—1}and &, ke {1...J—1}.

1: R+« X

2. fork=1toJ—1do

3: )\/,{Tl,TQ} = palm4MSA(R, 2, {&&})

4: Si )\,Tl and R <+ Ty

5: )\,{{S‘«,‘}szl,R} = palmdMSA(X, k + 1, {{EJ}I;Zlgk})
6: end for

7. S5+ R

Output: A\ {Si}i_,.

lrezia—
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Inverse problems: Factorization of M

Objective: Factorize M in order to make complexity savings.

N J
e

J

What complexity/accuracy trade-offs are achievable?

hua,-
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Dictionary learning: Algorithm

Algorithm 4 Hierarchical factorization for dictionary learning
Input: Data matrix Y; Dictionary D; Coefﬁgients T': desired num-
ber of factors J; constraint sets & and &, k€ {1...J —1}.

1: To+« D
2. fork=1toJ—1do
3 Factorize the residual T _; into 2 factors:

)\/,{FQ, Fl} = palm4MSA(Tk_1, 2, {gk,gk}, .. )
: Ty + )\/FQ and S + F4
5. Global optimization using palm4MSA
6:  Coefficients update:
I' = sparseCoding(Y, T H§:1 S;)
end for
: SJ «— T4
Output: The estimated factorization: )\,{Sj}}]:l, |

©

Creia—~
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Dictionary learning: Algorithm

Algorithm 5 Hierarchical factorization for dictionary learning
Input: Data matrix Y; Dictionary D; Coefﬁgients T': desired num-
ber of factors J; constraint sets & and &, k€ {1...J —1}.

1: To+« D
2: fork=1toJ —1do
3 Factorize the residual Tj_1 into 2 factors:

N {Fy, F1} = palmdMSA(Ty_1, 2, {Ek, Ek}r .. .)
: Ty < )\/FQ and S; + Fy
5. Global optimization using palm4MSA
Coefficients update:
I' = sparseCoding(Y, T H§:1 S;)

7: end for
8: S;<+ Ty
Output: The estimated factorization: A,{Sj}}]:l, | )
Greia—
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Dictionary learning: Algorithm

Algorithm 6 Hierarchical factorization for dictionary learning
Input: Data matrix Y; Dictionary D; Coefﬁgients T': desired num-
ber of factors J; constraint sets & and &, k€ {1...J —1}.

1: To+« D
2. fork=1toJ—1do
3 Factorize the residual T _; into 2 factors:

)\/,{FQ, F1} = palmd4MSA(Ty_1, 2, {gk,gk}, o)
Ty + )\/FQ and S + F4
Global optimization using palm4MSA
6:  Coefficients update:
I' = sparseCoding(Y, Tk H{}’:l S;)

7: end for
8: S;<+ Ty
Output: The estimated factorization: A,{Sj}}]:l, T. )
Crreia—
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

lrezia—
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

Step 1:

N
N

Croia—
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

Step 1: Step 2:

N
N

™
™,
;&H
J b
.
Croia
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

Step 1: Step 2: Step 3:

o =
\\ DN

&,V'/,’a/—
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

Step 1: Step 2: Step 3: Step 4:

o =
\\ DN

&,V'/,’a/—
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n?):

Step 1: Step 2: Step 3: Step 4:

o =
\\ DN

This factorization is as good as the reference. Lonate
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