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Motivation

Manipulation of dense matrices is costly in high dimension.

Is it possible to do better?
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Fast transforms as sparse factorizations

Analytic transforms (Fourier, wavelets, Hadamard, DCT...) lead to

fast algorithms because of their factorizable structure1 :

X =
J∏
j=1

Sj

1J. Morgenstern, The Linear Complexity of Computation. J. ACM, 1975
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Objective

Our goal is to find multi-layer sparse approximations:

X
known

≈
J∏
j=1

Sj

unknown

,

and get Flexible Approximate MUlti-layer Sparse Transforms
(FAµST) associated to matrices X of interest:

• Dictionaries

• Forward operators of inverse problems

• · · ·
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Multi-layer sparse benefits

FAµSTs have several advantages over dense matrices:

• Lower storage cost

• Higher speed of multiplication

• Improved statistical significance

Relative complexity

Gains are related to the Relative Complexity (RC) defined as:

RC ,

∑J
j=1 ‖Sj‖0
‖X‖0
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Optimization problem

• Input: matrix X ∈ Rm×n

• Goal: find J sparse matrices Sj such that X ≈ SJ . . .S1

• Approach:
Minimize
λ,S1,...,SJ

1

2

∥∥∥X− λ J∏
j=1

Sj

∥∥∥2
F︸ ︷︷ ︸

Data fitting

+

J∑
j=1

δEj (Sj)︸ ︷︷ ︸
Sparsity enforcing

Sparsity enforcing term: indicator functions of sets of the
form, e.g. Ej = {A ∈ Raj×aj+1 : ‖A‖0 ≤ pj , ‖A‖F = 1}.

This optimization problem is highly non-convex and non-smooth.
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PALM for Multi-layer Sparse Approximations

The Proximal Alternating Linearized Minimization (PALM)2 algo-
rithm can be used with:

H(λ,S1, . . . ,SJ) , 1
2

∥∥X− λ∏J
j=1 Sj

∥∥2
F
,

and:
Ej , {A ∈ Raj×aj+1 : ‖A‖0 ≤ pj , ‖A‖F = 1}.

Algorithm 1 palm4MSA iteration
1: for j = 1 to J do

2: Si+1
j ← PEj

(
Si
j − 1

cij
∇Sj

H
(
λi,Si+1

1 , . . . ,Si
j , . . . ,S

i
J

))
3: end for

Proposition. Each bounded sequence generated by palm4MSA

converges to a stationary point of the objective.

2J. Bolte et al., Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Math. Program., 2013.
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Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hier-
archical factorization strategy, reminiscent of layerwise training of
neural networks3:

This hierarchical factorization is surprisingly effective and the at-
tained local minima are very good.

3G. Hinton and R. Salakhutdinov, Reducing the dimensionality of
data with neural networks, Science, vol. 313, no. 5786, 2006.
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Inverse problems (joint work with A. Gramfort )

Data y and parameters γ are linked through the operator M:

y ≈Mγ

Recovery methods are often iterative algorithms relying on applica-
tions of the operator M, which can be costly in high dimension.
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Inverse problems: MEG imaging

• γ ∈ R8193 represents electric sources at different locations.

• y ∈ R204 is the signal intensity measured by electrodes.

• M ∈ R204×8193 models the physics of the propagation
(Maxwell’s equations).

9 / 19



Introduction Proposed approach Applications Conclusion

Inverse problems: Factorization of M

Relative Complexity Gain (RCG)
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Inverse problems: Source localization experiment

Experiment: The objective is to retrieve the location of 2 brain
sources chosen uniformly at random, activated with gaussian random
weights, giving a 2-sparse vector γ ∈ R8193.

Resolution method: Orthogonal Matching Pursuit (OMP), choos-
ing 2 atoms.

Matrix used:

• The actual matrix M.

• The FAµSTs M̂25, M̂16, M̂11, M̂8, M̂7, M̂6, where the
subscript indicates the achieved RCG (rounded to the closest
integer).
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Inverse problems: Source localization results
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Dictionary learning

Y ≈ DΓ
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Dictionary learning

Y ≈ D︷ ︸︸ ︷
J∏
j=1

Sj

Γ
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Dictionary learning: Experimental settings

Experiment: 8 × 8 noisy image patches are gathered in Y ∈
R64×10000, on which a dictionary D is learned: Y ≈ DΓ, the coef-
ficient matrix Γ having 5 non-zero entries per column. The learned
dictionary is then used to denoise the whole image using OMP.

Dictionary learning methods:

• FAµST: D =
∏J
j=1 Sj

• Dense Dictionary Learning (DDL): D is unconstrained

14 / 19



Introduction Proposed approach Applications Conclusion

Dictionary learning: Image denoising results
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Dictionary learning: Image denoising example
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Dictionary learning: Image denoising example
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Dictionary learning: Generalization bound

General result applicable to various dictionary classes, distributions
and penalties4:

sup
D∈D
|FX(D)− Ex∼Pfx(D)| ≤ ηn(g,D,P),

with ηn ∝
√
d(D). For multi-layer sparse dictionaries, we have:

d(D) =

J∑
j=1

‖Sj‖0 .

This gives ηn ∝ O
(√∑J

j=1 ‖Sj‖0
)

instead of O
(√
‖D‖0

)
for

classical dense dictionaries.

4R. Gribonval et al., Sample Complexity of Dictionary Learning and
other Matrix Factorizations. IEEE Trans. Inf. Theory. 2015.
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Conclusion

Summary:

• A new matrix factorization method with complexity constraints.

• An improved computational efficiency with good adaptation to
the training data.

Ongoing and future work:

• Task-driven dictionary learning.

• Signal processing on graphs.

• Theoretical analysis of multi-layer sparse approximations.
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Questions?

Le Magoarou, L. & Gribonval, R., Flexible Multi-layer Sparse Ap-
proximations of Matrices and Applications, arXiv:1506.07300.
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PALM convergence conditions

The following conditions are sufficient (not necessary) to ensure that
each bounded sequence generated by PALM converges to a station-
ary point of its objective:

1. H is smooth.

2. The Ejs are semi-algebraic sets.

3. ∇xjH is globally Lipschitz for all j, with Lipschitz moduli
Lj(x1. . .xj−1,xj+1. . .xN ).

4. ∀i, cij > Lj(x
i+1
1 . . .xi+1

j−1,x
i
j+1. . .x

i
N ) (the inequality need not

be strict for convex fj).
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The palm4MSA algorithm

Algorithm 2 PALM for Multi-layer Sparse Approximations
Input: Matrix X, desired number of factors J , constraint sets Ej , j ∈
{1 . . . J} and a stopping criterion.

1: for i = 0 to Niter − 1 do
2: for j = 1 to J do
3: Set cij > (λi)2 ‖R‖22 . ‖L‖

2
2

4: Si+1
j ← PEj

(
Si
j − 1

cij
λLT (λLSi

jR−X)RT
)

5: end for
6: λi+1 ← Tr(XT X̂)

Tr(X̂T X̂)

7: end for
Output: λNiter ,{SNiter

k }Jk=1 = palm4MSA(X, J , {Ej}Jj=1)

Proposition. Each bounded sequence generated by palm4MSA

converges to a stationary point of the objective.
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Hierarchical factorization algorithm

Algorithm 3 Hierarchical factorization

Input: Matrix X, desired number of factors J and the constraint
sets Ek, k ∈ {1 . . . J − 1} and Ẽk, k ∈ {1 . . . J − 1}.

1: R← X
2: for k = 1 to J − 1 do
3: λ′,{T1,T2} = palm4MSA(R, 2, {Ek, Ẽk})
4: Sk ← λ′T1 and R← T2

5: λ,
{
{Sj}kj=1,R

}
= palm4MSA(X, k + 1,

{
{Ej}kj=1, Ẽk

}
)

6: end for
7: SJ ← R

Output: λ,{Sk}Jk=1.
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Inverse problems: Factorization of M

Objective: Factorize M in order to make complexity savings.

What complexity/accuracy trade-offs are achievable?
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Dictionary learning: Algorithm

Algorithm 4 Hierarchical factorization for dictionary learning

Input: Data matrix Y; Dictionary D; Coefficients Γ; desired num-
ber of factors J ; constraint sets Ek and Ẽk, k ∈ {1 . . . J − 1}.

1: T0 ← D
2: for k = 1 to J − 1 do
3: Factorize the residual Tk−1 into 2 factors:

λ′,{F2,F1} = palm4MSA(Tk−1, 2, {Ẽk, Ek}, . . . )
4: Tk ← λ′F2 and Sk ← F1

5: Global optimization using palm4MSA

6: Coefficients update:
Γ = sparseCoding(Y, Tk

∏k
j=1 Sj)

7: end for
8: SJ ← TJ−1

Output: The estimated factorization: λ,{Sj}Jj=1, Γ.
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4: Tk ← λ′F2 and Sk ← F1

5: Global optimization using palm4MSA

6: Coefficients update:
Γ = sparseCoding(Y, Tk

∏k
j=1 Sj)

7: end for
8: SJ ← TJ−1

Output: The estimated factorization: λ,{Sj}Jj=1, Γ.

19 / 19



Introduction Proposed approach Applications Conclusion

Dictionary learning: Algorithm

Algorithm 6 Hierarchical factorization for dictionary learning

Input: Data matrix Y; Dictionary D; Coefficients Γ; desired num-
ber of factors J ; constraint sets Ek and Ẽk, k ∈ {1 . . . J − 1}.
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Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implemen-
tation of the Hadamard transform of size n, in running time O(n2):

This factorization is as good as the reference.
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