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Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

can be recast as linear system of equations on a matrix that has rank 1:

uvT =

2
666664

u1v1 u1v2 u1v3 · · · u1vN

u2v1 u2v2 u2v3 · · · u2vN

u3v1 u3v2 u3v3 · · · u3vN

...
...

. . .

uKv1 uKv2 uKv3 · · · uKvN

3
777775
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Compressive (low rank) recovery ⇒
“Generic” quadratic/bilinear systems with cN equations and N unknowns
can be solved using nuclear norm minimization



Phase retrieval

(image courtesy of M. Soltanolkotabi)

Observe the magnitude of the Fourier transform |x̂(ω)|2
x̂(ω) is complex, and its phase carries important information

(Candes, Eldar, Li, Soltanolkotabi, Strohmer, and Voroninski)



Blind deconvolution

image deblurring multipath in wireless comm

(image from EngineeringsALL)

We observe
y[`] =

∑

n

s[n]h[`− n]

and want to “untangle” s and h.



Blind deconvolution as low rank recovery

Each sample of y = s ∗ h is a bilinear combination of the unknowns,

y[`] =
∑

n

s[n]h[`− n]

and is a linear combination of shT:
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y1[9]
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s[6]h[0] s[6]h[1] s[6]h[2]

s[7]h[0] s[7]h[1] s[7]h[2]

s[8]h[0] s[8]h[1] s[8]h[2]

s[9]h[0] s[9]h[1] s[9]h[2]
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Blind deconvolution as low rank recovery

Given y = s ∗ h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RL; we can write

s = Bu, h = Cv, B : L×K, C : L×N

where B and C are matrices whose columns form bases for these spaces



Blind deconvolution as low rank recovery

Given y = s ∗ h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RL; we can write

s = Bu, h = Cv, B : L×K, C : L×N

where B and C are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(X0), where X0 = uvT has rank=1

The action of A(·) can be broken down into three linear steps:

X0 → BX0 → BX0C
T → take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y = s ∗ h, h = Bu, s = Cv

= A(uvT), u ∈ RK , v ∈ RN ,

and then solve

min
X
‖X‖∗ subject to A(X) = y.

Ahmed, Recht, R, ’12:
If B is “incoherent” in the Fourier domain, and C is randomly chosen,
then we will recover X0 = shT exactly (with high probability) when

L ≥ Const · (K +N) · log3(KN)



Passive estimation of multiple channels

h1(t)

h2(t)

hK(t)

s(t)

yK(t) = s(t) ⇤ hK(t)

y2(t) = s(t) ⇤ h2(t)

y1(t) = s(t) ⇤ h1(t)

...
...
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Recovery results

Source / output length: 1000
Number of channels: 100
Channel impulse response length: 50
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Passive imaging of the ocean



Realistic (simulated) ocean channelsRealistic shallow water channel model 

Noise 
source 

Sensor Arrays 

•  Noise signal is in the broad band 
400~600Hz 

•  The distance between the noise 
source and sensor arrays is 
approximate 1km 

 



Realistic (simulated) ocean channelsChannel and representation 

We build a subspace 
to represent the real 
channel only using 
the estimated time 
delay information. 
 
 

Build a subspace model using bandwidth and approximate arrival times
(about 20 dimensions per channel)



Simulated recovery
Recovery 

0 10 20 30 40 50 60 70 80 90 100
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0.2

Normalized noise source  
recovery error= 0.0024 

Normalized 
channel error 
over all channels: 
0.0002 
 

∼ 100 channels total, ∼ 2000 samples per channel,
Normalized error ∼ 10−4 (no noise), robust with noise



Multiple sources

Memoryless: structured matrix factorization (SMF) problem
ICA, NNMF, dictionary learning, etc.

Use matrix recovery to make convolutional channels ”memoryless”:
recover rank M matrix, run SMF on column space



Low-rank recovery + ICA on broadband voice
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30 channels (microphones)
4 sources

2000 time samples
10 taps per channel



Imaging architecture

Small number of sensors with gaps between them
Blurring introduced to “fill in” these gaps
Uncalibrated: blur kernel is unknown





Masked imaging linear algebra

2
4

3
5
2
66664

3
77775

2
66664

3
77775

xDkGH

GH =
X

i

a[i] Bi

unknown

linear constraints

known

unknown image,

unconstrained

yk =

Operator coefficients a, image x unknown

Observations: A(axT)

Alternative interpretation: structured matrix factorization

Y = (GH) diag(X)ΦT



Masked imaging: theoretical results
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xDkGH

GH =
X

i

a[i] Bi

unknown

linear constraints

known

unknown image,

unconstrained

yk =

L pixels, N sensors, K codes

Theorem (Bahimani, R ’14):
We can jointly recover the blur H and the image X for a number of codes:

K & µ2 L

N
· log3(L) log logN

µ2 ≥ 1 measures how spread out blur is in frequency

(Related work by Tang and Recht ’14)



Masked imaging: numerical results

original blur blurred image blurred, subsampled

No structural model for the image

Blur model: build basis from psfs over a range of focal lengths
(EPFL PSF Generator, Born and Wolf model)



Masked imaging: numerical results

Recovery results: 16k pixels, 64 sensors, 200 codes

originals recovery



Simultaneous sparse and low rank

Problem 1: We want to recover xxT when x is K sparse

=

or more generally WWT, where W : N ×R is row sparse

=

We would like ∼ KR measurements instead of ∼ K2 or ∼ KN



Simultaneous sparse and low rank

Problem 2: We want to recover X with only K active rows

=



Prior work

For X simultaneously sparse and low rank ...

For A(·) a random projection, it stably embeds this set of matrices
(RIP)
(Golbabaee ’12, Lee et al ’13)

Convex relaxation for phase retrieval problem,
ym = 〈X,ama

T
m〉, m = 1, . . . ,M , success for M ∼ K2 logN

(Li and Voron. ’13)
Extended to rank-R (Chen et al ’13)

Convex relaxation is generally not the best strategy (Oymak et al, ’13)
(M. Fazel’s talk yesterday)

Alternating minimization has similar guarantees (Netrapalli et al ’13)

Numerical results (Shechtman et al ’11-’14, Schniter et al ’15)
suggest that we can do much better

Identifiability (Li et al ’15) conditions for blind deconvolution also
suggest we can do much better

Sparse power factorization (Lee et al ’13) is efficient from
observations that have RIP
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Compressive phase retrieval with correlated measurements

Observe
y` = |〈x,a`〉|2 + noise, ` = 1, . . . , L

x ∈ RN K-sparse, a` structured

a` = ΨTw`,

ΨT is M ×N , w` are generic (random)

a` all lie in a subspace ⇒ we can decouple the recovery into two stages

Note
y` = 〈xx∗,ΨTw`w

T
` Ψ〉 = 〈ΨXΨT,w`w

T
` 〉



Two-stage decoding

Given

y` = 〈x0x
∗
0,Ψ

Tw`w
T
` Ψ〉 = 〈ΨX0Ψ

T,w`w
T
` 〉, y =W(ΨX0Ψ

T)

we solve

B̂ = arg min
B�0

trace(B) subject to ‖W(B)− y‖2 ≤ ε,

and then

X̂ = arg min
X
‖X‖1 subject to ‖ΨXΨT − B̂‖F ≤

Cε√
M

(We might use many different algorithms for these two steps, and get the
same guarantees...)



Recovery guarantees

Observe

y` = |〈x0,a`〉|2 + z`, a` = ΨTw`, ` = 1, . . . , L

Suppose that

The w` ∈ RM are Normal(0, I)

The matrix Ψ embeds K-sparse vectors (2K-RIP)

The noise z is bounded, ‖z‖2 ≤ ε
Then if

L ≥ C1K log(N/K)

the two stage algorithm produces an estimate X̂ such that

‖X̂ − x0x
T
0 ‖F ≤ C2

ε√
L

with high probability, uniform over all rank-1 k × k sparse matrices.
(Bahmani,R ’15)



Numerical results
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Figure 1: The empirical 0.9 quantile of the relative estimation error vs. sparsity for various choices
of m and n with d = 256.

Figure 2: The empirical 0.9 quantile of the relative estimation error vs. sparsity for Algorithm 1
and different trace- and/or `1- minimization methods with d = 256, m =

⌃
2k

�
1 + log d

k

�⌥
, and

n = 3m.

algorithms are in agreement with the theoretical results. Namely in a regime where n = O (m) =
O
�
k log d

k

�
, Algorithm 1 can produce accurate estimates whereas while the other approaches fail

in this regime. The SDP and SDP+`1 show nearly identical performance. The `1-minimization,
however, competes with Algorithm 1 for small values of k. This observation can be explained
intuitively by the fact that the `1-minimization succeeds with n = O

�
k2

�
measurements which for

small values of k can be sufficiently close to the considered n = 3
⌃
2k

�
1 + log d

k

�⌥
measurements.

4 Proofs

Proof of Theorem 1. Clearly, B? =  X? T is feasible in 6 because of A3. Therefore, we can
show that any solution bB of (6) accurately estimates B? using existing results on nuclear-norm
minimization. In particular, we can invoke [3, Theorem 2 and Section 4.3] which guarantees that for
some positive absolute constants C1, C 0

2, and C3 if (8) holds then
��� bB � B?

���
F
 C 0

2"p
n

,

holds for all valid B? , thereby for all valid X?, with probability exceeding 1 � e�C3n. Therefore,
with C = C 0

2, the target matrix X? would be feasible in (7). Now, it suffices to show that the
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Recovery error vs. sparsity for different (M,L)
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Recovery error vs. sparsity for two-stage, just `1,
just SDP low rank, SDP low rank, sparse



Covariance sketching

Data x1, . . . ,xQ with covariance E[xxT] = R.

Compress/sketch data by correlating against one of L vectors a`, 〈xt,a`〉
Then if we used the same a` for all t ∈ T`,

1

|T`|
∑

t∈T`
|〈xt,a`〉|2 ≈ aT

` Ra`

⇒ estimating R from sketches is similar to phase retrieval (Chen et al ’13)
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Compress/sketch data by correlating against one of L vectors a`, 〈xt,a`〉
Then if we used the same a` for all t ∈ T`,

1

|T`|
∑

t∈T`
|〈xt,a`〉|2 ≈ aT

` Ra`

⇒ estimating R from sketches is similar to phase retrieval (Chen et al ’13)

If R = V V T, where V is N ×R and K-row sparse, L ∼ RK log(N/K)
then we find V̂ such that

‖R− V̂ V̂ T‖F ≤ Const
ε√
L

We can do so while only manipulating matrices of size ∼ NR
(Bahmani, R ’15)



Simultaneously sparse and low rank recovery from nested
measurements

Suppose X0 is N ×N , K-row sparse, rank R, Φ is M ×N . Measure

y =W(ΨX0) + z, z ∼ Normal(0, σ2I)

If W(·) is c1R-RIP, Ψ is c2K-RIP, then two-stage recovery yields X̂ with

‖X̂ −X0‖F . σ
√
Rmax(M,N).

If Φ is a good CS matrix, take M ∼ K logN .



Simultaneously sparse and low rank recovery from nested
measurements

Suppose X0 is N ×N , K-row sparse, rank R, Φ is M ×N . Measure

y =W(ΨX0) + z, z ∼ Normal(0, σ2I)

If W(·) is c1R-RIP, Ψ is c2K-RIP, then two-stage recovery yields X̂ with

‖X̂ −X0‖F . σ
√
Rmax(M,N).

If Φ is a good CS matrix, take M ∼ K logN .

Minimax lower bound:

‖X̂ −X0‖F & σ
√
K log(N/K) +RK



Convex shape composition



Image segmentation



Variational image segmentation

Image domain D ⊂ Rd, pixel values u(x), x ∈ D

Binary segmentation: partition D into Σ and D \ Σ

A standard variational model (Chan and Vese): where Πin(.) ≥ 0
and Πex(.) ≥ 0 are image-dependent inhomogeneity measures

Πin(x) = (u(x)− ũin)2,

Πex(x) = (u(x)− ũex)2

Other choices Πin/ex(x) = − log P
(
υ(x)| θin/ex

)
,

where υ is a similarity feature of interest (intensity, texture, pattern)
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Variational image segmentation

Image domain D ⊂ Rd, pixel values u(x), x ∈ D

Binary segmentation: partition D into Σ and D \ Σ

A standard variational model (Chan and Vese):

Σ∗ = arg min
Σ

γ(Σ) +

∫

Σ
Πin(x)−Πex(x) dx,

where Πin(.) ≥ 0 and Πex(.) ≥ 0 are image-dependent
inhomogeneity measures

Πin(x) = (u(x)− ũin)2,

Πex(x) = (u(x)− ũex)2

Other choices Πin/ex(x) = − log P
(
υ(x)| θin/ex

)
,

where υ is a similarity feature of interest (intensity, texture, pattern)



Dictionary of shapes

Σ∗ = arg min
Σ

γ(Σ) +

∫

Σ

(
Πin(x)−Πex(x)

)
dx

Parameterize possible Σ using:

Dictionary of shapes D = {S1,S2, · · · ,Sns}
Shape composition rule

RI⊕,I	 ,
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)
,



Shape composition problem

RI⊕,I	 ,
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)
,

Shape composition problem:

(SC) {I⊕∗, I	∗} = arg min
I⊕,I	

∫

R I⊕,I	

(
Πin(x)−Πex(x)

)
dx

Cardinal shape composition problem:
(restrict the number of shapes used)

(Cardinal-SC) min
I⊕,I	

∫

R I⊕,I	

(
Πin(x)−Πex(x)

)
dx s.t. : |I⊕|+ |I	| ≤ s



Shape composition problem

RI⊕,I	 ,
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)
,

Shape composition problem:

(SC) {I⊕∗, I	∗} = arg min
I⊕,I	

∫

R I⊕,I	

(
Πin(x)−Πex(x)

)
dx

Cardinal shape composition problem:
(restrict the number of shapes used)

(Cardinal-SC) min
I⊕,I	

∫

R I⊕,I	

(
Πin(x)−Πex(x)

)
dx s.t. : |I⊕|+ |I	| ≤ s

Both of these are hard, combinatorial problems



Representing shapes

Basic idea: superimpose indicator functions, then cut between 0 and 1

χS = indicator function for set S

supp+(α1χS1 + α2χS2) = S1 ∪ S2 (α1 > 0, α2 > 0)

supp+(α1χS1 − α2χS2) = S1 \ S2 (α2 > α1 > 0)

supp+(α1χS1α2χS2) = S1 ∩ S2 (α1α2 > 0)



Shape composition → atomic decomposition

Given a collection of shapes {Sj}ns
j=1, for any

Σ =


 ⋃

j∈I⊕
Sj


 \


 ⋃

j∈I	
Sj




there exist scalars {αj} such that

fα(x) =
∑

j∈I⊕∪I	
αj · χSj (x) satisfies

{
fα(x) ≥ 1, x ∈ Σ

fα(x) ≤ 0, x 6∈ Σ



Shape optimization

Then

minimize
I⊕,I	

∫

R I⊕,I	

Πin(x)−Πex(x) dx, R I⊕,I	 =
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)

becomes

minimize
α

∫

D

(
Πin(x)−Πex(x)

)
·hev(fα(x)) dx, s.t. fα(x) =

ns∑

j=1

αj χj(x),

where

hev(u) =

{
1, u > 0

0, u ≤ 0.



Shape optimization

Then

minimize
I⊕,I	

∫

R I⊕,I	

Πin(x)−Πex(x) dx, R I⊕,I	 =
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)

becomes

minimize
α

∫

D
g(x) · hev(fα(x)) dx, s.t. fα(x) =

ns∑

j=1

αj χj(x),



Convexification

There is a natural convex proxy for the functional:∫

D
g(x) · hev(fα(x)) dx

⇓∫

D
g(x)+hev(fα(x)) + g(x)−hev(fα(x)) dx

⇓ (relax)∫

D
g(x)+ max(fα(x), 0) + g(x)−min(fα(x), 1) dx

g(x)+hevi(�)

g(x)+ max(�, 0)

�
1

�
1

g(x)�hevi(�)

g(x)� min(�, 1)



Convexification

There is a natural convex proxy for the functional:∫

D
g(x) · hev(fα(x)) dx

⇓∫

D
g(x)+hev(fα(x)) + g(x)−hev(fα(x)) dx

⇓ (relax)
∫

D
max

(
g(x)fα(x), g(x)−

)
dx

g(x)+hevi(�)

g(x)+ max(�, 0)

�
1

�
1

g(x)�hevi(�)

g(x)� min(�, 1)



Convex shape composition

With the sparse regularization,

minimize
I⊕,I	

∫

RI⊕,I	

g(x) dx subject to R I⊕,I	 =
( ⋃

j∈I⊕
Sj
)∖( ⋃

j∈I	
Sj
)

|I⊕|+ |I	| ≤ S

becomes

minimize
α

∫

D
max

(
g(x)fα(x), g(x)−

)
dx subject to fα(x) =

ns∑

j=1

αj χj(x)

‖α‖1 ≤ τ

τ is often an integer, related to the number of shapes used



Simulations
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Simulations

(a) τ = 4; (b) τ = 6; (c) τ = 7;



Simulations

(d) τ = 8; (e) τ = 10; (f) previous method
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Identifying the objects inside an image



Simulations
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Simulations

(a) τ = 1; (b) τ = 2; (c) τ = 4; (d) τ = 5; (e) τ =∞



Simulations

(a) τ = 1; (b) τ = 2; (c) τ = 4; (d) τ = 5; (e) τ =∞
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Theory: Disjoint dictionary elements

Sns

S1 S2

S3

Disjoint dictionary elements ⇒ Cardinal-SC and convex proxy (τ = s)
produce same result



Theory: Lucid objects

For a given region Σ ⊂ D, the lucid object condition (LOC) holds if

{
Πin(x) < Πex(x) x ∈ Σ
Πin(x) > Πex(x) x ∈ D \ Σ

.

Example:

{
0 < u(x) < 1

2 x ∈ Σ
1
2 < u(x) < 1 x ∈ D \ Σ

where

Πin(x)=(u(x)− 1/4)2, Πex(x)=(u(x)− 3/4)2



Theory: Lucid objects

If Σ is a “lucid object” and it can be composed of with s shapes IΣ
⊕, IΣ

	,
then

Cardinal-SC identifies IΣ
⊕ and IΣ

	 by selecting s = |IΣ
⊕|+ |IΣ

	|

Convex proxy produces α∗ such that

fα∗(x)

{
≥ 1, x ∈ Σ

≤ 0, x 6∈ Σ



Sketch of more general theory

Image contains object Σ =
(⋃

j∈I⊕ Sj
)∖(⋃

j∈I	 Sj
)

We show that there is a bijection between non-redundant I⊕, I	 and
coefficients α

Convex Analysis

In the remainder of this presentation, we address the following question:

There exists an object ⌃ = (
S

j2I�Sj)\(
S

j2I Sj) in the image for some index sets
I�, I 2 {1, · · · ns}
Under what conditions, and for what value of ⌧ , does the convex proxy identify I� and I from
the set {1, · · · ns}

We take the following steps:

– We establish a relation between a non-redundant composition and an ↵-domain representation

– We show that for a class of non-redundant compositions this relationship is bijective

{I�, I }
A
**
↵R

⇠+[ ⇠�
mm

– We derive sufficient conditions under which for ⌧ = kA
�
{Sj}j2I�[I ; I�, I 

�
k1, the outcome

of the convex proxy, ↵⇤, satisfies:

↵⇤I�[I = ↵R and ↵⇤(I�[I )c = 0

– Such solution hence identifies I� and I 
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We develop sufficient conditions under which the output of the
convex proxy is

αI⊕∪I	 = αR , α∗(I⊕∪I	)c = 0

for appropriate τ

Conditions mostly depend on how large energy g(x) is in regions
where non-included shapes overlap Σ
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