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N vectors y, € R
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reminder: sparsity & dictionaries

N vectors y, € R?

Y = (y17'°°7yN)
d, N large

A dictionary is a set of building blocks (atoms) so that every signal
of our class can be constructed using only a small (sparse) number

of blocks...

Spaii=

K < N atoms (normalised)
S < d atoms/signal

Karin Schnass ITKM 2/14



A sparse representation of the data is the basis for



reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e efficient data processing,
e.g denoising, compressed sensing, inpainting

Example: inpainting?

?J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online learning for matrix
factorization and sparse coding.
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reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e efficient data processing,
e.g denoising, compressed sensing, inpainting
e efficient data analysis,
e.g source separation, anomaly detection, sparse components

Example: sparse components?

& - Primary Visual
Cortex (V1)

°D.J. Field, B.A. Olshausen, Emergence of simple-cell receptive field
properties by learning a sparse code for natural images.
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reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e efficient data processing,
e.g denoising, compressed sensing, inpainting
e efficient data analysis,
e.g source separation, anomaly detection, sparse components

In all examples:

the sparser - the more efficient
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No need for
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We have:
@ data Y
@ a model (Y is S-sparse in a d x K dictionary ®)



Another dictionary learning algorithm?777

We have:
@ data Y
@ a model (Y is S-sparse in a d x K dictionary ®)

We want:
@ an algorithm (fast, cheap)

@ guarantees that the algorithm will find ®.
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Let's optimise:

ma max || W7 1
max 3 max [Vl 1)

n



first: Iterative Thresholding and K signal means (|

KsM)

Let's optimise:

Algorithm (ITKsM one iteration)

Given an input dictionary V and N training signals y, do:

© Forall n find Iy, , = arg max;.|j=s W yall1.

@ for all k calculate

T =15 v sign((to vn)) - x(H . K).

o Output W = (¢b1/[[P1ll2, - - ¥/ l1¥kll2).

(1)

(2)
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KsM is

ridiculously cheap O(dKN) (parallelisable, online version)
robust to noise, not exact or low sparsity (S = O(u™2))
locally convergent (radius 1/+/log K) for sparsity S = O(u~2),
needs only O(K log Ke~2) samples,
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KsM is

Algorithm (ITKrM one iteration)

Given an input dictionary WV and
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KsM is

ridiculously cheap O(dKN) (parallelisable, online version)

robust to noise, not exact or low sparsity (S = O(,u_z))

needs only O(K log Ke~2) samples,

o
°
e locally convergent (radius 1/+/log K) for sparsity S = O(u=2),
°
o

but is not globally convergent

Algorithm (ITKrM one iteration)

Given an input dictionary WV and

N training signals y, do:

o Forall n find Iy, , = arg max;.|jj=s W yall1.

@ for all k calculate

= sign((¥i,yn)) - [L— P(Wye) + P(tk)] v

n:kEI\fJ .

o Output W = (Y1 /4h1ll2, .-

UK/ 1Pk 2)-
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first fine-tune the model

Signal model:
o take ® with max;x; (¢, ¢;)| = pn < 1.
@ draw a positive, decaying, normed sequence c so that a.s.

c(S)—c(S+1)
a1y

@ for a random permutation p, sign sequence ¢ and subgaussian

c(S)—c(S+1)>ps and As.

noise r set
Px. b+ r
y = &P = where xc,pﬂ(k) = o(k)c(p(k)). (3)
VI+IrI3
E.g. 05 &
C1:...:C5:]./\/§ Z: -
c=0,i>5 0:2
then55:1/\/§,A5:1 00 :":—x—:—x—:—n—ﬁ]
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a very detailed result

Theorem

Let ® be a unit norm frame with frame constants A < B and coherence u and assume that the N training signals
yn are generated according to the signal model in (3) with coefficients that are S-sparse with absolute gap 35 and

, K — __ 1 1
relative gap Ag. Assume further that S < ge and e5 := Kexp ( 4741M25> < 24(BF1) -
Fix a target error € > 8¢, p, with

8K?v/B + 1 — B2
Ep,p = ———— exp S , (4)
Cr1,s 98 max{p*, p*}
compare (??), and assume that £ < 1 — v, 5 + dp®.
If for the input dictionary W we have
d(¥, d) < as d o dW, o) < (5)
) = an ) = =
32V/'S

V98B (1 2544K2(B+1)
98B <4 + \/Iog< AsCrv1s ))

then after 12 [log(£~1)] iterations the output dictionary W of ITKrM both in its batch and online version satisfies
d(V, ®) < & except with probability

(6)

_ 242 NE2
6O|_Iog(5_1)1Kexp < r 1,5 > :

576K max{S, B+ 1} (E+ 1 — vy 5 + dp?)
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and i1ts understandable version

Theorem

Assume the number of training samples N scales as
O(KlogKe™2). If S < O(E Tio =) then with high probability for

any starting dictionary W W/th/n distance O(1/v/S) to the
generating dictionary ®, I.e.,

max g — vll2 < O(1/VS)

after O(log(e™1)) iterations of ITKM the distance of the output
dictionary V to the generating dictionary will be smaller than

max ||dx — Yl < max{ O (K2 6)} (7)

k

If the signals are noiseless and exactly S-sparse with S < O(u~1),
the right hand side above reduces to £ and the number of
necessary training samples reduces to O(K log Ke™1).
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plus some graphical explanations

atoms of the genngting dictior;ary?

Answers:

@ In expectation there is a local maximum of (1) at/near
the generating dictionary.
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plus some graphical explanations

Answers:

@ In expectation there is a local maximum of (1) at/near
the generating dictionary.

e For final accuracy € the ITKMs needs K log Ke~2 training
signals, in the ideal case ITKrM only K log Ke~1.

@ The convergence radius of I TKsM resp. ITKrM is of size at

least 1/+/log K resp. 1/v/S.

@ Experimentally ITKrM shows global convergence properties.
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proofs

and other gory details can be found in
@ Convergence radius and sample complexity of I TKM
algorithms for dictionary learning, arXiv:1503.07027

@ Identification of overcomplete dictionaries, to appear Journal
of Machine Learning Research, (arXiv: 1401.6354).
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background and complementary literature

4 R. Rubinstein, A. Bruckstein, and M. Elad.
Dictionaries for sparse representation modeling.
Proceedings of the IEEE, 98(6):1045-1057, 2010.

s K. Schnass.
A personal introduction to theoretical dictionary learning.

Internationale Mathematische Nachrichten, 228:5-15, 2015.

3 S. Arora, R. Ge, T. Ma, and A. Moitra.
Simple, efficient, and neural algorithms for sparse coding.
arXiv:1503.00778, 2015.

4 J. Sun, Q. Qu, and J. Wright.
Complete dictionary recovery over the sphere.
arXiv:1504.06785, 2015.
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Today at 17.40!
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the last slide

Questions
Comments

Thanks for your attention!!
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an offer you cannot refuse

a (post)doc
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