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Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

U1V + duve + Tugvy = —12

u3v1 — Quaovg + 4dusvy = 2

can be recast as linear system of equations on a matrix that has rank 1.

UKVl UKV2 UKV3 -+ UKUN



Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

ULV + duive + Tugvg = —12

can be recast as linear system of equations on a matrix that has rank 1:

(wvD) @y wivs o woy |
ugv1  (Ugz) (U2U3) v UUN

wl = |(U3v1) (u3v2) u3zv3 - UUN

UKV UKV UgV3 --- UKUN

Compressive (low rank) recovery =
“Generic” quadratic/bilinear systems with ¢N equations and N unknowns
can be solved using nuclear norm minimization



Phase retrieval

diffraction patterns

source
"Kample phase plate

(image courtesy of M. Soltanolkotabi)

Observe the magnitude of the Fourier transform |&(w)|?

Z(w) is complex, and its phase carries important information

(Candes, Eldar, Li, Soltanolkotabi, Strohmer, and Voroninski)



Blind deconvolution

image deblurring multipath in wireless comm

Reflected Signals

(image from EngineeringsALL)

We observe

yll] = sl hlt —n]

and want to “untangle” s and h.



Blind deconvolution as low rank recovery

Each sample of y = s x h is a bilinear combination of the unknowns,

and is a linear combinati

yll = sin]hlt —n]

n

on of shT:
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Blind deconvolution as low rank recovery

Given y = s x h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RY; we can write
s = Bu, h=Cv, B:LxK, C:LxN

where B and C' are matrices whose columns form bases for these spaces



Blind deconvolution as low rank recovery

Given y = s x h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RY; we can write
s = Bu, h=Cv, B:LxK, C:LxN

where B and C' are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(Xo), where Xo=uv' hasrank=1

The action of A(-) can be broken down into three linear steps:

Xo - BXy — BXOCT — take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y=sxh, h=Bu, s=Cv
= A(uv"), ueRE veRVY,

and then solve

n}}n | X ||« subjectto A(X)=uy.

Ahmed, Recht, R, '12:
If B is “incoherent” in the Fourier domain, and C' is randomly chosen,
then we will recover X = sh™ exactly (with high probability) when

L > Const: (K + N)-log’(KN)



Passive estimation of multiple channels

1y2<t ) = s(t) * ha(t)

*hl()

s[=1]h2[0] 2[1 2[2

Al0] 2[0] 2 (1] i 2]
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y results

Recover

put length: 1000
Number of channels: 100

/ out
Channel impulse response

Source

length: 50




Passive imaging of the ocean
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Realistic (simulated) ocean channels

»
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Realistic (simulated) ocean channels

Channel 1 and representation

—D?M . . L
150 200 250
Channel 2 and mmesentahun
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Build a subspace model using bandwidth and approximate arrival times
(about 20 dimensions per channel)



Simulated recovery

.
)
Bola
=
Lol

50 100 150 200 250

02
T =
) . " . L L
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3 and recovery
02 3|
0 Yipp ]
50 100 150 200 250
Channel 4 and recovery

L o
Sais
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50 100 150 200 250
Channel 5 and recovery
o. Iy B
—ua1 . il . . M
50 100 150 200 250

~ 100 channels total, ~ 2000 samples per channel,
Normalized error ~ 10=% (no noise), robust with noise



Multiple sources

Y1 (t) = Sl(t) * }Lll(t) + Sg(t) * hlg(t) +.---+ S]w(t) * }Luw(t)

S1 (t) ] - s
Yo(t) = s1(t) % ha1 (t) + sa(t) * hog(t) + - -+ 4+ spr(t) * hapr (F)
S9 (t) - — »

. H .

yr(t) = s1(t) * hxe1 (t) + s2(t) * hyea(t) + - + spr(t) * hyepr ()
SM(t)—> N

@ Memoryless: structured matrix factorization (SMF) problem
ICA, NNMF, dictionary learning, etc.

@ Use matrix recovery to make convolutional channels " memoryless”:
recover rank M matrix, run SMF on column space



Low-rank recovery + ICA on broadband voice

Input Signal z1

2500 3000 3500 4000 4500 5000
Input Signal 22

500 1000 1500 2000

2500 3000 3500 4000 4500 5000
Input Signal 23

500 1000 1500 2000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Input Signal z4

AL
(AR

1500 2000 2500 3000 3500 4000 4500 5000
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30 channels (microphones)

2000 time samples
10 taps per channel
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Imaging architecture

Blurred Sensors Blurring lens DMD Image
&
subsampled
image

Y = G H D, x

@ Small number of sensors with gaps between them
@ Blurring introduced to “fill in" these gaps
@ Uncalibrated: blur kernel is unknown



1

|




Masked imaging linear algebra

known

unknown

linear constraints

GH = Z ali] B; unknown image,

i unconstrained

@ Operator coefficients a, image & unknown
e Observations: A(ax™)

@ Alternative interpretation: structured matrix factorization

Y = (GH) diag(X)®"



Masked imaging: theoretical results

known

unknown

linear constraints

GH = Z ali] B; unknown image,

i unconstrained

L pixels, N sensors, K codes

Theorem (Bahimani, R '14):
We can jointly recover the blur H and the image X for a number of codes:

L
K > =~

12 > 1 measures how spread out blur is in frequency

-log®(L) loglog N

(Related work by Tang and Recht '14)



Masked imaging: numerical results

original blur blurred image  blurred, subsampled

@ No structural model for the image

@ Blur model: build basis from psfs over a range of focal lengths
(EPFL PSF Generator, Born and Wolf model)



Masked imaging: numerical results

Recovery results: 16k pixels, 64 sensors, 200 codes

originals recovery



Simultaneous sparse and low rank

Problem 1: We want to recover zx® when x is K sparse

[T [T ]

or more generally WW™, where W : N x R is row sparse

o

We would like ~ K R measurements instead of ~ K2 or ~ KN




Simultaneous sparse and low rank

Problem 2: We want to recover X with only K active rows




Prior work

For X simultaneously sparse and low rank ...
e For A(-) a random projection, it stably embeds this set of matrices
(RIP)
(Golbabaee '12, Lee et al '13)



Prior work

For X simultaneously sparse and low rank ...

@ Convex relaxation for phase retrieval problem,
ym = (X,amat), m=1,..., M, success for M ~ K%log N
(Li and Voron. '13)
Extended to rank-R (Chen et al '13)



Prior work

For X simultaneously sparse and low rank ...

e Convex relaxation is generally not the best strategy (Oymak et al, '13)
(M. Fazel's talk yesterday)



Prior work

For X simultaneously sparse and low rank ...

@ Alternating minimization has similar guarantees (Netrapalli et al '13)



Prior work

For X simultaneously sparse and low rank ...

@ Numerical results (Shechtman et al '11-'14, Schniter et al '15)
suggest that we can do much better



Prior work

For X simultaneously sparse and low rank ...

o lIdentifiability (Li et al '15) conditions for blind deconvolution also
suggest we can do much better



Prior work

For X simultaneously sparse and low rank ...

@ Sparse power factorization (Lee et al '13) is efficient from
observations that have RIP



Compressive phase retrieval with correlated measurements

Observe
ye = |(z, ap)|* +noise, £=1,...,L

zeRV K -sparse, ay structured
ay = ‘I’ng,
W' is M x N, w, are generic (random)
ay all lie in a subspace = we can decouple the recovery into two stages

Note
ye = (@x*, ¥ ww; ¥) = (TX T, waw,)



Two-stage decoding

Given
ye = (xoxh, TTww, ©) = (TX 0T waw])), y=WEX,¥")

we solve

A

B = arg gli% trace(B) subject to |[W(B) —yll2 <k,

and then

Ce
VM

X = argmin | X1 subject to eX®" - B|r <

(We might use many different algorithms for these two steps, and get the
same guarantees...)



Recovery guarantees

Observe

ye = (o, ar))* + 2, ar=¥Tw, (=1,...,L

Suppose that
o The w, € RM are Normal(0,I)
@ The matrix ¥ embeds K-sparse vectors (2K-RIP)
@ The noise z is bounded, ||z][2 <€
Then if
L > C1Klog(N/K)

the two stage algorithm produces an estimate X such that

. €
IX — oxg |r < C2ﬁ
with high probability, uniform over all rank-1 k x k sparse matrices.
(Bahmani,R '15)



Numerical results

-0-m = 8k,n = 24k
-¢-m = 12k, n = 36k
~O—m = 16k, n = 48k -
~p-m = 8k,n = 32k
-@-m = 12k, n = 48k

Recovery error vs.

sparsity for different (M, L)



Numerical results

-o-2—stage

SDP —~-SDP+4; - >e1

T

|

é‘. s —qu

Recovery error vs. sparsity for two-stage, just /1,

just SDP low rank,




Covariance sketching

Data @1, ...,z with covariance E[zz"] = R.

Compress/sketch data by correlating against one of L vectors ay, (¢, ay)
Then if we used the same a, for all t € 7y,
1 T
— |z, ar)|? ~ a} Ray
> :

teTe

= estimating R from sketches is similar to phase retrieval (Chen et al '13)



Covariance sketching

Data @1, ...,z with covariance E[zz"] = R.
Compress/sketch data by correlating against one of L vectors ay, (¢, ay)

Then if we used the same a, for all t € 7y,

1
7l Z (@1, as)|* ~ a} Ray

teT,

= estimating R from sketches is similar to phase retrieval (Chen et al '13)

If R = VVT,AWhere Vis N X R and K-row sparse, L ~ RK log(N/K)
then we find V' such that

VL

We can do so while only manipulating matrices of size ~ NR
(Bahmani, R '15)

IR— VV'|r < Const



Simultaneously sparse and low rank recovery from nested
measurements

Suppose X is N x N, K-row sparse, rank R, ® is M x N. Measure
y=W(¥X()+2 2z~ Normal(0,5%I)
If W(-) is c1 R-RIP, W is co K-RIP, then two-stage recovery yields X with

|X — Xo|lr < oy/Rmax(M, N).
If ® is a good CS matrix, take M ~ K log N.



Simultaneously sparse and low rank recovery from nested

measurements

Suppose X is N x N, K-row sparse, rank R, ® is M x N. Measure
y=W(¥X()+2 2z~ Normal(0,5%I)

If W(-) is ¢ R-RIP, W is ca K-RIP, then two-stage recovery yields X with

|X — Xo|lr < ov/Rmax(M,N).

If ® is a good CS matrix, take M ~ K log N.

Minimax lower bound:

|X - Xollr 2 o/K log(N/K) + RK



Convex shape composition



Image segmentation




Variational image segmentation

@ Image domain D C R?, pixel values u(x), x € D

e Binary segmentation: partition D into ¥ and D\ ¥



Variational image segmentation

@ Image domain D C R4, pixel values u(z), x € D
e Binary segmentation: partition D into ¥ and D\ ¥

o A standard variational model (Chan and Vese):

I, (z) dz +/ [, () dz,

¥* = argmin ~(X) +/
by D\E

b

where II;;,(.) > 0 and Il (.) > 0 are image-dependent
inhomogeneity measures

Min(z) = (u(z) — @),

Hep () = (w(x) — Teg)?



Variational image segmentation

@ Image domain D C R4, pixel values u(z), x € D
e Binary segmentation: partition D into ¥ and D\ ¥

o A standard variational model (Chan and Vese):

I, (z) dz +/ [, () dz,

¥* = argmin ~(X) +/
by D\E

b

where II;;,(.) > 0 and Il (.) > 0 are image-dependent
inhomogeneity measures

Min(z) = (u(z) — @),

Hep () = (w(x) — Teg)?

o Other choices I1;;, /¢ () = —1og P (v(2)] O, /s )
where v is a similarity feature of interest (intensity, texture, pattern)



Variational image segmentation

o Image domain D C RY, pixel values u(x), z € D
e Binary segmentation: partition D into ¥ and D\ ¥

o A standard variational model (Chan and Vese):

¥* = argmin ~(X) +/ I, (z) — ep(z) da,
P b))

where I1;,(.) > 0 and I, (.) > 0 are image-dependent
inhomogeneity measures

Min () = (u() = @in)?,

Hep () = (w(x) — Teg)?



Dictionary of shapes

¥ = arggnin ’7(2) + /E (Hin(x) - Hex(x)) dx

Parameterize possible ¥ using:
@ Dictionary of shapes ® = {S1,82,-++ ,Sn.}
@ Shape composition rule

#r.7. = (J SN S)

JE€Ig Jj€Is

Underying Snapes

(SIUS)\ (S3US)

: M



Shape composition problem

Rt 1o é( U Sj)\( U Sj)7

J€Ly J€lg
Shape composition problem:
(5C) {Z5%,Z57} = arg min/ (Iin () — Hez(z)) da
lg,.Io JRzg,14

Cardinal shape composition problem:
(restrict the number of shapes used)

(Cardinal-SC)  min / (Iin () — Hep(z)) da st.: | Igl+ |Zo| < s
R

ZEB 71-9 Ig.To



Shape composition problem

#r.z. 2 (J S\ U 8)).

J€Lg J€Io
Shape composition problem:
(SC) {Z%,Z57} = arg min/ (Iin () — Hez(z)) da
lg.lo JRzg,14

Cardinal shape composition problem:
(restrict the number of shapes used)

(Cardinal-SC)  min / (Iin () — Hep(2)) da st.: | Igl+ |Zo| < s
R

IED 7I@ I@ ’I@

Both of these are hard, combinatorial problems



Representing shapes
Basic idea: superimpose indicator functions, then cut between 0 and 1

xs = indicator function for set S

L ACH €

L QaXs b anxs,

supp+(a1X51 + asxs,) = S1US (1 >0, ag > 0)
supp (a1xs, —2xs,) =81\ S (ag > a1 >0)

supp™ (a1 xs,02Xs,) = S1 N S2 (g > 0)



Shape composition — atomic decomposition

Given a collection of shapes {S;}}2;, for any
s=({Us|\[USs
J€Iy Jj€Is

there exist scalars {a;} such that

Ja(z) = Z aj - xs;(z) satisfies

{fa@c) >1, z€%
JEIgUIy @

(#) <0, z¢X%

AIXS — XX Sz

Xt aoxs,



Shape optimization

Then

miInirEize/ Iy (x) — Hep(x) da, RIgIo :( U Sj)\( U Sj)
ole  Jrzy 1. j€Te Jj€ls

becomes

minicsnize/D (Hm(:p)—ﬂex(x)).hev(fa(:n)) dz, st. fa(z)= i:aj X;(z),
j=1

where

1
hev(u):{ vzl

0, u<O0.



Shape optimization

Then

miInir?ize/ Min(x) — Mep(x) dz,  Rzy 70 Z( U SJ)\( U Sj)
10 JRzy 1o i€To j€le

becomes

minimize/Dg(:r) “hev(fo(z)) dz, st fo(z) = Zs:oéj X (),

o7

onxs+ Qaxs, G1X& T QXS




Convexification

There is a natural convex proxy for the functional:

/ 9(2) - hev(fu(z)) da
D

Y

/D g(2) hev(fa(@)) + g(2) hev(fa(z)) dz

I (relax)

/D g(2)* max(fa(2),0) + g(x)” min(fa(x),1) d

g(z) "hevi(g) /

g(x) " max(¢,0)

¢

g(x)” min(¢, 1)

|
T
1

g(x)"hevi(¢)




Convexification

There is a natural convex proxy for the functional:

/ 9() - hev(fal()) dz
D
(3

/D 9(2) hev(fa(@)) + g(x) hev(fal(2))
I (relax)

/ max (g(z) fa(x), g()") da
D

g(z) hevi(g) /

g(x) " max(¢, 0)

dx

g(x)” min(¢, 1)

¢

|
T
1

g(x) " hevi(¢)




Convex shape composition

With the sparse regularization,

minimize/ g(z) dz subject to Rz, 7. = ( U SH\( U S;)

Tole  Jazg 1, j€Te j€Ts
Zo| +1Zol < S

becomes

mini()cnize/l)max (9(x)fa(x), g(x)”) dz subject to fo(z) = i:aj X;(x)
j=1

lafly <7

T is often an integer, related to the number of shapes used



Simulations




Simulations

R R

W o W wo mo we

1m2w:wmsoo§oo7mawm

(@)r=4,(b)7=6;(c)T=T;



Simulations

R R

1m2w:wmsw3«o7mw:m

(d) 7 =8; (e) 7 = 10; (f) previous method




Simulations

{c)

(d)

Identifying the objects inside an image



Simulations

(e)

m L Pa

a0

(d

(@)r=1(b)T=2(c)7=3;(d) 7=4



Simulations
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(e) 7 =5; (f) 7 = 6; (g) previous technique




Simulations

@r=1b)r=2(c)T=4(d)7=5 (e) T=00



Simulations

@r=10b)r=2;(c)T=4d)7=5;(e) T=00



Simulations
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Simulations




Theory: Disjoint dictionary elements

.

Disjoint dictionary elements = Cardinal-SC and convex proxy (7 = s)
produce same result



Theory: Lucid objects

e For a given region ¥ C D, the lucid object condition (LOC) holds if

{ I (z) <Uep(z) z€X

i (x) > Hep(x) z€D\X

@ Example:

i (2) = (u(

s




Theory: Lucid objects

If X is a “lucid object” and it can be composed of with s shapes IQE,Ig,
then

o Cardinal-SC identifies I and ZZ by selecting s = |Z%| + |ZZ|

@ Convex proxy produces ™ such that

>1, zeX
fa*(x){go, .’IZ¢2




Sketch of more general theory

o Image contains object ¥ = (U;cz, Sj)\(Ujez, i)
@ We show that there is a bijection between non-redundant Zg,Zs and
coefficients o
A
-
{Zo,Zo} ag
é_/
etuer

@ We develop sufficient conditions under which the output of the
convex proxy is
*
aIEBUIe = Oag, a(I@UI@)C =0

for appropriate T

e Conditions mostly depend on how large energy g(z) is in regions
where non-included shapes overlap X
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