Randomized algorithms for optimization: Statistical and computational guarantees

Martin Wainwright

UC Berkeley
Statistics and EECS

Based on joint work with:

Mert Pilanci (UC Berkeley)
Yun Yang (UC Berkeley)
Sketching via random projections

Massive data sets require fast algorithms but with rigorous guarantees.
Massive data sets require **fast algorithms** but with rigorous guarantees.

A general purpose tool:

- Choose a random subspace of “low” dimension m.
- Project data into subspace, and solve reduced dimension problem.

Diagram:

- High-dimensional space
- Random projection
- Lower dimensional space
Sketching via random projections

A general purpose tool:
- Choose a random subspace of “low” dimension m.
- Project data into subspace, and solve reduced dimension problem.

Basic underlying idea now widely used in practice:
- Johnson & Lindenstrauss (1984): for Hilbert spaces
- various surveys and books: Vempala, 2004; Mahoney et al., 2011
 Cormode et al., 2012
Classical sketching for constrained least-squares

Original problem: data \((y, A) \in \mathbb{R}^n \times \mathbb{R}^{n \times d}\), and convex constraint set \(C \subseteq \mathbb{R}^d\)

\[x_{LS} = \arg \min_{x \in C} \|Ax - y\|_2^2 \]
Classical sketching for constrained least-squares

Original problem: data \((y, A) \in \mathbb{R}^n \times \mathbb{R}^{n \times d}\), and convex constraint set \(C \subseteq \mathbb{R}^d\)

\[
x_{\text{LS}} = \arg \min_{x \in C} \|Ax - y\|_2^2
\]

Sketched problem: data \((Sy, SA) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}\):

\[
\hat{x} = \arg \min_{x \in C} \|SAx - Sy\|_2^2
\]
Classical sketching for constrained least-squares

\[
\begin{bmatrix}
S y \\
S A
\end{bmatrix} = \begin{bmatrix}
S \\
y
\end{bmatrix} \begin{bmatrix}
A
\end{bmatrix}
\]

Sketched problem: data \((S y, S A) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}\):

\[
\hat{x} = \arg\min_{x \in \mathcal{C}} \|S A x - S y\|_2^2
\]

Some history:
- random projections and Johnson-Lindenstrauss: 1980s onwards
- sketching for unconstrained least-squares: Sarlos, 2006
- leverage scores, cores sets: Drineas et al., 2010, 2011
- overview paper: Mahoney et al., 2011
Sketches based on randomized orthonormal systems

Step 1: Choose some fixed orthonormal matrix $H \in \mathbb{R}^{n \times n}$. Example: Hadamard matrices

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad H_{2^t} = H_2 \otimes H_2 \otimes \cdots \otimes H_2$$

Kronecker product t times

(E.g., Ailon & Liberty, 2010)
Sketches based on randomized orthonormal systems

Step 1: Choose some fixed orthonormal matrix $H \in \mathbb{R}^{n \times n}$.

Example: Hadamard matrices

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H_2^t = H_2 \otimes H_2 \otimes \cdots \otimes H_2$$

Kronecker product t times

\[Sy = \tilde{H} Dy\]

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs $\{-1, +1\}$

(B) Choose m rows of H to form sub-sampled matrix $\tilde{H} \in \mathbb{R}^{m \times n}$

(C) Requires $O(n \log m)$ time to compute sketched vector $Sy = \tilde{H} Dy$.

(E.g., Ailon & Liberty, 2010)
Different notions of approximation

Given a convex set $\mathcal{C} \subseteq \mathbb{R}^d$:

Original least-squares problem

$$x_{LS} = \arg \min_{x \in \mathcal{C}} \left\{ \|Ax - y\|_2^2 \right\}$$

Sketched solution

$$\hat{x} = \arg \min_{x \in \mathcal{C}} \left\{ \|SAx - Sy\|_2^2 \right\}$$

Question: When is sketched solution \hat{x} a “good” approximation to x_{LS}?
Different notions of approximation

Given a convex set $\mathcal{C} \subseteq \mathbb{R}^d$:

Original least-squares problem

$$x_{LS} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \|Ax - y\|^2 \right\}$$

Sketched solution

$$\hat{x} = \arg \min_{x \in \mathcal{C}} \left\{ \|SAx - Sy\|^2 \right\}$$

Question: When is sketched solution \hat{x} a “good” approximation to x_{LS}?

Cost approximation

Sketched solution $\hat{x} \in \mathcal{C}$ is a δ-accurate cost approximation if

$$f(x_{LS}) \leq f(\hat{x}) \leq (1 + \delta)^2 f(x_{LS}).$$
Different notions of approximation

Given a convex set \(C \subseteq \mathbb{R}^d \):

Original least-squares problem
\[
x_{LS} = \arg \min_{x \in C} \left\{ \| Ax - y \|_2^2 \right\}
\]

Sketched solution
\[
\hat{x} = \arg \min_{x \in C} \left\{ \| S Ax - S y \|_2^2 \right\}
\]

Question: When is sketched solution \(\hat{x} \) a “good” approximation to \(x_{LS} \)?

Cost approximation

Sketched solution \(\hat{x} \in C \) is a \(\delta \)-accurate cost approximation if
\[
f(x_{LS}) \leq f(\hat{x}) \leq (1 + \delta)^2 f(x_{LS}).
\]

Solution approximation

Sketched solution \(\hat{x} \in C \) is a \(\delta \)-accurate solution approximation if
\[
\underbrace{\| \hat{x} - x_{LS} \|_A}_{\frac{1}{\sqrt{n}} \| A(\hat{x} - x_{LS}) \|_2} \leq \delta
\]
Unconstrained Least Squares: $d = 500$

Sketch size $m = 4\alpha \text{ rank}(A)$
What if solution approximation is our goal?

- often the least-squares solution x_{LS} itself is of primary interest
- unfortunately, δ-accurate cost approximation does not ensure high solution accuracy
What if solution approximation is our goal?

- often the least-squares solution x_{LS} itself is of primary interest
- unfortunately, δ-accurate cost approximation does not ensure high solution accuracy

Thought experiment: Consider random ensembles of linear regression problems:

$$y = Ax^* + w, \quad \text{where } x^* \in \mathbb{R}^d, \text{ and } w \sim N(0, \sigma^2 I_n).$$
What if solution approximation is our goal?

- often the least-squares solution x_{LS} itself is of primary interest
- unfortunately, δ-accurate cost approximation does not ensure high solution accuracy

Thought experiment: Consider random ensembles of linear regression problems:

\[y = Ax^* + w, \quad \text{where } x^* \in \mathbb{R}^d, \text{ and } w \sim N(0, \sigma^2 I_n). \]

Least-squares solution x_{LS} has mean-squared error

\[\mathbb{E} \| x_{LS} - x^* \|_A^2 = \frac{\sigma^2 \text{ rank}(A)}{n} \text{ Nominal } \delta \]
Unconstrained LS: Solution approximation

Mean-squared pred. error vs. row dimension

Row dimension n

Mean-squared prediction error

Sketch size $m = 4\ \text{rank}(A) \log n$.

LS

IHS

Naive
Fundamental cause of poor performance?

Recall planted ensembles of problems:

\[y = Ax^* + w, \quad \text{where } x^* \in \mathcal{C}, \text{ and } w \sim N(0, \sigma^2 I_n). \]
Fundamental cause of poor performance?

Recall planted ensembles of problems:

\[y = Ax^* + w, \quad \text{where } x^* \in \mathcal{C}, \text{ and } w \sim N(0, \sigma^2 I_n). \]

Any random sketching matrix \(S \in \mathbb{R}^{m \times n} \) such that

\[
\| \mathbb{E}_S \left[S^T (SS^T)^{-1} S \right] \|_{op} \lesssim \frac{m}{n}
\]
Fundamental cause of poor performance?

Recall planted ensembles of problems:

\[y = Ax^* + w, \quad \text{where } x^* \in C, \text{ and } w \sim N(0, \sigma^2 I_n). \]

Any random sketching matrix \(S \in \mathbb{R}^{m \times n} \) such that

\[\| \mathbb{E}_S \left[S^T (SS^T)^{-1} S \right] \|_{op} \lesssim \frac{m}{n} \]

Theorem (Pilanci & W, 2014)

Any possible estimator \((Sy, SA) \mapsto \tilde{x}\) *has error lower bounded as*

\[
\sup_{x^* \in C} \mathbb{E}_{S, w} \left[\| \tilde{x} - x_{LS} \|_A^2 \right] \gtrsim \sigma^2 \frac{\log P_{1/2}(C)}{\min\{n, m\}}
\]

where \(P_{1/2}(C) \) *is the 1/2-packing number of* \(C \cap B_2(1) \) *in the norm* \(\| \cdot \|_A \).
Fundamental cause of poor performance?

Any random sketching matrix \(S \in \mathbb{R}^{m \times n} \) such that

\[
\left\| \mathbb{E}_S \left[S^T (SS^T)^{-1} S \right] \right\|_{op} \gtrsim \frac{m}{n}
\]

Theorem (Pilanci & W, 2014)

Any possible estimator \((Sy, SA) \mapsto \tilde{x}\) *has error lower bounded as*

\[
\sup_{x^* \in \mathcal{C}} \mathbb{E}_{S,w} \left[\| \tilde{x} - x_{LS} \|_A^2 \right] \gtrsim \sigma^2 \log \frac{P_{1/2}(\mathcal{C})}{\min\{n, m\}}
\]

where \(P_{1/2}(\mathcal{C}) \) *is the 1/2-packing number of* \(\mathcal{C} \cap B_2(1) \) *in the norm* \(\| \cdot \|_A \).

Concretely: For unconstrained least-squares, we have

\[
\sup_{x^* \in \mathcal{C}} \mathbb{E}_{S,w} \left[\| \tilde{x} - x_{LS} \|_A^2 \right] \gtrsim \sigma^2 \frac{\text{rank}(A)}{\min\{n, m\}}.
\]

Consequently, we need \(m \geq n \) to match least-squares performance in estimating \(x^* \).
A slightly different approach: Hessian sketch

Observe that

\[x_{LS} = \arg \min_{x \in \mathcal{C}} \|Ax - y\|_2^2 = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} x^T A^T Ax - \langle A^T y, x \rangle \right\}. \]
A slightly different approach: Hessian sketch

Observe that

\[x_{LS} = \arg \min_{x \in \mathcal{C}} \|Ax - y\|_2^2 = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} x^T A^T A x - \langle A^T y, x \rangle \right\}. \]

Consider sketching only quadratic component:

\[\tilde{x} := \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \|SAx\|_2^2 - \langle A^T y, x \rangle \right\}. \]
A slightly different approach: Hessian sketch

Observe that

$$x_{LS} = \arg\min_{x \in \mathcal{C}} \|Ax - y\|_2^2 = \arg\min_{x \in \mathcal{C}} \left\{ \frac{1}{2} x^T A^T Ax - \langle A^T y, x \rangle \right\}.$$

Consider sketching only quadratic component:

$$\tilde{x} := \arg\min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \|SAx\|_2^2 - \langle A^T y, x \rangle \right\}.$$

For a broad class of sketches, as long sketch dimension $m \gtrsim (1/\delta^2) \text{rank}(A)$, can prove that

$$\|\tilde{x} - x_{LS}\|_A \preceq \delta \|x_{LS}\|_A.$$
A slightly different approach: Hessian sketch

Observe that

\[x_{LS} = \arg \min_{x \in \mathcal{C}} \|Ax - y\|_2^2 = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} x^T A^T A x - \langle A^T y, x \rangle \right\}. \]

Consider sketching only quadratic component:

\[\tilde{x} := \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \|SAx\|_2^2 - \langle A^T y, x \rangle \right\}. \]

For a broad class of sketches, as long sketch dimension \(m \gtrsim (1/\delta^2) \text{ rank}(A) \), can prove that

\[\|\tilde{x} - x_{LS}\|_A \gtrsim \delta \|x_{LS}\|_A \]

Key point:

This one-step method is also provably sub-optimal, but the construction can be iterated to obtain an optimal method.
An optimal method: Iterative Hessian sketch

Given an iteration number $T \geq 1$:

(1) Initialize at $x^0 = 0$.
An optimal method: Iterative Hessian sketch

Given an iteration number $T \geq 1$:

(1) Initialize at $x^0 = 0$.

(2) For iterations $t = 0, 1, 2, \ldots, T - 1$, generate an independent sketch matrix $S^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$
 x^{t+1} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| S^{t+1} A(x - x^t) \|_2^2 - \langle A^T (y - Ax^t), x \rangle \right\}.
$$
An optimal method: Iterative Hessian sketch

Given an iteration number $T \geq 1$:

(1) Initialize at $x^0 = 0$.

(2) For iterations $t = 0, 1, 2, \ldots, T - 1$, generate an independent sketch matrix $S^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$x^{t+1} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| S^{t+1} A(x - x^t) \|_2^2 - \langle A^T(y - Ax^t), x \rangle \right\}.$$

(3) Return the estimate $\hat{x} = x^T$.
An optimal method: Iterative Hessian sketch

Given an iteration number $T \geq 1$:

(1) Initialize at $x^0 = 0$.

(2) For iterations $t = 0, 1, 2, \ldots, T - 1$, generate an independent sketch matrix $S^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$x^{t+1} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| S^{t+1} A(x - x^t) \|_2^2 - \langle A^T(y - Ax^t), x \rangle \right\}.$$

(3) Return the estimate $\hat{x} = x^T$.

Intuition

- Step 1 returns the plain Hessian sketch $\tilde{x} = x^1$.
- Step t is sketching a problem for which $x^t - x_{LS}$ is the optimal solution.
- The error is thus successively “localized”.
Geometric convergence for unconstrained LS

Error to least-squares soln vs. iteration

Log error to least-squares soln

Iteration number

$m = 4$ rank(A)
$m = 6$ rank(A)
$m = 8$ rank(A)
Theorem (Pilanci & W., 2014)

Given a sketch dimension $m \succcurlyeq \text{rank}(A)$, the error decays geometrically

$$\|x^{t+1} - x_{LS}\|_A \leq \left(\frac{1}{2}\right)^t \|x_{LS}\|_A$$

for all $t = 0, 1, \ldots, T - 1$

with probability at least $1 - c_1 T e^{-c_2 m}$.
Theory for unconstrained least-squares

Theorem (Pilanci & W., 2014)

Given a sketch dimension $m \gtrsim \text{rank}(A)$, the error \textit{decays geometrically}

$$\|x^{t+1} - x_{LS}\|_A \leq \left(\frac{1}{2}\right)^t \|x_{LS}\|_A$$

for all $t = 0, 1, \ldots, T - 1$

\textit{with probability at least $1 - c_1 T e^{-c_2 m}$}.

- applies to any sub-Gaussian sketch; same result for fast JL sketches with additional logarithmic factors
- total number of random projections scales as $T m$
- for any $\epsilon > 0$, taking $T = \log \left(\frac{2\|x_{LS}\|_A}{\epsilon}\right)$ iterations yields ϵ-accurate solution.
Experiments for planted ensembles

Linear regression problems with $A \in \mathbb{R}^{n \times d}$ and $n > d$:

$$y = Ax^* + w,$$

where $x^* \in C$, and $w \sim N(0, \sigma^2 I_n)$.
Experiments for planted ensembles

Linear regression problems with $A \in \mathbb{R}^{n \times d}$ and $n > d$:

$$y = Ax^* + w, \quad \text{where } x^* \in C, \text{ and } w \sim N(0, \sigma^2 I_n).$$

Least-squares solution has error

$$\mathbb{E}\|x_{LS} - x^*\|_A \lesssim \sqrt{\frac{\sigma^2 d}{n}}$$
Experiments for planted ensembles

Linear regression problems with $A \in \mathbb{R}^{n \times d}$ and $n > d$:

$$y = Ax^* + w,$$

where $x^* \in \mathcal{C}$, and $w \sim N(0, \sigma^2 I_n)$.

Least-squares solution has error

$$\mathbb{E}\|x_{\text{LS}} - x^*\|_A \lesssim \sqrt{\frac{\sigma^2 d}{n}}$$

Scaling behavior:

- Fix $\sigma^2 = 1$ and sample size $n = 100d$, and vary $d \in \{16, 32, 64, 128, 256\}$.
- Run IHS with sketch size $m = 4d$ for $T = 4$ iterations.
- Compare to classical sketch with sketch size $16d$.
Sketched accuracy: IHS versus classical sketch

Least-squares vs. dimension

Error

Dimension

16 32 64 128 256
Extensions to constrained problems

Constrained problem

\[x_{LS} = \arg \min_{x \in C} \|Ax - y\|_2^2 \]

where \(C \subseteq \mathbb{R}^d \) is a convex set.
Extensions to constrained problems

Constrained problem

\[x_{LS} = \arg \min_{x \in C} \|Ax - y\|_2^2 \]

where \(C \subseteq \mathbb{R}^d \) is a convex set.

Tangent cone \(\mathcal{K} \) at \(x_{LS} \)

Set of feasible directions at the optimum \(x_{LS} \)

\[
\mathcal{K} = \{ \Delta \in \mathbb{R}^d \mid \Delta = t (x - x_{LS}) \text{ for some } x \in C. \}\]
Illustration: Binary classification with SVM

Observe labeled samples \((b_i, L_i) \in \mathbb{R}^D \times \{-1, +1\}\).

Goal: Find linear classifier \(b \mapsto \text{sign}(\langle w, b \rangle)\) with low classification error.
Illustration: Binary classification with SVM

Observe labeled samples \((b_i, L_i) \in \mathbb{R}^D \times \{-1, +1\}\).

- Support vector machine: produces classifier that depends only on samples lying on the margin
- Number of support vectors \(k\) typically \(\ll\) total number of samples \(n\)
Sketching the dual of the SVM

Primal form of SVM:

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^n} \left\{ \frac{1}{2\gamma} \sum_{i=1}^{d} \max \{ 0, 1 - L_i \langle w, b_i \rangle \} + \frac{1}{2} \|w\|_2^2 \right\}.
\]
Sketching the dual of the SVM

Primal form of SVM:

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^n} \left\{ \frac{1}{2 \gamma} \sum_{i=1}^{d} \max \{ 0, 1 - L_i \langle w, b_i \rangle \} + \frac{1}{2} \|w\|_2^2 \right\}.
\]

Dual form of SVM

\[
x_{LS} := \arg \min_{x \in \mathcal{P}^n} \| \text{diag}(L) B x \|_2^2,
\]

where \(\mathcal{P}^n := \{ x \in \mathbb{R}^n \mid x \geq 0 \text{ and } \sum_{i=1}^{n} x_i = \gamma \}\).
Sketching the dual of the SVM

Primal form of SVM:

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^n} \left\{ \frac{1}{2\gamma} \sum_{i=1}^{d} \max \left\{ 0, 1 - L_i \langle w, b_i \rangle \right\} + \frac{1}{2} \|w\|_2^2 \right\}.
\]

Dual form of SVM

\[
x_{LS} := \arg \min_{x \in \mathcal{P}^n} \| \text{diag}(L)Bx \|_2^2,
\]

where \(\mathcal{P}^n := \{ x \in \mathbb{R}^n \mid x \geq 0 \text{ and } \sum_{i=1}^{n} x_i = \gamma \} \).

Sketched dual SVM

\[
\hat{x} := \arg \min_{x \in \mathcal{P}^n} \| S \text{diag}(L)Bx \|_2^2
\]
Unfavorable dependence on optimum x^*

Tangent cone \mathcal{K} at x_{LS}

Set of feasible directions at the optimum x_{LS}

$$\mathcal{K} = \{ \Delta \in \mathbb{R}^d \mid \Delta = t (x - x_{LS}) \text{ for some } x \in \mathcal{C} \}.$$
Favorable dependence on optimum x^*

Tangent cone \mathcal{K} at x_{LS}

Set of feasible directions at the optimum x_{LS}

$$\mathcal{K} = \{ \Delta \in \mathbb{R}^d \mid \Delta = t(x - x_{LS}) \text{ for some } x \in \mathcal{C} \}.$$
Gaussian width of set
\[AK \cap S^{n-1} = \{ A\Delta \mid \Delta \in \mathcal{K}, \| A\Delta \|_2 = 1 \} \]

\[\mathcal{W}(AK) := \mathbb{E} \left[\sup_{z \in AK \cap S^{n-1}} \langle g, z \rangle \right] \]

where \(g \sim N(0, I_{n \times n}) \).
Gaussian width of transformed tangent cone

Gaussian width of set
\[AK \cap S^{n-1} = \{ A\Delta \mid \Delta \in K, \| A\Delta \|_2 = 1 \} \]

\[W(AK) := \mathbb{E}\left[\sup_{z \in AK \cap S^{n-1}} \langle g, z \rangle \right] \]

where \(g \sim N(0, I_{n \times n}) \).

Gaussian widths used in many areas:
- Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002
- Compressed sensing: Mendelson et al., 2008; Chandrasekaran et al., 2012
A general guarantee

Tangent cone at x_{LS}:

$$\mathcal{K} = \{ \Delta \in \mathbb{R}^d \mid \Delta = t(x - x_{LS}) \in \mathcal{C} \text{ for some } t \geq 0 \}.$$

Width of transformed cone $AK \cap S^{n-1}$:

$$\mathcal{W}(AK) = \mathbb{E} \left[\sup_{z \in AK \cap S^{n-1}} \langle g, z \rangle \right] \quad \text{where } g \sim N(0, I_{n \times n}).$$

Theorem (Pilanci & W., 2014)

Given a sketch dimension $m \gtrsim \mathcal{W}^2(AK)$, the error decays geometrically

$$\|x^{t+1} - x_{LS}\|_A \leq \left(\frac{1}{2} \right)^t \|x_{LS}\|_A \quad \text{for all } t = 0, 1, \ldots, T - 1$$

with probability at least $1 - c_1 T e^{-c_2 m}$.

Martin Wainwright (UC Berkeley)
July 2015 21 / 27
A general guarantee

Tangent cone at x_{LS}:

$$\mathcal{K} = \{ \Delta \in \mathbb{R}^d \mid \Delta = t(x - x_{LS}) \in \mathcal{C} \text{ for some } t \geq 0 \}. $$

Width of transformed cone $AK \cap S^{n-1}$:

$$\mathcal{W}(AK) = \mathbb{E}\left[\sup_{z \in AK \cap S^{n-1}} \langle g, z \rangle \right] \text{ where } g \sim N(0, I_{n \times n}).$$

Theorem (Pilanci & W., 2014)

Given a sketch dimension $m \gtrsim \mathcal{W}^2(AK)$, the error decays geometrically

$$\|x^{t+1} - x_{LS}\|_A \leq \left(\frac{1}{2} \right)^t \|x_{LS}\|_A \text{ for all } t = 0, 1, \ldots, T - 1$$

with probability at least $1 - c_1 Te^{-c_2m}$.

Similar results for fast JL sketches with additional logarithmic factors.
Illustration: Width calculation for dual SVM

- Relevant constraint set is simplex in \mathbb{R}^n:

$$\mathcal{P}^n := \{ x \in \mathbb{R}^n \mid x \geq 0 \text{ and } \sum_{i=1}^{n} x_i = \gamma \}.$$

- In practice, SVM dual solution \hat{x}_{dual} is often sparse, with relatively few non-zeros.

- Under mild conditions on A, it can be shown that

$$\mathbb{E} \left[\sup_{x \in \mathcal{P}^n, \|x\|_0 \leq k, \|Ax\|_2 \leq 1} \langle g, Ax \rangle \right] \preceq \sqrt{k \log n}.$$

Conclusion

For a SVM solution with k support vectors, a sketch dimension $m \gtrsim k \log n$ is sufficient to ensure geometric convergence.
Geometric convergence for SVM

Sparse error vs. iteration

Log error vs. iteration number

- Log error
- Iteration number

$m = 2 k \log n$
$m = 5 k \log n$
$m = 25 k \log n$
A more general story: Newton Sketch

Convex program over set $\mathcal{C} \subseteq \mathbb{R}^d$:

$$x_{\text{opt}} = \arg \min_{x \in \mathcal{C}} f(x), \quad \text{where } f : \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable.}$$
A more general story: Newton Sketch

Convex program over set $\mathcal{C} \subseteq \mathbb{R}^d$:

$$x_{opt} = \arg\min_{x \in \mathcal{C}} f(x), \quad \text{where } f : \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable}.$$

Ordinary Newton steps:

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| \nabla^2 f(x^t)^{1/2} (x - x^t) \|_2^2 + \langle \nabla f(x^t), x - x^t \rangle \right\},$$

where $\nabla^2 f(x^t)^{1/2}$ is a matrix square of the Hessian at x^t.
A more general story: Newton Sketch

Convex program over set $\mathcal{C} \subseteq \mathbb{R}^d$:

$$x_{opt} = \arg \min_{x \in \mathcal{C}} f(x), \text{ where } f : \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable.}$$

Ordinary Newton steps:

$$x^{t+1} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| \nabla^2 f(x^t)^{1/2}(x - x^t) \|_2^2 + \langle \nabla f(x^t), x - x^t \rangle \right\},$$

where $\nabla^2 f(x^t)^{1/2}$ is a matrix square of the Hessian at x^t.

Sketched Newton steps:

$$\tilde{x}^{t+1} = \arg \min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| S^t \nabla^2 f(x^t)^{1/2}(x - \tilde{x}^t) \|_2^2 + \langle \nabla f(\tilde{x}^t), x - \tilde{x}^t \rangle \right\}.$$
Convex program over set $C \subseteq \mathbb{R}^d$:

$$x_{\text{opt}} = \arg\min_{x \in C} f(x), \quad \text{where } f : \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable.}$$

Ordinary Newton steps:

$$x^{t+1} = \arg\min_{x \in C} \left\{ \frac{1}{2} \| \nabla^2 f(x^t)^{1/2}(x - x^t) \|_2^2 + \langle \nabla f(x^t), x - x^t \rangle \right\},$$

where $\nabla^2 f(x^t)^{1/2}$ is a matrix square of the Hessian at x^t.

Sketched Newton steps:

$$\tilde{x}^{t+1} = \arg\min_{x \in C} \left\{ \frac{1}{2} \| S^t \nabla^2 f(x^t)^{1/2}(x - \tilde{x}^t) \|_2^2 + \langle \nabla f(\tilde{x}^t), x - \tilde{x}^t \rangle \right\}.$$

Question:

What is the minimal sketch dimension required to ensure that $\{\tilde{x}^t\}_{t=0}^T$ stays uniformly close to $\{x^t\}_{t=0}^T$?
Sketching the central path: $m = d$
Sketching the central path: $m = 4d$

Trial 1

Trial 2

Trial 3

Legend:
- Blue: Exact Newton
- Red: Newton's Sketch
Sketching the central path: \(m = 16d \)
Running time comparisons

![Graph showing running time comparisons for different optimization methods. The graph plots iterations on the x-axis and optimality gap on the y-axis for Exact Newton, GD, Acc. GD, SGD, BFGS, and Newton's Sketch. The wall-clock time is also plotted in a separate graph with similar axes.](image-url)
Summary

- important distinction: cost versus solution approximation
- classical least-squares sketch is provably sub-optimal for solution approximation
- iterative Hessian sketch: fast geometric convergence with guarantees in both cost/solution approximation
- sharp dependence of sketch dimension on geometry of solution and constraint set
- a more general perspective: sketched forms of Newton’s method
Summary

- important distinction: cost versus solution approximation
- classical least-squares sketch is **provably sub-optimal** for solution approximation
- iterative Hessian sketch: **fast geometric convergence** with guarantees in both cost/solution approximation
- sharp dependence of sketch dimension on **geometry of solution and constraint set**
- a more general perspective: sketched forms of Newton’s method

Papers/pre-prints: