Recovery and denoising with simultaneous structures

Maryam Fazel University of Washington

Joint work with: Samet Oymak (Berkeley), Amin Jalali (UW), Babak Hassibi (Caltech), Yonina Eldar (Technion)

SPARS 2015, Cambridge University, July 7, 2015

Outline

- simultaneous structures: where and why?
- review: single structure case compressed sensing, low-rank recovery,...
- fundamental limitation of combining convex penalties, for
 - arbitrary norms
 - a variety of measurements, beyond Gaussian
- similar result for the problem of 'denoising'
- what next?

Low-dimensional structures

classic examples:

- sparse vectors (e.g., compressed sensing) ℓ_1 norm
- group-sparse vectors (group LASSO) $\ell_{1,2}$ norm
- low-rank matrices (collaborative filtering, phase retrieval,...) nuclear (trace) norm
- sparse *plus* low-rank matrices, $\mathbf{X} = \mathbf{L} + \mathbf{S}$ (PCA with outliers, graphical models with hidden variables) ℓ_1 plus nuclear norm

Low-dimensional structures

multiple, simultaneous structures

- simultaneously sparse and low-rank matrices (sparse phase retrieval, sparse PCA, quadratic compressed sensing,...) ℓ_1 and nuclear norms
- tensors with low Tucker rank nuclear norms of unfolded matrices
- simultaneously sparse and piece-wise constant vectors (e.g., 'fused lasso') ℓ_1 norm and total-variation norm, $\|\mathbf{x}\|_{TV} = \sum_{i=1}^{n-1} |\mathbf{x}_{i+1} \mathbf{x}_i|$

Sparse and low-rank matrices: an application

phase retrieval, a classic signal processing/optics problem

recover signal \mathbf{x}_0 from linear *phaseless* measurements,

$$|\mathbf{a}_i^T \mathbf{x}_0| = b_i, \quad i = 1, \dots, m$$

reformulate as: find $\mathbf{X} = \mathbf{x}_0 \mathbf{x}_0^T$ s.t. $\langle \mathbf{a}_i \mathbf{a}_i^T, \mathbf{X} \rangle = b_i^2$

i.e., $\mathbf{X} \succeq 0$, rank $(\mathbf{X}) = 1$, $\mathcal{A}(\mathbf{X}) = b'$

[Candes, Eldar, Strohmer, Voroninski'11]

signal x_0 can also be **sparse**. then, X is rank-1 and (block-)sparse.

other applications (for sparse and low-rank matrices):

- sparse PCA [d'Aspremont et al'08,...]
 - find approximate eigenvectors of X that are sparse, e.g., $X \approx xx^T$ with x k-sparse
- cluster detection [Richard, Savalle, Vayatis'12]
 - ideal cluster adjacency matrix is low-rank & sparse

Recovery of structured models

unknown structured model $\mathbf{x}_0 \in \mathbf{R}^n$

- recovery from compressed measurements: $\mathcal{A}(\mathbf{x}_0) = \mathbf{y}$ linear $\mathcal{A} : \mathbf{R}^n \to \mathbf{R}^m$, $m \ll n$. can write as $\mathbf{A}\mathbf{x} = y$ with $\mathbf{A} \in \mathbf{R}^{m \times n}$
- denoising: A is identity; $y = x_0 + z$, noise z is i.i.d
- LASSO: $\mathbf{y} = \mathcal{A}(\mathbf{x}_0) + \mathbf{z}$

goal: given \mathcal{A} and $\mathbf{y} \in \mathbf{R}^m$, find \mathbf{x}_0 .

- how many measurements *m* suffice? (sample complexity)
- how does mean-squared error behave with noise level?

Example: Sparse vectors and $\|\mathbf{x}\|_1$

 $\mathcal{A}: \mathbf{R}^n \to \mathbf{R}^m$, suppose \mathcal{A} is Gaussian. \mathbf{x}_0 is *k*-sparse.

non-convex program:

$$\begin{array}{ll} \mathsf{minimize} & \|\mathbf{x}\|_0\\ \mathsf{subject to} & \mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x}_0) \end{array}$$

needs $\mathcal{O}(k)$ observations to exactly recover \mathbf{x}_0 with high probability^{*}

convex program:

minimize
$$\|\mathbf{x}\|_1$$

subject to $\mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x}_0)$

needs $\mathcal{O}(k \log n)$ observations for exact recovery w.h.p.

* means: there exists constant c s.t. \mathbf{x}_0 is found with probability $> 1 - \exp(-cm)$

[Candes,Romberg,Tao'04; Donoho'04; Tropp'04; Fuchs'04; . . .]

Example: Low-rank matrices and $\|\mathbf{X}\|_*$

 $\mathcal{A}: \mathbf{R}^{n \times n} \to \mathbf{R}^m$, suppose \mathcal{A} is Gaussian. \mathbf{X}_0 is rank r.

non-convex program:

 $\begin{array}{ll} \mbox{minimize} & {\rm rank}({\bf X}) \\ \mbox{subject to} & \mathcal{A}({\bf X}) = \mathcal{A}({\bf X}_0) \end{array}$

needs $\mathcal{O}(nr)$ observations to exactly recover \mathbf{X}_0 w.h.p.

convex program:

minimize
$$\|\mathbf{X}\|_*$$

subject to $\mathcal{A}(\mathbf{X}) = \mathcal{A}(\mathbf{X}_0)$

also needs $\mathcal{O}(nr)$ observations for exact recovery w.h.p.

[Recht,Fazel,Parrilo'07; Candes,Recht'08; Candes,Plan'09; Negahban,Wainwright'09,...]

also true for other classic examples:

- sparse vectors (e.g., compressed sensing) ℓ_1 norm
- group-sparse vectors (group LASSO) $\ell_{1,2}$ norm
- low-rank matrices (collaborative filtering, phase retrieval,...) nuclear (trace) norm
- sparse *plus* low-rank matrices, $\mathbf{X} = \mathbf{L} + \mathbf{S}$ (compressive PCA, . . .) ℓ_1 plus nuclear norm

Simultaneously structured \mathbf{x}_0

- object \mathbf{x}_0 has several structures, each with a structure-promoting norm
- additional structures reduce degrees of freedom

consider class of convex programs

minimize
$$f(\mathbf{x}) = h(\|\mathbf{x}\|_{(1)}, \dots, \|\mathbf{x}\|_{(S)})$$

subject to $\mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x}_0)$

where $h: \mathbf{R}^S_+ \to \mathbf{R}_+$ is convex and non-decreasing in each argument

examples:

$$f(\mathbf{x}) = \sum_{i=1}^{S} \lambda_i \|\mathbf{x}\|_{(i)}, \qquad f(\mathbf{x}) = \max_{i=1,\dots,S} \alpha_i \|\mathbf{x}\|_{(i)}$$

 $\lambda_i, \alpha_i > 0$ are parameters

Pareto optimal front

pick m. consider set of norm values achieved by $\{\mathbf{x} \mid \mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x}_0)\}$ and fill the upper-right points to get the Pareto optimal set for each m. observe

- if we have $m_1 < m$ measurements, \mathbf{x}_0 doesn't correspond to Pareto optimal front
 - cannot be recovered by minimizing any combination of norms
- need at least m measurements for \mathbf{x}_0 to be recoverable

Some results

- a limitation for combining convex penalties: simpler proof
- holds true for a variety of measurements \mathcal{A} :
 - Gaussian iid entries
 - independent subgaussian rows
 - sampling operator

(e.g., sampled rows of identity as in 'completion' problems, or sampled rows of Fourier matrix)

- quadratic (or rank-1) measurements: $\langle \mathbf{a}_i \mathbf{a}_i^T, \mathbf{X} \rangle = b_i^2$

• special case: sparse and low-rank matrix

[Oymak et al. '12,'15]

suppose \mathbf{x}_0 has structures $i = 1, \ldots, S$. when does program

minimize $f(\mathbf{x}) = h(\|\mathbf{x}\|_{(1)}, \dots, \|\mathbf{x}\|_{(S)})$ subject to $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_0$

fail to give \mathbf{x}_0 as its solution?

theorem. if $\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\mathbf{\bar{g}}^T \mathbf{\bar{x}}_0| > \frac{\|\mathbf{A}\mathbf{\bar{x}}_0\|_2}{\sigma_{\min}(\mathbf{A})},$ where $\mathbf{\bar{x}}_0 = \frac{\mathbf{x}_0}{\|\|\mathbf{x}_0\|\|_2}$, $\mathbf{\bar{g}} = \frac{\mathbf{g}}{\|\|\mathbf{g}\|\|_2}$, then \mathbf{x}_0 is **not** a minimizer and recovery fails.

 $(\partial f(\mathbf{x}_0) \text{ is the set of subgradients of } f \text{ at } \mathbf{x}_0)$

theorem. if

$$\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\bar{\mathbf{g}}^T \bar{\mathbf{x}}_0| > \frac{\|\mathbf{A}\bar{\mathbf{x}}_0\|_2}{\sigma_{\min}(\mathbf{A})},$$

then \mathbf{x}_0 is **not** a minimizer and recovery fails.

• LHS depends only on f and $\bar{\mathbf{x}}_0$

- cannot be made too small, as subgradients are 'aligned' with $\bar{\mathbf{x}}_0$ (we bound this with a geometric quantity)
- RHS depends only on ${\bf A}$ and ${\bf \bar x}_0$
- for many random ensembles, RHS $\gtrsim \sqrt{rac{m}{n}}$

theorem. if

$$\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\mathbf{\bar{g}}^T \mathbf{\bar{x}}_0| > \frac{\|\mathbf{A}\mathbf{\bar{x}}_0\|_2}{\sigma_{\min}(\mathbf{A})},$$

then \mathbf{x}_0 is **not** a minimizer and recovery fails.

- LHS depends only on $f(\cdot)$ and $\mathbf{\bar{x}}_0$
- cannot be made too small, as subgradients are 'aligned' with $\mathbf{\bar{x}}_0$
- RHS depends only on ${\bf A}$ and $\bar{{\bf x}}_0$
- ullet for many random ensembles, RHS $\ \gtrsim \sqrt{rac{m}{n}}$

theorem. if

$$\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\bar{\mathbf{g}}^T \bar{\mathbf{x}}_0| > \frac{\|\mathbf{A}\bar{\mathbf{x}}_0\|_2}{\sigma_{\min}(\mathbf{A})}$$

then \mathbf{x}_0 is **not** a minimizer and recovery fails.

- LHS depends only on f and $\overline{\mathbf{x}}_0$
- cannot be made too small, as subgradients are 'aligned' with $\mathbf{\bar{x}}_0$
- RHS depends only on ${\bf A}$ and ${\bf \bar x}_0$
- for many random ensembles, RHS $\approx \sqrt{\frac{m}{n}}$

Bound the left-hand side

def.: correlation between \mathbf{x}_0 and set S (largest angle)

$$\rho(\mathbf{x}, S) = \inf_{0 \neq \mathbf{s} \in S} |\bar{\mathbf{x}}^T \bar{\mathbf{s}}|$$

if set S is subdiff. of norm i:

$$\rho(\mathbf{x}_0, \partial \|\mathbf{x}_0\|_{(i)}) = \frac{\|\bar{\mathbf{x}}_0\|_{(i)}}{\sup_{g \in \partial \|\mathbf{x}_0\|_{(i)}} \|g\|_2} \ge \frac{\|\bar{\mathbf{x}}_0\|_{(i)}}{L_i} := \kappa_i$$

where L_i is the norm's Lipschitz constant. now lower bound the LHS,

$$\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\bar{\mathbf{g}}^T \bar{\mathbf{x}}_0| \geq \kappa_{\min} = \min_i \kappa_i.$$

(see also [Mu,Huang,Wright,Goldfarb'13])

proof:

• from convex analysis: any subgradient of $f = h(\|\mathbf{x}\|_{(1)}, \dots, \|\mathbf{x}\|_{(S)})$ can be written as $\mathbf{g} = \sum_i w_i \mathbf{g}_i$ with $w_i \ge 0$, where \mathbf{g}_i is a subgradient of $\|\mathbf{x}\|_{(i)}$

•
$$\mathbf{g}^T \bar{\mathbf{x}}_0 = \sum_i w_i \| \bar{\mathbf{x}}_0 \|_{(i)}$$
 (since $\mathbf{g}_i^T \bar{\mathbf{x}}_0 = \| \bar{\mathbf{x}}_0 \|_{(i)}$)

•
$$\|\mathbf{g}\|_2 \le \sum_i w_i \|\mathbf{g}_i\|_2 \le \sum_i w_i L_i$$
, so

$$\inf_{\mathbf{g}\in\partial f(\mathbf{x}_0)} |\bar{\mathbf{g}}^T \bar{\mathbf{x}}_0| \ge \frac{\sum_i w_i \|\bar{\mathbf{x}}_0\|_{(i)}}{\sum_i w_i L_i} \ge \min_i \frac{w_i \|\bar{\mathbf{x}}_0\|_{(i)}}{w_i L_i} = \kappa_{\min}.$$

Bound the right-hand side (via random matrix theory)

random vector $\mathbf{x} \in \mathbf{R}^n$ is subgaussian, if marginals $\mathbf{x}^T \mathbf{v}$ are subgaussian random variables for all $\mathbf{v} \in \mathbf{R}^n$

lemma [subgaussian measurements] if \mathbf{A} has

- i.i.d zero-mean isotropic subgaussian rows, or
- i.i.d zero-mean, unit-variance subgaussian entries

there exists constant c_1 such that whenever $m \leq c_1 n$, w.h.p. we have

$$\frac{\|\mathbf{A}\bar{\mathbf{x}}_0\|_2^2}{\sigma_{\min}^2(\mathbf{A})} \le \frac{2m}{n}$$

[see review by Vershynin,'14]

Bound the left-hand side

lemma [sampling] sample rows of **A** uniformly from the identity matrix, discard duplicate rows. then w.h.p.,

$$\frac{\|\mathbf{A}\bar{\mathbf{x}}_0\|_2^2}{\sigma_{\min}^2(\mathbf{A})} \le \frac{2m}{n}$$

several other measurements give similar bounds, e.g., $\langle \mathbf{a}_i \mathbf{a}_i^T, \mathbf{X} \rangle = b_i^2$ (also studied in [Li, Voroninski '12])

Recovery failure

putting bounds together:

theorem. \mathbf{x}_0 will not be a minimizer of the recovery program w.h.p., if

$$m \leq c n \kappa_{\min}^2$$

for all measurement types mentioned.

examples:

model	$f(\cdot)$	L	$\ ar{\mathbf{x}}_0\ \leq$	m at least
k sparse vector	$\ \cdot\ _1$	\sqrt{n}	\sqrt{k}	k
k column-sparse matrix	$\ \cdot\ _{1,2}$	\sqrt{d}	\sqrt{k}	kd
rank r matrix	$\ \cdot\ _{\star}$	\sqrt{d}	\sqrt{r}	rd
sparse & Low-rank matrix	$h(\ \cdot\ _{\star},\ \cdot\ _1)$		—	$\min\{k^2, rd\}$

last three lines: $d \times d$ matrix with $k \times k$ nonzero block, rank r, and $n = d^2$

Sparse and low-rank case

a gap. a nonconvex problem can recover the model from few measurements (on order of the degrees of freedom), while combined convex penalties requires much more measurements (suppose A is Gaussian).

Numerical experiments

grayscale shows probability of success over 100 runs for each case. recovery using $f(\mathbf{X}) = \text{Tr}(\mathbf{X}) + \lambda \|\mathbf{X}\|_1$. \mathbf{X}_0 is PSD, rank 1, k = 8.

Figure 1: $\lambda = 0.2$ (left) and $\lambda = 0.35$ (right).

A related problem: Denoising

this bottleneck also appears in another problem:

suppose \mathbf{x}_0 has S structures; estimate $\mathbf{x}_0 \in \mathbf{R}^n$ given $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$, where $\mathbf{z} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. use:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \{ \|\mathbf{y} - \mathbf{x}\|_2^2 + \sum_{i=1}^S \lambda_i \|\mathbf{x}\|_{(i)} \}$$

(aka proximal operator of function $\sum_{i=1}^{S} \lambda_i \|\mathbf{x}\|_{(i)}$)

def. the MSE risk of above estimator at \mathbf{x}_0 is

$$\eta(\lambda_1, \dots, \lambda_S) = \max_{\gamma > 0} \mathbf{E}[\|\hat{\mathbf{x}}(\gamma \mathbf{x}_0 + \mathbf{z}) - \gamma \mathbf{x}_0\|_2^2$$

how low can MSE risk get?

can show: performance is order-wise the same as using the best single norm similar statements for the case $y = A(\mathbf{x}) + \mathbf{z}$

Summary

- simultaneously structured models: weighted sum of norms is often used in applications, lacked performance theory
- result: combined convex penalty displays a fundamental gap, both for recovery sample complexity and denoising error
- lower bound holds for various measurements, e.g., sampling (matrix or tensor completion), quadratic measurements (phase retrieval, sparsePCA)
- tight *upper* bounds on m can be obtained for the Gaussian case, for lin comb of norms with λ_i 's tuned optimally; differs from lower bounds by a log factor [Oymak et al, 2015]

Discussion: what next?

is the situation all gloomy. . . ?

- find better penalty/regularizer:
 - can we directly define atoms and take convex hulls to find the atomic norm? [Chandrasekaran et al'10] seems intractable for sparse and low-rank case, but may help in other problems
 - convex relaxation hierarchies for the atomic norm
 - some improvements (though not orderwise) on a case-by-case basis:
 - * tensors with low Tucker rank [Mu, Huang, Wright, Goldfarb '13]
 - * a relaxation for sparse and low-rank [Richard, ']
- find more suitable measurements schemes (e.g., sequential measurements [Bahmani, Romberg '15])

References

"Simultaneously Structured Models with Application to Sparse and Low-rank Matrices", S. Oymak, A. Jalali, M. Fazel, Y. Eldar, B. Hassibi, *IEEE Trans. Info. Theory*, vol 61 (5), 2015. arXiv:1212.3753.

"Noisy Estimation of Simultaneously Structured Models: Limitation of Convex Relaxation", S. Oymak, A. Jalali, M. Fazel, B. Hassibi. CDC 2013.