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Outline

• simultaneous structures: where and why?

• review: single structure case
compressed sensing, low-rank recovery,. . .

• fundamental limitation of combining convex penalties, for

– arbitrary norms
– a variety of measurements, beyond Gaussian

• similar result for the problem of ‘denoising’

• what next?
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Low-dimensional structures

classic examples:

• sparse vectors (e.g., compressed sensing) ℓ1 norm

• group-sparse vectors (group LASSO) ℓ1,2 norm

• low-rank matrices (collaborative filtering, phase retrieval,. . . ) nuclear (trace)
norm

• sparse plus low-rank matrices, X = L+ S (PCA with outliers, graphical models
with hidden variables)
ℓ1 plus nuclear norm
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Low-dimensional structures

multiple, simultaneous structures

• simultaneously sparse and low-rank matrices (sparse phase retrieval, sparse
PCA, quadratic compressed sensing,. . . ) ℓ1 and nuclear norms

• tensors with low Tucker rank
nuclear norms of unfolded matrices

• simultaneously sparse and piece-wise constant vectors (e.g., ‘fused lasso’)

ℓ1 norm and total-variation norm, ‖x‖TV =
∑n−1

i=1 |xi+1 − xi|
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Sparse and low-rank matrices: an application

phase retrieval, a classic signal processing/optics problem

recover signal x0 from linear phaseless

measurements,

|aTi x0| = bi, i = 1, . . . ,m

reformulate as: find X = x0x
T
0 s.t. 〈aiaTi ,X〉 = b2i

i.e., X � 0, rank(X) = 1, A(X) = b′ [Candes,Eldar,Strohmer,Voroninski’11]

signal x0 can also be sparse. then, X is rank-1 and (block-)sparse.
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other applications (for sparse and low-rank matrices):

• sparse PCA [d’Aspremont et al’08,. . . ]

– find approximate eigenvectors of X that are sparse, e.g., X ≈ xxT with x

k-sparse

• cluster detection [Richard,Savalle,Vayatis’12]

– ideal cluster adjacency matrix is low-rank & sparse
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Recovery of structured models

unknown structured model x0 ∈ Rn

•• recovery from compressed measurements: A(x0) = y

linear A : Rn → Rm, m ≪ n. can write as Ax = y with A ∈ Rm×n

• denoising: A is identity; y = x0 + z, noise z is i.i.d

• LASSO: y = A(x0) + z

goal: given A and y ∈ Rm, find x0.

• how many measurements m suffice? (sample complexity)

• how does mean-squared error behave with noise level?
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Example: Sparse vectors and ‖x‖1

A : Rn → Rm, suppose A is Gaussian. x0 is k-sparse.

non-convex program:

minimize ‖x‖0
subject to A(x) = A(x0)

needs O(k) observations to exactly recover x0 with high probability∗

convex program:
minimize ‖x‖1
subject to A(x) = A(x0)

needs O(k logn) observations for exact recovery w.h.p.

∗ means: there exists constant c s.t. x0 is found with probability > 1− exp(−cm)

[Candes,Romberg,Tao’04; Donoho’04; Tropp’04; Fuchs’04; . . . ]
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Example: Low-rank matrices and ‖X‖∗

A : Rn×n → Rm, suppose A is Gaussian. X0 is rank r.

non-convex program:

minimize rank(X)
subject to A(X) = A(X0)

needs O(nr) observations to exactly recover X0 w.h.p.

convex program:
minimize ‖X‖∗
subject to A(X) = A(X0)

also needs O(nr) observations for exact recovery w.h.p.

[Recht,Fazel,Parrilo’07; Candes,Recht’08; Candes,Plan’09; Negahban,Wainwright’09,. . . ]
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also true for other classic examples:

• sparse vectors (e.g., compressed sensing) ℓ1 norm

• group-sparse vectors (group LASSO) ℓ1,2 norm

• low-rank matrices (collaborative filtering, phase retrieval,. . . ) nuclear (trace)
norm

• sparse plus low-rank matrices, X = L+ S (compressive PCA, . . . )
ℓ1 plus nuclear norm
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Simultaneously structured x0

• object x0 has several structures, each with a structure-promoting norm

• additional structures reduce degrees of freedom

consider class of convex programs

minimize f(x) = h(‖x‖(1), . . . , ‖x‖(S))
subject to A(x) = A(x0)

where h : RS
+ → R+ is convex and non-decreasing in each argument

examples:

f(x) =

S
∑

i=1

λi‖x‖(i), f(x) = max
i=1,...,S

αi‖x‖(i)

λi, αi > 0 are parameters
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Pareto optimal front

pick m. consider set of norm values achieved by {x | A(x) = A(x0)} and fill the
upper-right points to get the Pareto optimal set for each m. observe

• if we have m1 < m measurements,
x0 doesn’t correspond to Pareto
optimal front

– cannot be recovered by
minimizing any combination of
norms

• need at least m measurements for
x0 to be recoverable
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Some results

• a limitation for combining convex penalties: simpler proof

• holds true for a variety of measurements A:

– Gaussian iid entries
– independent subgaussian rows
– sampling operator

(e.g., sampled rows of identity as in ‘completion’ problems, or sampled rows
of Fourier matrix)

– quadratic (or rank-1) measurements: 〈aiaTi ,X〉 = b2i

• special case: sparse and low-rank matrix

[Oymak et al. ’12,’15 ]
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Recovery failure: sufficient condition

suppose x0 has structures i = 1, . . . , S. when does program

minimize f(x) = h(‖x‖(1), . . . , ‖x‖(S)) subject to Ax = Ax0

fail to give x0 as its solution?

theorem. if

inf
g∈∂f(x0)

|ḡT x̄0| >
‖Ax̄0‖2
σmin(A)

,

where x̄0 =
x0

‖x0‖2
, ḡ = g

‖g‖2
, then x0 is not a minimizer and recovery fails.

(∂f(x0) is the set of subgradients of f at x0)
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Recovery failure: sufficient condition

theorem. if

inf
g∈∂f(x0)

|ḡT x̄0| >
‖Ax̄0‖2
σmin(A)

,

then x0 is not a minimizer and recovery fails.

• LHS depends only on f and x̄0

• cannot be made too small, as subgradients are ‘aligned’ with x̄0 (we bound this
with a geometric quantity)

• RHS depends only on A and x̄0

• for many random ensembles, RHS &
√

m
n
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Recovery failure: sufficient condition

theorem. if

inf
g∈∂f(x0)

|ḡT x̄0| >
‖Ax̄0‖2
σmin(A)

,

then x0 is not a minimizer and recovery fails.

• LHS depends only on f(·) and x̄0

• cannot be made too small, as subgradients are ‘aligned’ with x̄0

• RHS depends only on A and x̄0

• for many random ensembles, RHS &
√

m
n
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Recovery failure: sufficient condition

theorem. if

inf
g∈∂f(x0)

|ḡT x̄0| >
‖Ax̄0‖2
σmin(A)

then x0 is not a minimizer and recovery fails.

• LHS depends only on f and x̄0

• cannot be made too small, as subgradients are ‘aligned’ with x̄0

• RHS depends only on A and x̄0

• for many random ensembles, RHS ≈
√

m
n
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Bound the left-hand side

def.: correlation between x0 and set S

(largest angle)

ρ(x, S) = inf
0 6=s∈S

|x̄T s̄|

x

s
∗

S

0

θ
∗

ρ(x, S) = |x̄T
s̄
∗|

if set S is subdiff. of norm i:

ρ(x0, ∂‖x0‖(i)) =
‖x̄0‖(i)

supg∈∂‖x0‖(i)
‖g‖2

≥ ‖x̄0‖(i)
Li

:= κi

where Li is the norm’s Lipschitz constant. now lower bound the LHS,

inf
g∈∂f(x0)

|ḡT x̄0| ≥ κmin = min
i

κi.

(see also [Mu,Huang,Wright,Goldfarb’13])

17



proof:

• from convex analysis:
any subgradient of f = h(‖x‖(1), . . . , ‖x‖(S)) can be written as g =

∑

iwigi

with wi ≥ 0, where gi is a subgradient of ‖x‖(i)

• gT x̄0 =
∑

iwi‖x̄0‖(i) (since gT
i x̄0 = ‖x̄0‖(i))

• ‖g‖2 ≤
∑

iwi‖gi‖2 ≤
∑

iwiLi, so

inf
g∈∂f(x0)

|ḡT x̄0| ≥
∑

iwi‖x̄0‖(i)
∑

iwiLi

≥ min
i

wi‖x̄0‖(i)
wiLi

= κmin.
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Bound the right-hand side (via random matrix theory)

random vector x ∈ Rn is subgaussian, if marginals xTv are subgaussian random
variables for all v ∈ Rn

lemma [subgaussian measurements] if A has

- i.i.d zero-mean isotropic subgaussian rows, or

- i.i.d zero-mean, unit-variance subgaussian entries

there exists constant c1 such that whenever m ≤ c1n, w.h.p. we have

‖Ax̄0‖22
σ2
min(A)

≤ 2m

n

[see review by Vershynin,’14]
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Bound the left-hand side

lemma [sampling] sample rows of A uniformly from the identity matrix, discard
duplicate rows. then w.h.p.,

‖Ax̄0‖22
σ2
min(A)

≤ 2m

n

several other measurements give similar bounds, e.g., 〈aiaTi ,X〉 = b2i (also studied in

[Li, Voroninski ’12])
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Recovery failure

putting bounds together:

theorem. x0 will not be a minimizer of the recovery program w.h.p., if

m ≤ c nκ2
min

for all measurement types mentioned.

examples:

model f(·) L ‖x̄0‖ ≤ m at least

k sparse vector ‖ · ‖1
√
n

√
k k

k column-sparse matrix ‖ · ‖1,2
√
d

√
k kd

rank r matrix ‖ · ‖⋆
√
d

√
r rd

sparse & Low-rank matrix h(‖ · ‖⋆, ‖ · ‖1) − − min{k2, rd}

last three lines: d× d matrix with k × k nonzero block, rank r, and n = d2
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Sparse and low-rank case

a gap. a nonconvex problem can recover the model from few measurements (on
order of the degrees of freedom), while combined convex penalties requires much
more measurements (suppose A is Gaussian).

m
✻

O (nr)

❄

X0 is not a minimizer of

min. ‖X‖∗ + λ‖X‖1,2

s.t. A(X) = A(X0)

X � 0

gap

O
(

k log n
k
+ kr

)

✻
X0 is the unique minimizer of

min. rank(X) + λ‖X‖0,2 + λ‖XT‖0,2

s.t. A(X) = A(X0)

r(2k − r) “degrees of freedom”
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Numerical experiments

grayscale shows probability of success over 100 runs for each case. recovery using
f(X) = Tr(X) + λ‖X‖1. X0 is PSD, rank 1, k = 8.
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Figure 1: λ = 0.2 (left) and λ = 0.35 (right).
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A related problem: Denoising

this bottleneck also appears in another problem:

suppose x0 has S structures; estimate x0 ∈ Rn given y = x0 + z, where
z ∼ N (0, σ2I). use:

x̂ = argmin
x

{‖y − x‖22 +
S
∑

i=1

λi‖x‖(i)}

(aka proximal operator of function
∑S

i=1 λi‖x‖(i))
def. the MSE risk of above estimator at x0 is

η(λ1, . . . λS) = max
γ>0

E[‖x̂(γx0 + z)− γx0‖22

how low can MSE risk get?

can show: performance is order-wise the same as using the best single norm

similar statements for the case y = A(x) + z
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Summary

• simultaneously structured models: weighted sum of norms is often used in
applications, lacked performance theory

• result: combined convex penalty displays a fundamental gap, both for recovery
sample complexity and denoising error

• lower bound holds for various measurements, e.g., sampling (matrix or tensor
completion), quadratic measurements (phase retrieval, sparsePCA)

• tight upper bounds on m can be obtained for the Gaussian case, for lin comb of
norms with λi’s tuned optimally; differs from lower bounds by a log factor
[Oymak et al, 2015]
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Discussion: what next?

is the situation all gloomy. . . ?

• find better penalty/regularizer:

– can we directly define atoms and take convex hulls to find the atomic norm?
[Chandrasekaran et al’10]
seems intractable for sparse and low-rank case, but may help in other
problems

– convex relaxation hierarchies for the atomic norm
– some improvements (though not orderwise) on a case-by-case basis:
∗ tensors with low Tucker rank [Mu, Huang, Wright, Goldfarb ’13]
∗ a relaxation for sparse and low-rank [Richard, ’]

• find more suitable measurements schemes (e.g., sequential measurements
[Bahmani, Romberg ’15])
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