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Outline

simultaneous structures: where and why?

review: single structure case
compressed sensing, low-rank recovery,. . .

fundamental limitation of combining convex penalties, for

— arbitrary norms
— a variety of measurements, beyond Gaussian

similar result for the problem of ‘denoising’

what next?



Low-dimensional structures

classic examples:

e sparse vectors (e.g., compressed sensing) /1 norm
e group-sparse vectors (group LASSO) /1 5 norm

e low-rank matrices (collaborative filtering, phase retrieval,. . . )  nuclear (trace)
norm

e sparse plus low-rank matrices, X = L + S (PCA with outliers, graphical models
with hidden variables)
¢1 plus nuclear norm



Low-dimensional structures

multiple, simultaneous structures

e simultaneously sparse and low-rank matrices (sparse phase retrieval, sparse
PCA, quadratic compressed sensing,. .. )  ¢; and nuclear norms

e tensors with low Tucker rank
nuclear norms of unfolded matrices

e simultaneously sparse and piece-wise constant vectors (e.g., ‘fused lasso')
/1 norm and total-variation norm, ||x|7y = nel X1 — X;
1=1 +




Sparse and low-rank matrices: an application

phase retrieval, a classic signal processing/optics problem

xray
sample source

recover signal xg from linear phaseless s r. A
diffraction

measurements, pattern

lalxo|=0b;, i=1,....m

reformulate as: find X = Xoxg s.t. (az'af;;r, X) = b?

e, X =0, rank(X)=1, AX) =10 [Candes,Eldar,Strohmer,Voroninski'11]

signal xg can also be sparse. then, X is rank-1 and (block-)sparse.



other applications (for sparse and low-rank matrices):

e sparse PCA [d'Aspremont et al'08,. . . ]

T

— find approximate eigenvectors of X that are sparse, e.g., X ~ xx* with x

k-sparse

e cluster detection [Richard,Savalle,Vayatis'12]

— ideal cluster adjacency matrix is low-rank & sparse



Recovery of structured models

unknown structured model x7 € R"

e recovery from compressed measurements: A(xgp) =y
linear A : R" — R, m < n. can write as Ax = y with A € R™*"

e denoising: A is identity; y = xg +z, noise z is i.i.d

o LASSO: y = A(xq) + z

goal: given A and y € R™, find xq.

e how many measurements m suffice? (sample complexity)

e how does mean-squared error behave with noise level?



Example: Sparse vectors and ||x||;

A: R" — R™, suppose A is Gaussian. xq is k-sparse.

non-convex program.:

minimize  [|x]|o
subject to A(x) = A(xo)
needs O(k) observations to exactly recover xy with high probability*

convex program:
minimize  ||x]|1

subject to A(x) = A(x0)
needs O(klogn) observations for exact recovery w.h.p.

* means: there exists constant ¢ s.t. xq is found with probability > 1 — exp(—cm)

[Candes,Romberg, Tao’04; Donoho’04; Tropp'04; Fuchs'04; . . . |



Example: Low-rank matrices and || X]||.

A:R"™"™ — R™, suppose A is Gaussian. X is rank 7.

non-convex program.:

minimize  rank(X)
subject to  A(X) = A(Xj)

needs O(nr) observations to exactly recover Xy w.h.p.

convex program:
minimize || X]|«
subject to A(X) = A(Xj)

also needs O(nr) observations for exact recovery w.h.p.

[Recht,Fazel,Parrilo’07; Candes,Recht’08; Candes,Plan’09; Negahban,Wainwright'09,. . . ]



also true for other classic examples:

e sparse vectors (e.g., compressed sensing) /1 norm

e group-sparse vectors (group LASSO) /1 5 norm

e low-rank matrices (collaborative filtering, phase retrieval,. . . )  nuclear (trace)
norm
e sparse plus low-rank matrices, X = L + S (compressive PCA, . . .)

¢1 plus nuclear norm



Simultaneously structured x

e object x( has several structures, each with a structure-promoting norm

e additional structures reduce degrees of freedom

consider class of convex programs

minimize  f(x) = h([[x[|q1),-- -, [[x[(s))
subject to  A(x) = A(xq)

where h : Ri — R, is convex and non-decreasing in each argument

examples:

S
f(x) = ZNHXH@'), f(x) = max az’HXH(z’)
i=1

i=1,...,S

A, a; > 0 are parameters
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Pareto optimal front

pick m. consider set of norm values achieved by {x | A(x) = A(xg)} and fill the

upper-right points to get the Pareto optimal set for each m. observe

e if we have m; < m measurements,
Xy doesn’'t correspond to Pareto
optimal front

— cannot  be recovered by
minimizing any combination of
norms

e need at least m measurements for
Xo to be recoverable

| - H(z)

EE

[RNIES
| - H(z)

-1l
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Some results

e a limitation for combining convex penalties: simpler proof

e holds true for a variety of measurements A:

— Gaussian iid entries
— independent subgaussian rows
— sampling operator
(e.g., sampled rows of identity as in ‘completion’ problems, or sampled rows

of Fourier matrix)
— quadratic (or rank-1) measurements: (a;a!, X) = b?

e special case: sparse and low-rank matrix

[Oymak et al. '12,'15 ]
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Recovery failure: sufficient condition

suppose X has structures : = 1,...,S5. when does program
minimize f(x) = h(||x|/1),.--,[|x]/(s)) subjectto Ax = Ax

fail to give x( as its solution?

theorem. if

. o Aol
inf 'z > | :
gcaf(xo) | 0‘ Umin(A)

(0f(x0) is the set of subgradients of f at xq)

5 8= —Ilégllg' then x( is not a minimizer and recovery fails.
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Recovery failure: sufficient condition

theorem. if

. 7 AXgl|2
inf %ol > | :
gceaf(xp) |g O‘ Umin(A>

then x( is not a minimizer and recovery fails.
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Recovery failure: sufficient condition

theorem. if

. AXqll2
inf |glx,| > | :
g€o f(xp) |g O‘ Umin(A>

then x( is not a minimizer and recovery fails.

e LHS depends only on f(-) and X

e cannot be made too small, as subgradients are ‘aligned’

with )_(0
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Recovery failure: sufficient condition

theorem. if

. T Axpl|2
inf T's > H U
geaf(xp) |g O| Umin<A>

then x( is not a minimizer and recovery fails.

e LHS depends only on f and X

e cannot be made too small, as subgradients are ‘aligned’
e RHS depends only on A and X

e for many random ensembles, RHS =~ \/%

with )_(0
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Bound the left-hand side

p(x,S) = |x!s*

def.: correlation between xy and set S |, y
(largest angle) P x.
X S = 1nf XTS //// //,/, S
px,8) = inf %78
f,':Y*
Q@s--Lrmmmnmnn=e @~

If set .S is subdiff. of norm «:

X0l (4) o ol
- L 1
SngE@HXoH(Z) ||g||2 L’L

p(X0,0||%o0| (1)) =

where L; is the norm’s Lipschitz constant. now lower bound the LHS,

inf |§T}_<0\ > Kmin = Min x;.
(

(see also [Mu,Huang, Wright,Goldfarb'13])
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proof:

e from convex analysis:
any subgradient of f = h(||x||(1),.--,[/x]/(s)) can be written as g = > . w;g;
with w; > 0, where g; is a subgradient of ||x||(;

o g'Xo =3, wi|Xolls) (since g} Ko = [|Xoll(s))

o |lglla <D willgille < >, wily, so
wi|Xol(5)

> wil|Xol| (i)
inf |glxg| > = > min — K
g€af(x0) g %ol 2 >awily T i wiLy

min-
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Bound the right-hand side (via random matrix theory)

random vector x € R" is subgaussian, if marginals x’v are subgaussian random
variables for all v € R"”

lemma [subgaussian measurements] if A has

- i..d zero-mean isotropic subgaussian rows, or

- i.i.d zero-mean, unit-variance subgaussian entries

there exists constant c¢; such that whenever m < ¢in, w.h.p. we have

AR5 <2_m
o2. (A) ~ n

min

[see review by Vershynin, 14]
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Bound the left-hand side

lemma [sampling] sample rows of A uniformly from the identity matrix, discard
duplicate rows. then w.h.p.,

o2. (A) ™ n

min

|ARol3 < 2m

several other measurements give similar bounds, e.g., (a;al’, X) = b? (also studied in
[Li, Voroninski '12])
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Recovery failure

putting bounds together:

theorem. x( will not be a minimizer of the recovery program w.h.p., if

m < c K.

for all measurement types mentioned.

examples:
model f() L |Xo|| < | m at least
k sparse vector 1 vn | vk k
k column-sparse matrix 1.2 Vd | VE kd
rank 7 matrix N Vd | T rd
sparse & Low-rank matrix | A(|| - [|«, ]| - |[1) | = | — min{k?, rd}

last three lines: d x d matrix with k x k nonzero block, rank r, and n = d?



Sparse and low-rank case

a gap. a nonconvex problem can recover the model from few measurements (on
order of the degrees of freedom), while combined convex penalties requires much

more measurements (suppose A is Gaussian).

m
O (1) X is not a minimizer of
min. || X« + A||X]|1.2
s.t. AX) = A(Xp)
X = 0
gap

X Is the unigue minimizer of

O (klog % + kr}_l min.  rank(X) + Al X[lo2 + AX" lo2
S.t. A(X) = A(Xo)

r(2k —r)—— “degrees of freedom”




Numerical experiments

grayscale shows probability of success over 100 runs for each case. recovery using

F(X) = Tr(X) + A|X|1. Xois PSD, rank 1, k = 8.
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Figure 1: A = 0.2 (left) and A = 0.35 (right).
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A related problem: Denoising

this bottleneck also appears in another problem:

suppose X has S structures; estimate xg € R" given y = x¢ + z, where
z ~ N(0,0°I). use:

X

S
arg min{||y —x||3 + > Aillxll}
1=1

(aka proximal operator of function Zle Aill x| ¢iy)

def. the MSE risk of above estimator at xg is

100 As) = max E|%(7x0 + 2) = %o

how low can MSE risk get?
can show: performance is order-wise the same as using the best single norm

similar statements for the case y = A(x) + z
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Summary

simultaneously structured models: weighted sum of norms is often used in
applications, lacked performance theory

result: combined convex penalty displays a fundamental gap, both for recovery
sample complexity and denoising error

lower bound holds for various measurements, e.g., sampling (matrix or tensor
completion), quadratic measurements (phase retrieval, sparsePCA)

tight upper bounds on m can be obtained for the Gaussian case, for lin comb of

norms with \;'s tuned optimally; differs from lower bounds by a log factor
[Oymak et al, 2015]
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Discussion: what next?

is the situation all gloomy. . . 7

e find better penalty/regularizer:

— can we directly define atoms and take convex hulls to find the atomic norm?
[Chandrasekaran et al’10]
seems intractable for sparse and low-rank case, but may help in other

problems

— convex relaxation hierarchies for the atomic norm

— some improvements (though not orderwise) on a case-by-case basis:
* tensors with low Tucker rank [Mu, Huang, Wright, Goldfarb '13]
* a relaxation for sparse and low-rank [Richard, ']

e find more suitable measurements schemes (e.g., sequential measurements
[Bahmani, Romberg "15])
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