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Algorithms for standard CS and Matrix Completion

Standard CS and MC recovery

I CS: Recover x ∈ Rn from y = Ax for y ∈ Rm with m � n

I MC: Recover X ∈ Rm×n from y = A(X ) ∈ Rp with p � mn
has seen rapid advances with numerous computationally
efficient algorithms understood from different perspectives:

I convex relaxations,
I matching pursuits,
I iterative hard thresholding,
I approximate message passing,
I reweighted least squares,
I non-convex optimization techniques such as trust-region,
I expander methods, ...

I Many of these algorithms are able to recover the same or
equally valid solutions from the same problem instances

I What ingredients make hard thresholding algorithms efficient?
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Three prototypical IHT algorithms for CS (similar for MC)

Alternating projection approaches to
min

x
‖y − Ax‖2 subject to ‖x‖0 = k

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets

xl = (AT
Il

AIl )
−1AT

Il
y Pseudo-inverse

I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
vl = Hαk(xl−1 + κAT (y − Axl−1))

Il = supp(vl) ∪ supp(xl−1) Join supp. sets

wl = (AT
Il

AIl )
−1AT

Il
y Least squares fit

xl = Hk(wl) Second threshold

I Mixture of support set identification and local optimization

Jared Tanner Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion



Three prototypical IHT algorithms for CS (similar for MC)

Alternating projection approaches to
min

x
‖y − Ax‖2 subject to ‖x‖0 = k

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets

xl = (AT
Il

AIl )
−1AT

Il
y Pseudo-inverse

I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
vl = Hαk(xl−1 + κAT (y − Axl−1))

Il = supp(vl) ∪ supp(xl−1) Join supp. sets

wl = (AT
Il

AIl )
−1AT

Il
y Least squares fit

xl = Hk(wl) Second threshold

I Mixture of support set identification and local optimization

Jared Tanner Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion



Three prototypical IHT algorithms for CS (similar for MC)

Alternating projection approaches to
min

x
‖y − Ax‖2 subject to ‖x‖0 = k

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Maleki 09, Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets

xl = (AT
Il

AIl )
−1AT

Il
y Pseudo-inverse

I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
vl = Hαk(xl−1 + κAT (y − Axl−1))

Il = supp(vl) ∪ supp(xl−1) Join supp. sets

wl = (AT
Il

AIl )
−1AT

Il
y Least squares fit

xl = Hk(wl) Second threshold

I Mixture of support set identification and local optimization

Jared Tanner Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion



Recovery phase transitions:
Gaussian matrix, sign vector, n = 214
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50% phase transition curves for (N,B), n=214

δ=m/n

ρ=
k/

m

Similar recovery regions, especially for δ � 1. Which is fastest?
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Algorithm Selection map:
Gaussian matrix, sign vector, n = 212, relative residual 10−3
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NIHT: circle
HTP: plus
CSMPSP: square

δ=m/n

ρ=
k/

m
Algorithm selection map for (N,B) with n = 212

What goes into the design of a fast CS algorithm?
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Three prototypical IHT algorithms for CS

I Normalized Iterated HT (NIHT) [Blumensath & Davies 09]
xl = Hk(xl−1 + κAT (y − Axl−1))

I Hard Thresholding Pursuit (HTP) [Foucart 10]

Il = supp(Hk(xl−1 + κAT (y − Axl−1))) Descent supp. sets

xl = (AT
Il

AIl )
−1AT

Il
y Pseudo-inverse

I Two-Stage Thres. [Milenkovic & Dai, Needell & Tropp 08]
vl = Hαk(xl−1 + κAT (y − Axl−1))

Il = supp(vl) ∪ supp(xl−1) Join supp. sets

wl = (AT
Il

AIl )
−1AT

Il
y Least squares fit

xl = Hβk(wl) Second threshold

I Low per iteration complexity best at early exploration phase,
higher order better at later coefficient value recovery phase

I Three CGIHT variants combine low per iteration complexity
and fast asymptotics via subspace confidence measure
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Balancing the iteration cost with fast asymptotic rate

CGIHT Restarted [Blanchard, T & Wei 2013]
Initialization: Set T−1 = {}, p−1 = 0, ν0 = A∗y ,
T0 = DetectSupport(ν0), x0 = PT0(ν0), and l = 1.
Iteration: During iteration l , do

1: rl−1 = A∗(y − Axl−1) (compute the residual)
2: if Tl−1 6= Tl−2

βl−1 = 0 (set orthogonalization weight)
else

βl−1 =
‖PTl−1

rl−1‖2
2

‖PTl−1
rl−2‖2

2
(compute orthogonalization weight)

3: pl−1 = rl−1 + βl−1pl−2 (define the search direction)

4: αl−1 =
‖PTl−1

(rl−1)‖2
2

‖APTl−1
(pl−1)‖2

2
(optimal step size if Tl−1 = Tl−2)

5: νl−1 = xl−1 + αl−1pl−1 (conjugate gradient step)
6: Tl = DetectSupport(νl−1) (proxy to the support set)
7: xl = PTl

((νl−1)) (restriction to proxy support set Tl)
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Moderate noise: n = 213 Gaussian matrix, sign vector,
y = Ax + e for e drawn N

(
0, 1

10‖Ax‖2

)
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CGIHTrestarted: plus
CGIHT: diamond
NIHT: circle
CSMPSP: square

δ=m/n

ρ=
k/m

Algorithm selection map for (N,B
ε
) ε = 0.1, n = 213

CGIHT variants nearly uniformly fastest especially with additive noise.

Similar behaviour for DCT and sparse matrices, other vector distributions.

“plain CGIHT” orthogonalizes at each iteration, lacks theory
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CGIHT Restarted recovery guarantee

Restricted Isometry Property: sparse near isometry

I Classical `2 eigen-analysis [Candes & Tao 05]

(1− Lk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + Uk)‖x‖2
2 for x k-sparse

Theorem (CGIHT Restarted for CS)
Let A be an m × n matrix with m < n, and y = Ax + e for any x
with at most k nonzeros. If the RIC constants of A satisfy

(L3k + U3k)(5− 2Lk + 3Uk)

(1− Lk)2
< 1,

then there exists a K > 0 depending only on ‖x0 − x‖2 such that

‖xl − x‖ ≤ K · γl +
2κα(1 + U2k)1/2

1− γ
‖e‖2

xl is the l th iteration of CGIHT and γ < 1 (formula available).

Greater differences for multi-measurement CS
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Between CS and MC: Multi-measurement CS
I Multi-measurement, measure r vectors, each of which are k

sparse with shared suport set but different nonzero values (eg.
chemical spectroscopy and video with slowly varying images)

min
Z∈Rn×r

‖Y − AZ‖2 subject to ‖Z‖R0 ≤ k.
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50% phase transition curve for (N,B), n=2048 

δ=m/n

ρ=k
/m

CGIHT variants have substantially higher recovery region
CGIHT (projected) for matrix completion requires a different
measure of subspace confidence due to continuous subspace
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CGIHT projected for matrix completion

Iteration: During iteration l , do

1: if

‚‚‚Rl−1−ProjUl−1
(Pl−1)

‚‚‚
‖ProjUl−1

(Rl−1)‖ > θ

Restart flag = 1, αl−1 =

‚‚‚ProjUl−1
(Rl−1)

‚‚‚2‚‚‚A“
ProjUl−1

(Rl−1)
”‚‚‚2

Wl−1 = Xl−1 + αl−1Rl−1

else

Restart flag = 0, αl−1 =

‚‚‚ProjUl−1
(Rl−1)

‚‚‚2‚‚‚A“
ProjUl−1

(Pl−1)
”‚‚‚2

Wl−1 = Xl−1 + αl−1ProjUl−1
(Pl−1)

2: Ul = PrincipalLeftSingularVectorsr (Wl−1),
Xl = ProjUl

(Wl−1), Rl = A∗ (y −A(Xl))
3: if Restart flag = 1 set Pl = Rl , else

βl =

‚‚‚ProjUl
(Rl )

‚‚‚2‚‚‚ProjUl
(Rl−1)

‚‚‚2 , Pl = Rl + βlProjUl
(Pl−1)
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CGIHT Projected for MC recovery guarantee

Theorem (CGIHT Projected for MC)
Let A be a linear map from Rm×n to Rp with p < mn, and
y = A(X ) + e for any X of rank at most r . Let c > 0 then for the
restarting parameter, θ < c(L3r + U3r )/(1 + U2r ), if the RIC
constants of A satisfy

µ = 2(1 + c)
L3r + U3r

1− Lr
< 1,

then

‖Xl − X‖F ≤ µl‖X0 − X‖F +
ξ

1− µ
‖e‖2

where ξ = 2(1 + θ)(1 + U2r )
1/2/(1− Lr ) and Xl is the l th iteration

of CGIHT projected.

Restarting parameter c determines likelihood of restarting, with
c = 0 recovering NIHT
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NIHT, FIHT, CGIHT: entry sensing (m = n = 2000)
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Recovery phase transition for (E,N)
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CGIHT
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Schatten−1

I Phase transition substantial above Schatten-1 norm

I CGIHT convergence rate is fastest in its class.

I What is happening in extreme undersampling p � mn?
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CGIHT: entry sensing with δ = p/mn = 1/20
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CGIHT: Conv rate (solid), recovery probability (dashed), n=2k, δ=1/20

I CGIHT at small δ = p/mn = 1/20, 100 tests per value of r

I Recovery in at least 95 times in each of 100 tests for ρ ≤ 0.9,
whereas Schatten-1 recovery requires ρ < 0.41.

I Convergence rate appears to be only limit to recovery in
matrix completion, even in extreme undersampling δ � 1
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A few concluding observations

I CS and MC algorithms have two phases: subspace
determination and subspace data fitting

I When confidence in the subspace estimate is low, it is best to
quickly search the space without minimizing local objectives

I Higher order methods can both accelerate convergence and
increase recovery region

I CGIHT balances these competing aspects

I Iterative hard thresholding algorithms have substantially
better average case matrix completion recovery than do
convex regularizations
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Thank you for your time
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