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Model

y=Az, +w
zo: k-sparse vector in R
A: n x N design matrix
y: measurement vector in R"

w: measurement noise in R"

k sparse signal

= |
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¢,-regularized least squares

Many useful heuristic approaches:
» LPLS
o minizmize %Hyan:Hng)\Hng 0<p<1

» Facts:

o NP-hard except for p =1

o Its performance is of great interest

Chen, Donoho, Saunders (96), Tibshirani (96), Ge, Jiang, Ye (11)



Folklore of compressed sensing

Global minimum of LPLS for p < 1 outperforms LASSO

> Lots of empirical result

» Some theoretical results

Our goal: Evaluating the validity scope of this folklore



Related work

Nonasymptotic analysis:

» R. Gribonval, M. Nielsen: ¢, is better than ¢;

» Chartrand et al, Gribnoval et al., Saab et al., Foucart et al., Davies et al:
Sufficient conditions

> Peng, Yue, and Li: Equivalence of £y and ¢, (noiseless setting)
Asymptotic analysis:
» Stojnic, Wang et al. : Nice analysis; Sharp only for § — 1.

» Rangan et al., Kabashima et al: Replica analysis.



Our analysis framework

Setup:
> ) = %

> Zos ~ (1 —€)d(z0,:) + €G(x0,i)-

» Aij ~N(0, 1)

Asymptotic setting: N — oo

G(x,,;)

k sparse signal

=

6
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What do we know about LASSO?



Noiseless setting

Phase transition of LASSO

Fix: .
(5 = % and € = HIK]HO 0.9
0.8
Let: o7
0.6
A—0and N — oo © os
0.4
Noiseless measurements: 03
0.2
y — Axo 0.1
0 0.2 04 0.6 0.8 1
)
Question:

For what values of (0, €), ¢1 recovers k-sparse solution exactly?

Donoho (05), Donoho-Tanner (08), Donoho, M., Montanari (09), Stojnic (09), Amelunxen et al. (13)
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Noisy observations

Noise:

effect of noise on phase transition
curve

Noisy setup:

> T, k-sparse
(0,1/n)
» y= Az, +w
w~ N(0,001)

iid

Aig ~

\{

v

SE — [ la—zoll3
» MSE = limy e —5~= almost
surely

Donoho, M., Montanari, IEEE Trans. Info. Theory (11)
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Back to LPLS

LPLS
o minimize %Hy — Az|3 + Y E
x
Disclaimer:

o Analysis is based on

* Approximate message passing (Rigorous)

* Replica (Nonrigorous)



Noiseless setting: global minimum

Fix:
S_n _ llzollo
0= and e = =

Phase transition of £,

Phase transition of LPLS:

> e=9 0ol| =™ p=1
—p<1
08
Main features: o7
0.6
» Much higher than LASSO w 05
0.4
> Same forevery 0 <p <1 03
0.2
» Same for every G 01
00 0.2 0.4 0.6 0.8

Zheng, Maleki, Wang (15)
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How about noisy setting?
LPLS:  2,(\) = argmin}|ly — Az[|3 + A|z|?

How to compare different ps?

» Given GG and oy

llép (N —zoll3

A . .
* A\¥ 2 argminy limy 00 N

P

b ) |2
* Compare MSE £ limpy_, o0 M for different p

0 o1 02 03 04 05 06 07 08 09 1



How about noisy setting?

LPLS:  &,(\) = argmini||ly — Az[[3 + A|z|]2

Given GG and oy,

N 2
« A s llZp (M) —@oll
> )\, = argminy limy 0 5 2

Ep(Ap)—woll3 .
» Compare MSE £ limy o0 w for different p

0.009

0.008

0.007

L1y 0006
0
= oos
0.004
—p=0
0.003 —p=03
0.002 ——p=06
p=0.9
1
0.00 p=10
0 00L 002 003 004 005 006 007 008 009 01
O,
w
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How about noisy setting?

Under the assumption of Replica:

Theorem

There exists oy, > 0 s.t. Yo, < o optimal-\ LPLS with p =0
outperforms the other values of p. Furthermore, there exists
oy > 0 s.t. forVo,, > oy, optimal-\ LASSO outperforms every

0<p<l1.

MSE

0.009

0.008

0.007

0.006

0.005

0.003

0.002

0.001

—p=0
—p=0.3
~—p=0.6

p=0.9
—p=1.0
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w
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How do we get the results?



How do we get the results?

Under the assumption of Replica:

Theorem

As N — 00, (&(\,p),x;) converges in distribution to
(np(X + 0¢Z; X), X) where X ~ px and Z ~ N(0,1), then the
following holds:

1
07 =02 + “E(n,(X + 00Z; ) — X)2.

0
—p=0
Nl ——p=0.5
alf ——p=08
—p=1.0

n, ()

5 -4 -3 -2 -1 0 1 2 3 4 5
u

T. Tanaka (02), Guo, Verdii (05), Rangan, Fletcher, Goyal (12)
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How do we get the results?

Replica: 07 = 02 + $E(n,(X 4+ 00Z; ) — X)?
Define Wy ,(0?) = 02 + $E(n,(X + 0Z; A) — X)?
» MSE = E(n,(X + 00Z;\) — X)?
» Smaller ¢7: smaller MSE

» Best performance: find A that has the smallest stable fixed point

5_21
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How do we get the results

Define:
M (o) = argminy E(n,(X + 0Z;)\) — X)?

Ua» p(0%) = 05, + 5E((X +0Z;X5(0)) = X)?
Lemma:
The stable fixed point of Wy« ,(c?) is infy og (\)

Challenges:

» Existence of multiple stable fixed points

> 1, does not have explicit form for 0 < p < 1



Conclusions

Noiseless setting:

» The global miminum of £,-minimization (0 < p < 1) performs much better
than that of £;-minimization.

» The global miminum of £,-minimization (0 < p < 1) is not affected by p or G.

Noisy setting:

» For small oy, £o-minimization outperforms the other £,-minimization
(0<p<).

» For large 0., LASSO outperforms £,-minimization (0 < p < 1).

> The global miminum of £,-minimization (0 < p < 1) is affected by p and G.
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Practical and analyzable algorithms? (To some extent
addressed in our paper)

http://arxiv.org/abs/1501.03704


http://arxiv.org/abs/1501.03704

Supplementary stuff

State evolution for £1-minimization:

2
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Supplementary stuff

State evolution for £,-minimization (p < 1):

N
N

™



Supplementary stuff

State evolution for £,-minimization (p < 1):

v(o?) o+ ¥(o?]




Supplementary stuff

Comparison of state evolution for £,-minimization:

wk"p(az)

0.05 01 0.15 0.2



Supplementary stuff

Comparison of £,-minimization:
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Supplementary stuff

Comparison of £,-minimization:
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