Multi-layer Sparse Matrix Factorization

Luc Le Magoarou Rémi Gribonval

Inria Centre Inria Rennes - Bretagne Atlantique France

SPARS 2015

Outline

Introduction

Motivation Fast transforms as sparse factorizations Objective Multi-layer sparse benefits

Proposed approach

Optimization problem The PALM algorithm for Multi-layer Sparse Approximations Hierarchical strategy

Applications

Inverse problems Dictionary learning

Conclusion

Outline

Introduction

Motivation Fast transforms as sparse factorizations Objective Multi-layer sparse benefits

Proposed approach

Optimization problem The PALM algorithm for Multi-layer Sparse Approximations Hierarchical strategy

Applications

Inverse problems Dictionary learning

Conclusion

Introduction	Proposed approach	Applications	Conclusio
• 0 0 0	000	0000000000	
Motivation			

Manipulation of dense matrices is costly in high dimension.

Ínría_

Introduction •••••	Proposed approach	Applications 0000000000	Conclusion
Motivation			

Manipulation of dense matrices is costly in high dimension.

Is it possible to do better?

Inría

Introduction •••• Proposed approach

Applications 00000000000 Conclusion

Fast transforms as sparse factorizations

Analytic transforms (Fourier, wavelets, Hadamard, DCT...) lead to fast algorithms because of their factorizable structure¹ :

$$\mathbf{X} = \prod_{j=1}^{J} \mathbf{S}_j$$

¹J. Morgenstern, The Linear Complexity of Computation. J. ACM, 1975

Introduct	ion
0000	

Proposed approach

Applications 0000000000 Conclusion

Objective

Our goal is to find multi-layer sparse approximations:

$$\mathbf{X}_{\mathsf{known}} pprox \prod_{j=1}^{J} \mathbf{S}_{j},$$
unknown

and get Flexible Approximate MUlti-layer Sparse Transforms (FA μ ST) associated to matrices X of interest:

- Dictionaries
- Forward operators of inverse problems
- • •

Introduction	
0000	

Proposed approach

Applications 00000000000 Conclusion

Multi-layer sparse benefits

 $FA\mu STs$ have several advantages over dense matrices:

- Lower storage cost
- Higher speed of multiplication
- Improved statistical significance

Relative complexity

Gains are related to the Relative Complexity (RC) defined as:

$$\mathsf{RC} \triangleq \frac{\sum_{j=1}^{J} \|\mathbf{S}_j\|_0}{\|\mathbf{X}\|_0}$$

Outline

Introduction

Motivation Fast transforms as sparse factorizations Objective Multi-layer sparse benefits

Proposed approach

Optimization problem The PALM algorithm for Multi-layer Sparse Approximations Hierarchical strategy

Applications

Inverse problems Dictionary learning

Conclusion

Proposed approach

Applications 0000000000 Conclusion

Optimization problem

- Input: matrix $\mathbf{X} \in \mathbb{R}^{m imes n}$
- Goal: find J sparse matrices \mathbf{S}_j such that $\mathbf{X} \approx \mathbf{S}_J \dots \mathbf{S}_1$

• Approach:
Minimize
$$\lambda, \mathbf{S}_1, \dots, \mathbf{S}_J$$

 $\underbrace{\frac{1}{2} \| \mathbf{X} - \lambda \prod_{j=1}^J \mathbf{S}_j \|_F^2}_{\text{Data fitting}} + \underbrace{\sum_{j=1}^J \delta_{\mathcal{E}_j}(\mathbf{S}_j)}_{\text{Sparsity enforcing}}$
Sparsity enforcing term: indicator functions of sets of the form, e.g. $\mathcal{E}_j = \{ \mathbf{A} \in \mathbb{R}^{a_j \times a_{j+1}} : \| \mathbf{A} \|_0 \le p_j, \| \mathbf{A} \|_F = 1 \}.$

This optimization problem is highly non-convex and non-smooth.

Proposed approach

Applications 00000000000 Conclusion

PALM for Multi-layer Sparse Approximations

The Proximal Alternating Linearized Minimization $(PALM)^2$ algorithm can be used with:

$$H(\lambda, \mathbf{S}_1, \dots, \mathbf{S}_J) \triangleq \frac{1}{2} \| \mathbf{X} - \lambda \prod_{j=1}^J \mathbf{S}_j \|_F^2,$$

and:

$$\mathcal{E}_j \triangleq \{ \mathbf{A} \in \mathbb{R}^{a_j \times a_{j+1}} : \|\mathbf{A}\|_0 \le p_j, \|\mathbf{A}\|_F = 1 \}.$$

Algorithm 1 palm4MSA iteration

1: for j = 1 to J do

2:
$$\mathbf{S}_{j}^{i+1} \leftarrow P_{\mathcal{E}_{j}}\left(\mathbf{S}_{j}^{i} - \frac{1}{c_{i}^{i}} \nabla_{\mathbf{S}_{j}} H\left(\lambda^{i}, \mathbf{S}_{1}^{i+1}, \dots, \mathbf{S}_{j}^{i}, \dots, \mathbf{S}_{J}^{i}\right)\right)$$

3: end for

Proposition. Each bounded sequence generated by palm4MSA converges to a stationary point of the objective.

²J. Bolte et al., **Proximal alternating linearized minimization for nonconvex and nonsmooth problems.** *Math. Program.*, 2013.

Introduction Proposed approach OCOCOUNT Conclusion OCOCOCOCOCO

Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hierarchical factorization strategy, reminiscent of layerwise training of neural networks³:

This hierarchical factorization is surprisingly effective and the attained local minima are very good.

³G. Hinton and R. Salakhutdinov, **Reducing the dimensionality of data with neural networks**, *Science*, vol. 313, no. 5786, 2006.

Innia

Introduction oco

Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hierarchical factorization strategy, reminiscent of layerwise training of neural networks³:

 $\mathbf{X} \approx \mathbf{S}_1 \mathbf{R}_1$

This hierarchical factorization is surprisingly effective and the attained local minima are very good.

³G. Hinton and R. Salakhutdinov, **Reducing the dimensionality of data with neural networks**, *Science*, vol. 313, no. 5786, 2006.

Ínría

Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hierarchical factorization strategy, reminiscent of layerwise training of neural networks³:

 $\mathbf{X} \approx \mathbf{S}_1 \mathbf{R}_1$

This hierarchical factorization is surprisingly effective and the attained local minima are very good.

³G. Hinton and R. Salakhutdinov, **Reducing the dimensionality of data with neural networks**, *Science*, vol. 313, no. 5786, 2006.

Ínría

Hierarchical strategy

In order to initialize the factors in a good region, we adopt a hierarchical factorization strategy, reminiscent of layerwise training of neural networks³:

$$\mathbf{X} \approx \mathbf{S}_{1} \mathbf{R}_{1}$$

$$\mathbf{S}_{2} \mathbf{R}_{2}$$

$$\vdots$$

$$\mathbf{S}_{J-1} \mathbf{S}_{J}$$

This hierarchical factorization is surprisingly effective and the attained local minima are very good.

³G. Hinton and R. Salakhutdinov, **Reducing the dimensionality of data with neural networks**, *Science*, vol. 313, no. 5786, 2006.

Ínaía-

Outline

Introduction

Motivation Fast transforms as sparse factorizations Objective Multi-layer sparse benefits

Proposed approach

Optimization problem The PALM algorithm for Multi-layer Sparse Approximations Hierarchical strategy

Applications

Inverse problems Dictionary learning

Conclusion

Proposed approach

Applications •**0000**000000

Inverse problems (joint work with A. Gramfort 🚮)

Data y and parameters γ are linked through the operator M:

 $\mathbf{y} pprox \mathbf{M} \boldsymbol{\gamma}$

Recovery methods are often iterative algorithms relying on applications of the operator \mathbf{M} , which can be costly in high dimension.

Innía

Proposed approach

Applications •0000000000 Conclusion

Inverse problems (joint work with A. Gramfort 🛐)

Data ${f y}$ and parameters γ are linked through the operator ${f M}$:

$$\mathbf{y} pprox \mathbf{M} oldsymbol{\gamma} \ \prod_{j=1}^J \mathbf{S}_j$$

Recovery methods are often iterative algorithms relying on applications of the operator \mathbf{M} , which can be costly in high dimension.

Innía

Proposed approach

Applications 0000000000 Conclusion

Inverse problems: MEG imaging

- $oldsymbol{\gamma} \in \mathbb{R}^{8193}$ represents electric sources at different locations.
- $\mathbf{y} \in \mathbb{R}^{204}$ is the signal intensity measured by electrodes.
- $\mathbf{M} \in \mathbb{R}^{204 \times 8193}$ models the physics of the propagation (Maxwell's equations).

Proposed approach

Applications

Conclusion

Inverse problems: Factorization of ${f M}$

Applications 0000000000

Inverse problems: Source localization experiment

Experiment: The objective is to retrieve the location of 2 brain sources chosen uniformly at random, activated with gaussian random weights, giving a 2-sparse vector $\boldsymbol{\gamma} \in \mathbb{R}^{8193}$.

Resolution method: Orthogonal Matching Pursuit (OMP), choosing 2 atoms.

Matrix used:

- The actual matrix **M**.
- The FA μ STs $\widehat{\mathbf{M}}_{25}$, $\widehat{\mathbf{M}}_{16}$, $\widehat{\mathbf{M}}_{11}$, $\widehat{\mathbf{M}}_{8}$, $\widehat{\mathbf{M}}_{7}$, $\widehat{\mathbf{M}}_{6}$, where the subscript indicates the achieved RCG (rounded to the closest integer).

Proposed approach

Applications 0000000000 Conclusion

Inverse problems: Source localization results

Ínría_

Proposed approach

Applications 00000000000

Dictionary learning

 $\mathbf{Y} \approx \mathbf{D} \mathbf{\Gamma}$

ĺnría_ 13/19

Proposed approach

Applications 00000000000

Dictionary learning

ĺnría_ 13/19

Proposed approach

Applications

Conclusion

Dictionary learning: Experimental settings

Experiment: 8×8 noisy image patches are gathered in $\mathbf{Y} \in \mathbb{R}^{64 \times 10000}$, on which a dictionary \mathbf{D} is learned: $\mathbf{Y} \approx \mathbf{D}\mathbf{\Gamma}$, the coefficient matrix $\mathbf{\Gamma}$ having 5 non-zero entries per column. The learned dictionary is then used to denoise the whole image using OMP.

Dictionary learning methods:

- FA μ ST: $\mathbf{D} = \prod_{j=1}^{J} \mathbf{S}_j$
- Dense Dictionary Learning (DDL): \mathbf{D} is unconstrained

Introduction 0000	oduction Proposed approach		Proposed approach 000		Applications	Conclusion	
— · ·		-					

Dictionary learning: Image denoising results

Proposed approach

Applications

Conclusion

Dictionary learning: Image denoising example

Ínría

Proposed approach

Applications

Conclusion

Dictionary learning: Image denoising example

FAµST Dictionary (RC=0,13)

Ínría

 Introduction
 Proposed approach
 Applications

 0000
 000
 000000000

Conclusion

Dictionary learning: Generalization bound

General result applicable to various dictionary classes, distributions and penalties⁴:

$$\sup_{\mathbf{D}\in\mathfrak{D}}|F_{\mathbf{X}}(\mathbf{D})-\mathbb{E}_{\mathbf{x}\sim\mathbb{P}}f_{\mathbf{x}}(\mathbf{D})|\leq\eta_n(g,\mathfrak{D},\mathfrak{P}),$$

with $\eta_n \propto \sqrt{d(\mathfrak{D})}$. For multi-layer sparse dictionaries, we have:

$$d(\mathfrak{D}) = \sum_{j=1}^{J} \left\| \mathbf{S}_{j} \right\|_{0}.$$

This gives $\eta_n \propto \mathcal{O}\left(\sqrt{\sum_{j=1}^J \|\mathbf{S}_j\|_0}\right)$ instead of $\mathcal{O}\left(\sqrt{\|\mathbf{D}\|_0}\right)$ for classical dense dictionaries.

⁴R. Gribonval et al., Sample Complexity of Dictionary Learning and *Unria* other Matrix Factorizations. *IEEE Trans. Inf. Theory.* 2015.

Outline

Introduction

Motivation Fast transforms as sparse factorizations Objective Multi-layer sparse benefits

Proposed approach

Optimization problem The PALM algorithm for Multi-layer Sparse Approximations Hierarchical strategy

Applications

Inverse problems Dictionary learning

Conclusion

Introduction	
0000	

Proposed approach

Applications 00000000000 Conclusion

Conclusion

Summary:

- A new matrix factorization method with complexity constraints.
- An improved computational efficiency with good adaptation to the training data.

Ongoing and future work:

- Task-driven dictionary learning.
- Signal processing on graphs.
- Theoretical analysis of multi-layer sparse approximations.

Questions?

Le Magoarou, L. & Gribonval, R., Flexible Multi-layer Sparse Approximations of Matrices and Applications, arXiv:1506.07300.

Proposed approach

Applications 0000000000 Conclusion

PALM convergence conditions

The following conditions are sufficient (not necessary) to ensure that each bounded sequence generated by PALM converges to a stationary point of its objective:

- 1. H is smooth.
- 2. The \mathcal{E}_j s are semi-algebraic sets.
- 3. $\nabla_{\mathbf{x}_j} H$ is globally Lipschitz for all j, with Lipschitz moduli $L_j(\mathbf{x}_1...\mathbf{x}_{j-1}, \mathbf{x}_{j+1}...\mathbf{x}_N)$.
- 4. $\forall i, c_j^i > L_j(\mathbf{x}_1^{i+1}...\mathbf{x}_{j-1}^{i+1}, \mathbf{x}_{j+1}^i...\mathbf{x}_N^i)$ (the inequality need not be strict for convex f_j).

Proposed approach

Applications 00000000000 Conclusion

The palm4MSA algorithm

Algorithm 2 PALM for Multi-layer Sparse Approximations **Input:** Matrix **X**, desired number of factors J, constraint sets \mathcal{E}_i , $j \in$ $\{1 \dots J\}$ and a stopping criterion. 1: for i = 0 to $N_{iter} - 1$ do for j = 1 to J do 2: Set $c_i^i > (\lambda^i)^2 \|\mathbf{R}\|_2^2 . \|\mathbf{L}\|_2^2$ 3: $\mathbf{S}_{j}^{i+1} \leftarrow P_{\mathcal{E}_{j}} \left(\mathbf{S}_{j}^{i} - \frac{1}{c^{i}} \lambda \mathbf{L}^{T} (\lambda \mathbf{L} \mathbf{S}_{j}^{i} \mathbf{R} - \mathbf{X}) \mathbf{R}^{T} \right)$ 4: 5: end for $\lambda^{i+1} \leftarrow \frac{\operatorname{Tr}(\mathbf{X}^T \hat{\mathbf{X}})}{\operatorname{Tr}(\hat{\mathbf{X}}^T \hat{\mathbf{X}})}$ 6: 7: end for **Output:** $\lambda^{N_{iter}}, \{\mathbf{S}_{k}^{N_{iter}}\}_{k=1}^{J} = \text{palm4MSA}(\mathbf{X}, J, \{\mathcal{E}_{i}\}_{i=1}^{J})$

Proposition. Each bounded sequence generated by palm4MSA converges to a stationary point of the objective.

nnia

Proposed approach

Applications 00000000000 Conclusion

Hierarchical factorization algorithm

Algorithm 3 Hierarchical factorization

Input: Matrix X, desired number of factors J and the constraint sets \mathcal{E}_k , $k \in \{1 \dots J - 1\}$ and $\tilde{\mathcal{E}}_k$, $k \in \{1 \dots J - 1\}$. 1: $\mathbf{R} \leftarrow \mathbf{X}$

2: for
$$k = 1$$
 to $J - 1$ do

- 3: $\lambda', \{\mathbf{T}_1, \mathbf{T}_2\} = \texttt{palm4MSA}(\mathbf{R}, 2, \{\mathcal{E}_k, \tilde{\mathcal{E}}_k\})$
- 4: $\mathbf{S}_k \leftarrow \lambda' \mathbf{T}_1 \text{ and } \mathbf{R} \leftarrow \mathbf{T}_2$
- 5: $\lambda, \{\{\mathbf{S}_j\}_{j=1}^k, \mathbf{R}\} = \texttt{palm4MSA}(\mathbf{X}, k+1, \{\{\mathcal{E}_j\}_{j=1}^k, \tilde{\mathcal{E}}_k\})$
- 6: end for
- 7: $\mathbf{S}_J \leftarrow \mathbf{R}$

Output: λ , $\{\mathbf{S}_k\}_{k=1}^J$.

Proposed approach

Applications 00000000000 Conclusion

Inverse problems: Factorization of ${f M}$

Objective: Factorize \mathbf{M} in order to make complexity savings.

What complexity/accuracy trade-offs are achievable?

Applications 0000000000 Conclusion

Dictionary learning: Algorithm

Algorithm 4 Hierarchical factorization for dictionary learning

- **Input:** Data matrix **Y**; Dictionary **D**; Coefficients Γ ; desired number of factors J; constraint sets \mathcal{E}_k and $\tilde{\mathcal{E}}_k$, $k \in \{1 \dots J 1\}$.
 - 1: $\mathbf{T}_0 \leftarrow \mathbf{D}$
 - 2: for k = 1 to J 1 do
 - 3: Factorize the residual \mathbf{T}_{k-1} into 2 factors: $\lambda', \{\mathbf{F}_2, \mathbf{F}_1\} = \mathtt{palm4MSA}(\mathbf{T}_{k-1}, 2, \{\tilde{\mathcal{E}}_k, \mathcal{E}_k\}, \dots)$

4:
$$\mathbf{T}_k \leftarrow \lambda' \mathbf{F}_2$$
 and $\mathbf{S}_k \leftarrow \mathbf{F}_1$

- 5: Global optimization using palm4MSA
- 6: Coefficients update:
 - $\mathbf{\Gamma} = ext{sparseCoding}(\mathbf{Y},\,\mathbf{T}_k\prod_{j=1}^k\mathbf{S}_j)$
- 7: end for
- 8: $\mathbf{S}_J \leftarrow \mathbf{T}_{J-1}$

Output: The estimated factorization: λ , $\{\mathbf{S}_j\}_{j=1}^J$, Γ .

Ínaía.

Proposed approach

Applications 0000000000 Conclusion

Dictionary learning: Algorithm

Algorithm 5 Hierarchical factorization for dictionary learning

- **Input:** Data matrix **Y**; Dictionary **D**; Coefficients Γ ; desired number of factors J; constraint sets \mathcal{E}_k and $\tilde{\mathcal{E}}_k$, $k \in \{1 \dots J 1\}$.
 - 1: $\mathbf{T}_0 \leftarrow \mathbf{D}$
 - 2: for k = 1 to J 1 do
 - 3: Factorize the residual \mathbf{T}_{k-1} into 2 factors: $\lambda', \{\mathbf{F}_2, \mathbf{F}_1\} = \texttt{palm4MSA}(\mathbf{T}_{k-1}, 2, \{\tilde{\mathcal{E}}_k, \mathcal{E}_k\}, \dots)$

4:
$$\mathbf{T}_k \leftarrow \lambda' \mathbf{F}_2$$
 and $\mathbf{S}_k \leftarrow \mathbf{F}_2$

- 5: Global optimization using palm4MSA
- 6: Coefficients update:
 - $\mathbf{\Gamma} = \texttt{sparseCoding}(\mathbf{Y},\,\mathbf{T}_k\prod_{j=1}^k\mathbf{S}_j)$
- 7: end for
- 8: $\mathbf{S}_J \leftarrow \mathbf{T}_{J-1}$

Output: The estimated factorization: λ , $\{\mathbf{S}_j\}_{j=1}^J$, Γ .

Inaía

Applications 0000000000 Conclusion

Dictionary learning: Algorithm

Algorithm 6 Hierarchical factorization for dictionary learning

- **Input:** Data matrix **Y**; Dictionary **D**; Coefficients Γ ; desired number of factors J; constraint sets \mathcal{E}_k and $\tilde{\mathcal{E}}_k$, $k \in \{1 \dots J 1\}$.
 - 1: $\mathbf{T}_0 \leftarrow \mathbf{D}$
 - 2: for k = 1 to J 1 do
 - 3: Factorize the residual \mathbf{T}_{k-1} into 2 factors: $\lambda', \{\mathbf{F}_2, \mathbf{F}_1\} = \mathtt{palm4MSA}(\mathbf{T}_{k-1}, 2, \{\tilde{\mathcal{E}}_k, \mathcal{E}_k\}, \dots)$

4:
$$\mathbf{T}_k \leftarrow \lambda' \mathbf{F}_2$$
 and $\mathbf{S}_k \leftarrow \mathbf{F}_1$

- 5: Global optimization using palm4MSA
- 6: Coefficients update:

 $\mathbf{\Gamma} = \texttt{sparseCoding}(\mathbf{Y},\,\mathbf{T}_k\prod_{j=1}^k\mathbf{S}_j)$

- 7: end for
- 8: $\mathbf{S}_J \leftarrow \mathbf{T}_{J-1}$

Output: The estimated factorization: λ , $\{\mathbf{S}_j\}_{j=1}^J$, Γ .

Ínaía.

Proposed approach

Applications 00000000000 Conclusion

Fast transform retrieval example: Hadamard transform

Innia

Introduction Proposed approach Applications Conclusion

Fast transform retrieval example: Hadamard transform

Innia

Introduction Proposed approach Applications Conclusion

Fast transform retrieval example: Hadamard transform

Innia

Fast transform retrieval example: Hadamard transform

Innia

Fast transform retrieval example: Hadamard transform

Innía

Fast transform retrieval example: Hadamard transform

The hierarchical factorization allows to retrieve the fast implementation of the Hadamard transform of size n, in running time $\mathcal{O}(n^2)$:

This factorization is as good as the reference.