ℓ_p-minimization does not necessarily outperform ℓ_1-minimization?

Le Zheng

Department of Electrical Engineering, Columbia University

Joint work with Arian Maleki and Xiaodong Wang

Columbia University
Model

\[y = Ax_o + w \]

- \(x_o \): \(k \)-sparse vector in \(\mathbb{R}^N \)
- \(A \): \(n \times N \) design matrix
- \(y \): measurement vector in \(\mathbb{R}^n \)
- \(w \): measurement noise in \(\mathbb{R}^n \)
ℓ_p-regularized least squares

Many useful heuristic approaches:

- **LPLS**
 - minimize $\min_x \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_p^p$ \hspace{1cm} $0 \leq p \leq 1$

- **Facts:**
 - NP-hard except for $p = 1$
 - Its performance is of great interest

Chen, Donoho, Saunders (96), Tibshirani (96), Ge, Jiang, Ye (11)
Global minimum of LPLS for $p < 1$ outperforms LASSO

- Lots of empirical result
- Some theoretical results

Our goal: Evaluating the validity scope of this folklore
Related work

Nonasymptotic analysis:

- R. Gribonval, M. Nielsen: ℓ_p is better than ℓ_1
- Chartrand et al, Gribnoval et al., Saab et al., Foucart et al., Davies et al: Sufficient conditions
- Peng, Yue, and Li: Equivalence of ℓ_0 and ℓ_p (noiseless setting)

Asymptotic analysis:

- Stojnic, Wang et al. : Nice analysis; Sharp only for $\delta \to 1$.
- Rangan et al., Kabashima et al: Replica analysis.
Our analysis framework

Setup:

- \(\delta = \frac{n}{N} \)
- \(x_{o,i} \sim (1 - \epsilon)\delta(x_{o,i}) + \epsilon G(x_{o,i}). \)
 - \(k \approx \epsilon N = \rho n \)
- \(A_{i,j} \sim \mathcal{N}(0, \frac{1}{n}) \)

Asymptotic setting: \(N \to \infty \)
What do we know about LASSO?
Noiseless setting

Fix:
\[\delta = \frac{n}{N} \quad \text{and} \quad \epsilon = \frac{\|x_o\|_0}{N} \]

Let:
\[\lambda \to 0 \quad \text{and} \quad N \to \infty \]

Noiseless measurements:
\[y = Ax_o \]

Question:
For what values of \((\delta, \epsilon)\), \(\ell_1\) recovers \(k\)-sparse solution exactly?

Donoho (05), Donoho-Tanner (08), Donoho, M., Montanari (09), Stojnic (09), Amelunxen et al. (13)
Noisy observations

Noise:

- effect of noise on phase transition curve

Noisy setup:

- x_0: k-sparse
- $A_{i,j} \sim \mathcal{N}(0, 1/n)$
- $y = Ax_0 + w$
- $w \sim \mathcal{N}(0, \sigma_w^2 I)$
- $\text{MSE} = \lim_{N \to \infty} \frac{\|\hat{x} - x_0\|^2}{N}$ almost surely

LPLS

- minimize \(\min_x \frac{1}{2} \| y - Ax \|_2^2 + \lambda \| x \|_p^p \) \quad 0 \leq p \leq 1

Disclaimer:

- Analysis is based on

 - Approximate message passing (Rigorous)
 - Replica (Nonrigorous)
Noiseless setting: global minimum

Fix:
\[\delta = \frac{n}{N} \text{ and } \epsilon = \frac{\|x_0\|_0}{N} \]

Phase transition of LPLS:
- \(\epsilon = \delta \)

Main features:
- Much higher than LASSO
- Same for every \(0 \leq p < 1 \)
- Same for every \(G \)

Zheng, Maleki, Wang (15)
How about noisy setting?

LPLS: \[\hat{x}_p(\lambda) = \arg\min_x \frac{1}{2} \| y - Ax \|_2^2 + \lambda \| x \|_p^p \]

How to compare different \(p \)s?

- Given \(G \) and \(\sigma_w \)

 \[\lambda_p^* \equiv \arg\min \lambda \lim_{N \to \infty} \frac{\| \hat{x}_p(\lambda) - x_o \|_2^2}{N} \]

 \[\text{Compare MSE} \equiv \lim_{N \to \infty} \frac{\| \hat{x}_p(\lambda_p^*) - x_o \|_2^2}{N} \text{ for different } p \]
How about noisy setting?

LPLS: \[\hat{x}_p(\lambda) = \arg \min_x \frac{1}{2} \| y - Ax \|^2_2 + \lambda \| x \|^p_p \]

Given \(G \) and \(\sigma_w \)

- \[\lambda^*_p \triangleq \arg \min_{\lambda} \lim_{N \to \infty} \frac{\| \hat{x}_p(\lambda) - x_o \|^2}{N} \]

- Compare MSE \(\triangleq \lim_{N \to \infty} \frac{\| \hat{x}_p(\lambda^*_p) - x_o \|^2}{N} \) for different \(p \)
How about noisy setting?

Under the assumption of Replica:

Theorem

There exists $\sigma_h > 0$ s.t. $\forall \sigma_w < \sigma_h$ optimal-λ LPLS with $p = 0$ outperforms the other values of p. Furthermore, there exists $\sigma_u > 0$ s.t. for $\forall \sigma_w > \sigma_u$, optimal-$\lambda$ LASSO outperforms every $0 \leq p < 1$.

![Graph](image-url)
How do we get the results?
How do we get the results?

Under the assumption of Replica:

Theorem

As $N \to \infty$, $(\hat{x}_j(\lambda, p), x_j)$ converges in distribution to $(\eta_p(X + \sigma_\ell Z; \lambda), X)$ where $X \sim p_X$ and $Z \sim \mathcal{N}(0, 1)$, then the following holds:

$$\sigma^2_\ell = \sigma^2_w + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma_\ell Z; \lambda) - X)^2.$$
How do we get the results?

Replica: \(\sigma^2_{\ell} = \sigma^2_w + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma\ell Z; \lambda) - X)^2 \)

Define \(\Psi_{\lambda,p}(\sigma^2) = \sigma^2_w + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma Z; \lambda) - X)^2 \)

- \(\text{MSE} = \mathbb{E}(\eta_p(X + \sigma\ell Z; \lambda) - X)^2 \)
- Smaller \(\sigma^2_{\ell} \): smaller MSE
- Best performance: find \(\lambda \) that has the smallest stable fixed point

\[
\begin{align*}
\tilde{\sigma}^2 & = \sigma^2 \\
\tilde{\sigma}^2 & = \Psi_{\lambda,p}(\sigma^2)
\end{align*}
\]
How do we get the results

Define:

$$\lambda^*(\sigma^2) = \arg \min_\lambda \mathbb{E}(\eta_p(X + \sigma Z; \lambda) - X)^2$$

$$\Psi_{\lambda^*,p}(\sigma^2) = \sigma_w^2 + \frac{1}{\delta} \mathbb{E}(\eta_p(X + \sigma Z; \lambda^*_p(\sigma)) - X)^2$$

Lemma:

The stable fixed point of $$\Psi_{\lambda^*,p}(\sigma^2)$$ is $$\inf_\lambda \sigma^2_{\ell}(\lambda)$$

Challenges:

- Existence of multiple stable fixed points
- $$\eta_p$$ does not have explicit form for $$0 < p < 1$$
Conclusions

Noiseless setting:

- The global minimum of ℓ_p-minimization ($0 \leq p < 1$) performs much better than that of ℓ_1-minimization.
- The global minimum of ℓ_p-minimization ($0 \leq p < 1$) is not affected by p or G.

Noisy setting:

- For small σ_w, ℓ_0-minimization outperforms the other ℓ_p-minimization ($0 < p \leq 1$).
- For large σ_w, LASSO outperforms ℓ_p-minimization ($0 \leq p < 1$).
- The global minimum of ℓ_p-minimization ($0 \leq p \leq 1$) is affected by p and G.
Practical and analyzable algorithms? (To some extent addressed in our paper)

http://arxiv.org/abs/1501.03704
State evolution for ℓ_1-minimization:
State evolution for ℓ_p-minimization ($p < 1$):
State evolution for ℓ_p-minimization ($p < 1$):
Comparison of state evolution for ℓ_p-minimization:

![Graph showing the comparison of state evolution for ℓ_p-minimization]
Comparison of ℓ_p-minimization:
Comparison of ℓ_p-minimization: