
An iterative thresholding and K residual means

algorithm for dictionary learning

Karin Schnass

Department of Mathematics

University of Innsbruck

karin.schnass@uibk.ac.at

Der Wissenschaftsfonds

Cambridge, July 6

Karin Schnass ITKM 1/ 14



reminder: sparsity & dictionaries

N vectors y
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A dictionary is a set of building blocks (atoms) so that every signal
of our class can be constructed using only a small (sparse) number
of blocks...
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K ⌧ N atoms (normalised)
S ⌧ d atoms/signal
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reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e�cient data processing,
e.g denoising, compressed sensing, inpainting

e�cient data analysis,
e.g source separation, anomaly detection, sparse components

Karin Schnass ITKM 3/ 14



reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e�cient data processing,
e.g denoising, compressed sensing, inpainting

e�cient data analysis,
e.g source separation, anomaly detection, sparse components

Example: inpaintinga

aJ. Mairal, F. Bach, J. Ponce, G. Sapiro, Online learning for matrix
factorization and sparse coding.
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reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e�cient data processing,
e.g denoising, compressed sensing, inpainting

e�cient data analysis,
e.g source separation, anomaly detection, sparse components

Example: sparse componentsa

aD.J. Field, B.A. Olshausen, Emergence of simple-cell receptive field
properties by learning a sparse code for natural images.
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reminder: why do we care about sparsity?

A sparse representation of the data is the basis for

e�cient data processing,
e.g denoising, compressed sensing, inpainting

e�cient data analysis,
e.g source separation, anomaly detection, sparse components

In all examples:

the sparser - the more e�cient
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reminder: dictionary learning

data: Y = (y
1

, . . . , y
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N vectors y

n

2 Rd

d ,N large

No need for

intuition

time (days vs. years)
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Another dictionary learning algorithm????

We have:

data Y

a model (Y is S-sparse in a d ⇥ K dictionary �)

We want:

an algorithm (fast, cheap)

guarantees that the algorithm will find �.

Promising directions:

Graph clustering algorithms (not so cheap)
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first: Iterative Thresholding and K signal means (ITKsM)

Let’s optimise:
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 2D

X

n

max
|I |=S

k ?
I

y
n

k
1

(1)

Algorithm (ITKsM one iteration)
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ITKsM is

ridiculously cheap O(dKN) (parallelisable, online version)

robust to noise, not exact or low sparsity (S = O(µ�2))

locally convergent (radius 1/
p
logK ) for sparsity S = O(µ�2),

needs only O(K logK"�2) samples,

but is not globally convergent
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first fine-tune the model

Signal model:

take � with max
i 6=j

|h�
i

,�
j

i| = µ < 1.

draw a positive, decaying, normed sequence c so that a.s.

c(S)� c(S + 1) > �
S

and
c(S)� c(S + 1)

c(1)
> �

S

.

for a random permutation p, sign sequence � and subgaussian
noise r set

y =
�x

c,p,� + r
q

1 + krk2
2

, where x
c,p,�(k) = �(k)c(p(k)). (3)

E.g.
c
1

= . . . = c
S

= 1/
p
S

c
i

= 0, i > S

then �
S

= 1/
p
S , �

S

= 1
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a very detailed result

Theorem

Let � be a unit norm frame with frame constants A  B and coherence µ and assume that the N training signals

y

n

are generated according to the signal model in (3) with coe�cients that are S-sparse with absolute gap �
S

and
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S

. Assume further that S  K
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!
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2,S + d⇢2.
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then after 12dlog("̄�1

)e iterations the output dictionary

˜

 of ITKrM both in its batch and online version satisfies

d(

¯

 ,�)  "̄ except with probability
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and its understandable version

Theorem

Assume the number of training samples N scales as
O(K logK"�2). If S  O( 1

`µ2

logK

) then with high probability for

any starting dictionary  within distance O(1/
p
S) to the

generating dictionary �, i.e.,

max
k

k�
k

�  
k

k
2

 O(1/
p
S),

after O(log("�1)) iterations of ITKM the distance of the output
dictionary  ̄ to the generating dictionary will be smaller than

max
k

k�
k

�  ̄
k

k
2

 max
n

",O
⇣

K 2�`
⌘o

. (7)

If the signals are noiseless and exactly S-sparse with S  O(µ�1),
the right hand side above reduces to " and the number of
necessary training samples reduces to O(K logK"�1).
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plus some graphical explanations

Answers:

In expectation there is a local maximum of (1) at/near
the generating dictionary.

For final accuracy " the ITKMs needs K logK"�2 training
signals, in the ideal case ITKrM only K logK"�1.

The convergence radius of ITKsM resp. ITKrM is of size at
least 1/

p
logK resp. 1/

p
S .

Experimentally ITKrM shows global convergence properties.
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proofs

and other gory details can be found in

Convergence radius and sample complexity of ITKM
algorithms for dictionary learning, arXiv:1503.07027

Identification of overcomplete dictionaries, to appear Journal
of Machine Learning Research, (arXiv: 1401.6354).
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background and complementary literature

R. Rubinstein, A. Bruckstein, and M. Elad.
Dictionaries for sparse representation modeling.
Proceedings of the IEEE, 98(6):1045–1057, 2010.

K. Schnass.
A personal introduction to theoretical dictionary learning.
Internationale Mathematische Nachrichten, 228:5–15, 2015.

S. Arora, R. Ge, T. Ma, and A. Moitra.
Simple, e�cient, and neural algorithms for sparse coding.
arXiv:1503.00778, 2015.

J. Sun, Q. Qu, and J. Wright.
Complete dictionary recovery over the sphere.
arXiv:1504.06785, 2015.

Today at 17.40!
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the last slide

Questions

Thanks for your attention!!

Comments
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an o↵er you cannot refuse

If dictionary learning

sounds interesting...

...come for

a (post)doc.
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