An iterative thresholding and K residual means algorithm for dictionary learning

Karin Schnass

Department of Mathematics University of Innsbruck

karin.schnass@uibk.ac.at

Cambridge, July 6

$$egin{aligned} & \mathsf{N} ext{ vectors } y_n \in \mathbb{R}^d \ & \mathsf{Y} = (y_1, \dots, y_N) \ & \mathsf{d}, \mathsf{N} ext{ large} \end{aligned}$$

 $N ext{ vectors } y_n \in \mathbb{R}^d$ $Y = (y_1, \dots, y_N)$ $d, N ext{ large}$

 $N ext{ vectors } y_n \in \mathbb{R}^d$ $Y = (y_1, \dots, y_N)$ $d, N ext{ large}$

 $N ext{ vectors } y_n \in \mathbb{R}^d$ $Y = (y_1, \dots, y_N)$ $d, N ext{ large}$

A sparse representation of the data is the basis for

A sparse representation of the data is the basis for

efficient data processing,
 e.g denoising, compressed sensing, inpainting

Example: inpainting^a

^aJ. Mairal, F. Bach, J. Ponce, G. Sapiro, Online learning for matrix factorization and sparse coding.

A sparse representation of the data is the basis for

- efficient data processing,
 e.g denoising, compressed sensing, inpainting
- efficient data analysis,

e.g source separation, anomaly detection, sparse components

Example: sparse components^a

^aD.J. Field, B.A. Olshausen, Emergence of simple-cell receptive field properties by learning a sparse code for natural images.

A sparse representation of the data is the basis for

- efficient data processing,
 e.g denoising, compressed sensing, inpainting
- efficient data analysis,

e.g source separation, anomaly detection, sparse components

In all examples:

the sparser - the more efficient

data:
$$Y = (y_1, \dots, y_N)$$

 N vectors $y_n \in \mathbb{R}^d$
 d, N large

data:
$$Y = (y_1, \dots, y_N)$$

 N vectors $y_n \in \mathbb{R}^d$
 d, N large

data:
$$Y = (y_1, \dots, y_N)$$

N vectors $y_n \in \mathbb{R}^d$
 d, N large

data:
$$Y = (y_1, \dots, y_N)$$

N vectors $y_n \in \mathbb{R}^d$
 d, N large

We have:

- data Y
- a model (Y is S-sparse in a $d \times K$ dictionary Φ)

We have:

- data Y
- a model (Y is S-sparse in a $d \times K$ dictionary Φ)

We want:

- an algorithm (fast, cheap)
- guarantees that the algorithm will find Φ .

We have:

- data Y
- a model (Y is S-sparse in a $d \times K$ dictionary Φ)

We want:

- an algorithm (fast, cheap)
- guarantees that the algorithm will find Φ .

Promising directions:

- Graph clustering algorithms (not so cheap)
- (Alternating) Optimisation (not so many guarantees)

We have:

- data Y
- a model (Y is S-sparse in a $d \times K$ dictionary Φ)

We want:

- an algorithm (fast, cheap)
- guarantees that the algorithm will find Φ .

Promising directions:

- Graph clustering algorithms (not so cheap)
- (Alternating) Optimisation (not so many guarantees)

first: Iterative Thresholding and K signal means (ITKsM)

Let's optimise:

$$\max_{\Psi \in \mathcal{D}} \sum_{n} \max_{|I|=S} \|\Psi_I^* y_n\|_1 \tag{1}$$

first: Iterative Thresholding and K signal means (ITKsM)

Let's optimise:

$$\max_{\Psi \in \mathcal{D}} \sum_{n} \max_{|I|=S} \|\Psi_I^* y_n\|_1 \tag{1}$$

Algorithm (ITKsM one iteration)

Given an input dictionary Ψ and N training signals y_n do:

- For all n find $I_{\Psi,n}^t = \arg \max_{I:|I|=S} \|\Psi_I^\star y_n\|_1$.
- For all k calculate

$$\bar{\psi}_{k} = \frac{1}{N} \sum_{n} y_{n} \cdot \operatorname{sign}(\langle \psi_{k}, y_{n} \rangle) \cdot \chi(I_{\Psi,n}^{t}, k).$$
(2)

• Output $\bar{\Psi} = (\bar{\psi}_1 / \| \bar{\psi}_1 \|_2, \dots, \bar{\psi}_K / \| \bar{\psi}_K \|_2).$

- ridiculously cheap O(dKN) (parallelisable, online version)
- robust to noise, not exact or low sparsity $(S = O(\mu^{-2}))$
- locally convergent (radius $1/\sqrt{\log K}$) for sparsity $S = O(\mu^{-2})$,
- needs only $O(K \log K \varepsilon^{-2})$ samples,

- ridiculously cheap O(dKN) (parallelisable, online version)
- robust to noise, not exact or low sparsity $(S = O(\mu^{-2}))$
- locally convergent (radius $1/\sqrt{\log K}$) for sparsity $S = O(\mu^{-2})$,
- needs only $O(K \log K \varepsilon^{-2})$ samples,
- but is not globally convergent

- ridiculously cheap O(dKN) (parallelisable, online version)
- robust to noise, not exact or low sparsity $(S = O(\mu^{-2}))$
- locally convergent (radius $1/\sqrt{\log K}$) for sparsity $S = O(\mu^{-2})$,
- needs only $O(K \log K \varepsilon^{-2})$ samples,
- but is not globally convergent

Algorithm (ITKrM one iteration)

Given an input dictionary Ψ and N training signals y_n do:

- For all n find $I_{\Psi,n}^t = \arg \max_{I:|I|=S} \|\Psi_I^* y_n\|_1$.
- For all k calculate

$$\bar{\psi}_k = \sum_{n:k\in I_{\Psi,n}^t} \operatorname{sign}(\langle \psi_k, y_n \rangle) \cdot y_n.$$

• Output $\overline{\Psi} = (\overline{\psi}_1/\|\overline{\psi}_1\|_2, \ldots, \overline{\psi}_K/\|\overline{\psi}_K\|_2).$

- ridiculously cheap O(dKN) (parallelisable, online version)
- robust to noise, not exact or low sparsity $(S = O(\mu^{-2}))$
- locally convergent (radius $1/\sqrt{\log K}$) for sparsity $S = O(\mu^{-2})$,
- needs only $O(K \log K \varepsilon^{-2})$ samples,
- but is not globally convergent

Algorithm (ITKrM one iteration)

Given an input dictionary Ψ and N training signals y_n do:

- For all n find $I_{\Psi,n}^t = \arg \max_{I:|I|=S} \|\Psi_I^* y_n\|_1$.
- For all k calculate

$$\bar{\psi}_k = \sum_{n:k\in I_{\Psi,n}^t} \operatorname{sign}(\langle \psi_k, y_n \rangle) \cdot \left[\mathbb{I} - P(\Psi_{I_n^t}) + P(\psi_k) \right] y_n.$$

• Output $\overline{\Psi} = (\overline{\psi}_1/\|\overline{\psi}_1\|_2, \ldots, \overline{\psi}_K/\|\overline{\psi}_K\|_2).$

first fine-tune the model

Signal model:

- take Φ with $\max_{i \neq j} |\langle \phi_i, \phi_j \rangle| = \mu < 1$.
- draw a positive, decaying, normed sequence c so that a.s.

$$c(S)-c(S+1)>eta_S$$
 and $rac{c(S)-c(S+1)}{c(1)}>\Delta_S.$

• for a random permutation p, sign sequence σ and subgaussian noise r set

$$y = \frac{\Phi x_{c,p,\sigma} + r}{\sqrt{1 + \|r\|_2^2}},$$
 where $x_{c,p,\sigma}(k) = \sigma(k)c(p(k)).$ (3)

ITKM

a very detailed result

Theorem

Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ and assume that the N training signals y_n are generated according to the signal model in (3) with coefficients that are S-sparse with absolute gap β_S and relative gap Δ_S . Assume further that $S \leq \frac{K}{98B}$ and $\varepsilon_{\delta} := K \exp\left(-\frac{1}{4741\mu^2 S}\right) \leq \frac{1}{24(B+1)}$. Fix a target error $\bar{\varepsilon} \geq 8\varepsilon_{\mu,\rho}$, with

$$\varepsilon_{\mu,\rho} = \frac{8K^2\sqrt{B+1}}{C_r\gamma_{1,S}} \exp\left(\frac{-\beta_S^2}{98\max\{\mu^2,\rho^2\}}\right),\tag{4}$$

compare (??), and assume that $\bar{\varepsilon} \leq 1 - \gamma_{2,S} + d\rho^2$. If for the input dictionary Ψ we have

$$d(\Psi, \Phi) \leq \frac{\Delta_{S}}{\sqrt{98B} \left(\frac{1}{4} + \sqrt{\log\left(\frac{2544K^{2}(B+1)}{\Delta_{S}C_{r}\gamma_{1,S}}\right)}\right)} \quad and \quad d(\Psi, \Phi) \leq \frac{1}{32\sqrt{S}}, \tag{5}$$

then after $12\lceil \log(\bar{\varepsilon}^{-1}) \rceil$ iterations the output dictionary $\tilde{\Psi}$ of ITKrM both in its batch and online version satisfies $d(\bar{\Psi}, \Phi) \leq \bar{\varepsilon}$ except with probability

$$60\lceil \log(\bar{\varepsilon}^{-1})\rceil K \exp\left(\frac{-C_r^2 \gamma_{1,S}^2 N \bar{\varepsilon}^2}{576K \max\{S, B+1\} \left(\bar{\varepsilon}+1-\gamma_{2,S}+d\rho^2\right)}\right).$$
(6)

Theorem

Assume the number of training samples N scales as $O(K \log K \varepsilon^{-2})$. If $S \leq O(\frac{1}{\ell \mu^2 \log K})$ then with high probability for any starting dictionary Ψ within distance $O(1/\sqrt{S})$ to the generating dictionary Φ , i.e.,

$$\max_{k} \|\phi_k - \psi_k\|_2 \leq O(1/\sqrt{S}),$$

after $O(\log(\varepsilon^{-1}))$ iterations of ITKM the distance of the output dictionary $\overline{\Psi}$ to the generating dictionary will be smaller than

$$\max_{k} \|\phi_{k} - \bar{\psi}_{k}\|_{2} \le \max\left\{\varepsilon, O\left(K^{2-\ell}\right)\right\}.$$
(7)

If the signals are noiseless and exactly S-sparse with $S \leq O(\mu^{-1})$, the right hand side above reduces to ε and the number of necessary training samples reduces to $O(K \log K \varepsilon^{-1})$.

Theorem

Assume the number of training samples N scales as $O(K \log K \varepsilon^{-2})$. If $S \leq O(\frac{1}{\ell \mu^2 \log K})$ then with high probability for any starting dictionary Ψ within distance $O(1/\sqrt{S})$ to the generating dictionary Φ , i.e.,

$$\max_{k} \|\phi_k - \psi_k\|_2 \leq O(1/\sqrt{S}),$$

after $O(\log(\varepsilon^{-1}))$ iterations of ITKM the distance of the output dictionary $\overline{\Psi}$ to the generating dictionary will be smaller than

$$\max_{k} \|\phi_{k} - \bar{\psi}_{k}\|_{2} \le \max\left\{\varepsilon, O\left(K^{2-\ell}\right)\right\}.$$
(7)

If the signals are noiseless and exactly S-sparse with $S \leq O(\mu^{-1})$, the right hand side above reduces to ε and the number of necessary training samples reduces to $O(K \log K \varepsilon^{-1})$.

10 / 14

Answers:

• In expectation there is a local maximum of (1) at/near the generating dictionary.

- In expectation there is a local maximum of (1) at/near the generating dictionary.
- For final accuracy ε the ITKMs needs $K \log K \varepsilon^{-2}$ training signals, in the ideal case ITKrM only $K \log K \varepsilon^{-1}$.

- In expectation there is a local maximum of (1) at/near the generating dictionary.
- For final accuracy ε the ITKMs needs $K \log K \varepsilon^{-2}$ training signals, in the ideal case ITKrM only $K \log K \varepsilon^{-1}$.

- In expectation there is a local maximum of (1) at/near the generating dictionary.
- For final accuracy ε the ITKMs needs $K \log K \varepsilon^{-2}$ training signals, in the ideal case ITKrM only $K \log K \varepsilon^{-1}$.
- The convergence radius of ITKsM resp. ITKrM is of size at least $1/\sqrt{\log K}$ resp. $1/\sqrt{S}$.

- In expectation there is a local maximum of (1) at/near the generating dictionary.
- For final accuracy ε the ITKMs needs K log $K\varepsilon^{-2}$ training signals, in the ideal case ITKrM only $K \log K \varepsilon^{-1}$.
- The convergence radius of ITKsM resp. ITKrM is of size at least $1/\sqrt{\log K}$ resp. $1/\sqrt{S}$.
- Experimentally ITKrM shows global convergence properties.

proofs

proofs

and other gory details can be found in

- Convergence radius and sample complexity of ITKM algorithms for dictionary learning, arXiv:1503.07027
- Identification of overcomplete dictionaries, to appear Journal of Machine Learning Research, (arXiv: 1401.6354).

background and complementary literature

R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. *Proceedings of the IEEE*, 98(6):1045–1057, 2010.

K. Schnass.

A personal introduction to theoretical dictionary learning. *Internationale Mathematische Nachrichten*, 228:5–15, 2015.

- S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for sparse coding. arXiv:1503.00778, 2015.
- J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere. arXiv:1504.06785, 2015.

background and complementary literature

R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. *Proceedings of the IEEE*, 98(6):1045–1057, 2010.

K. Schnass.

A personal introduction to theoretical dictionary learning. *Internationale Mathematische Nachrichten*, 228:5–15, 2015.

- S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for sparse coding. arXiv:1503.00778, 2015.
- J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere. *arXiv:1504.06785*, 2015.

Today at 17.40!

Questions

Thanks for your attention!!

Comments

an offer you cannot refuse

If dictionary learning sounds interesting...

a (post)doc.

Karin Schnass

ITKM

14 / 14