ℓ_p -minimization does not necessarily outperform ℓ_1 -minimization?

Le Zheng

Department of Electrical Engineering, Columbia University

Joint work with Arian Maleki and Xiaodong Wang Columbia University

Model

 x_o : k-sparse vector in \mathbb{R}^N

 $A: n \times N$ design matrix

 \emph{y} : measurement vector in \mathbb{R}^n

 ${\it w}$: measurement noise in ${\mathbb R}^n$

ℓ_p -regularized least squares

Many useful heuristic approaches:

- ► LPLS
 - o minimize $\frac{1}{2}\|y-Ax\|_2^2 + \lambda \|x\|_p^p \qquad \qquad 0 \leq p \leq 1$
- ► Facts:
 - o NP-hard except for p=1
 - o Its performance is of great interest

Chen, Donoho, Saunders (96), Tibshirani (96), Ge, Jiang, Ye (11)

Folklore of compressed sensing

Global minimum of LPLS for p < 1 outperforms LASSO

- Lots of empirical result
- ► Some theoretical results

Our goal: Evaluating the validity scope of this folklore

Related work

Nonasymptotic analysis:

- ightharpoonup R. Gribonval, M. Nielsen: ℓ_p is better than ℓ_1
- Chartrand et al, Gribnoval et al., Saab et al., Foucart et al., Davies et al: Sufficient conditions
- ▶ Peng, Yue, and Li: Equivalence of ℓ_0 and ℓ_p (noiseless setting)

Asymptotic analysis:

- ▶ Stojnic, Wang et al. : Nice analysis; Sharp only for $\delta \to 1$.
- Rangan et al., Kabashima et al: Replica analysis.

Our analysis framework

Setup:

$$\delta = \frac{n}{N}$$

$$x_{o,i} \sim (1 - \epsilon)\delta(x_{o,i}) + \epsilon G(x_{o,i}).$$

o
$$k \approx \epsilon N = \rho n$$

 $A_{i,j} \sim \mathcal{N}(0, \frac{1}{n})$

Asymptotic setting: $N \to \infty$

What do we know about LASSO?

Noiseless setting

Fix:

$$\delta = rac{n}{N}$$
 and $\epsilon = rac{\|x_o\|_0}{N}$

Let:

$$\lambda \to 0$$
 and $N \to \infty$

Noiseless measurements:

$$y = Ax_0$$

Phase transition of LASSO

Question:

For what values of (δ, ϵ) , ℓ_1 recovers k-sparse solution exactly?

Donoho (05), Donoho-Tanner (08), Donoho, M., Montanari (09), Stojnic (09), Amelunxen et al. (13)

Noisy observations

Noise:

effect of noise on phase transition curve

Noisy setup:

- \triangleright x_o : k-sparse
- $A_{i,j} \stackrel{iid}{\sim} \mathcal{N}(0,1/n)$
- $y = Ax_o + w$
- $\mathbf{w} \sim \mathcal{N}(0, \sigma_w^2 I)$
- ► MSE = $\lim_{N \to \infty} \frac{\|\hat{x} x_o\|_2^2}{N}$ almost surely

Donoho, M., Montanari, IEEE Trans. Info. Theory (11)

Back to LPLS

LPLS

o minimize
$$\frac{1}{2}||y-Ax||_2^2 + \lambda ||x||_p^p$$
 $0 \le p \le 1$

Disclaimer:

- o Analysis is based on
 - * Approximate message passing (Rigorous)
 - * Replica (Nonrigorous)

Noiseless setting: global minimum

Fix:

$$\delta = rac{n}{N}$$
 and $\epsilon = rac{\|x_o\|_0}{N}$

Phase transition of LPLS:

 $\epsilon = \delta$

Main features:

- Much higher than LASSO
- ▶ Same for every $0 \le p < 1$
- ► Same for every *G*

Phase transition of ℓ_p

Zheng, Maleki, Wang (15)

How about noisy setting?

LPLS:
$$\hat{x}_p(\lambda) = \arg\min_{x} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_p^p$$

How to compare different ps?

- ▶ Given G and σ_w
 - $\star \ \lambda_p^* \triangleq \arg\min_{\lambda} \lim_{N \to \infty} \frac{\|\hat{x}_p(\lambda) x_o\|_2^2}{N}$
 - \star Compare MSE $\triangleq \lim_{N \to \infty} \frac{\|\hat{x}_p(\lambda_p^*) x_o\|_2^2}{N}$ for different p

How about noisy setting?

LPLS:
$$\hat{x}_p(\lambda) = \underset{x}{\arg\min} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_p^p$$

Given G and σ_w

- ▶ Compare MSE $\triangleq \lim_{N \to \infty} \frac{\|\hat{x}_p(\lambda_p^*) x_o\|_2^2}{N}$ for different p

How about noisy setting?

Under the assumption of Replica:

Theorem

There exists $\sigma_h > 0$ s.t. $\forall \sigma_w < \sigma_h$ optimal- λ LPLS with p = 0 outperforms the other values of p. Furthermore, there exists $\sigma_u > 0$ s.t. for $\forall \sigma_w > \sigma_u$, optimal- λ LASSO outperforms every $0 \le p < 1$.

How do we get the results?

How do we get the results?

Under the assumption of Replica:

Theorem

As $N \to \infty$, $(\hat{x}_j(\lambda,p),x_j)$ converges in distribution to $(\eta_p(X+\sigma_\ell Z;\lambda),X)$ where $X\sim p_X$ and $Z\sim \mathcal{N}(0,1)$, then the following holds:

$$\sigma_{\ell}^2 = \sigma_w^2 + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma_{\ell}Z; \lambda) - X)^2.$$

T. Tanaka (02), Guo, Verdú (05), Rangan, Fletcher, Goyal (12)

How do we get the results?

$$\begin{split} & \text{Replica: } \sigma_\ell^2 = \sigma_w^2 + \tfrac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma_\ell Z; \lambda) - X)^2 \\ & \text{Define } \Psi_{\lambda,p}(\sigma^2) = \sigma_w^2 + \tfrac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma Z; \lambda) - X)^2 \end{split}$$

- MSE = $\mathbb{E}(\eta_p(X + \sigma_\ell Z; \lambda) X)^2$
- ▶ Smaller σ_{ℓ}^2 : smaller MSE
- \blacktriangleright Best performance: find λ that has the smallest stable fixed point

How do we get the results

Define:

$$\lambda^*(\sigma^2) = \arg\min_{\lambda} \mathbb{E}(\eta_p(X + \sigma Z; \lambda) - X)^2$$

$$\Psi_{\lambda^*, p}(\sigma^2) = \sigma_w^2 + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma Z; \lambda_p^*(\sigma)) - X)^2$$

Lemma:

The stable fixed point of $\Psi_{\lambda^*,p}(\sigma^2)$ is $\inf_{\lambda} \sigma_\ell^2(\lambda)$

Challenges:

- Existence of multiple stable fixed points
- η_p does not have explicit form for 0

Conclusions

Noiseless setting:

- ▶ The global miminum of ℓ_p -minimization ($0 \le p < 1$) performs much better than that of ℓ_1 -minimization.
- ▶ The global miminum of ℓ_p -minimization ($0 \le p < 1$) is not affected by p or G.

Noisy setting:

- For small σ_w , ℓ_0 -minimization outperforms the other ℓ_p -minimization (0 .
- ▶ For large σ_w , LASSO outperforms ℓ_p -minimization ($0 \le p < 1$).
- ▶ The global miminum of ℓ_p -minimization ($0 \le p \le 1$) is affected by p and G.

Practical and analyzable algorithms? (To some extent addressed in our paper)

http://arxiv.org/abs/1501.03704

State evolution for ℓ_1 -minimization:

State evolution for ℓ_p -minimization (p < 1):

State evolution for ℓ_p -minimization (p < 1):

Comparison of state evolution for ℓ_p -minimization:

Comparison of ℓ_p -minimization:

Comparison of ℓ_p -minimization:

