Discovering Hidden Structures in Complex Networks

Roman Vershynin

March 2015

Network Science is highly interdisciplinary.

+ finance + technology $+ \dots$

《曰》 《聞》 《臣》 《臣》 三臣 …

Some structures are apparent, local.

- 3

Protein interaction network [A.-L. Barabási & Z. Oltvai, Nature Reviews Genetics 5, 101–113, Feb. 2004]

Some structures are apparent, local.

The Internet

(C. Hurter et al., Eurographics Conference on Visualization 2012) (C. Hurter et al., Eurographics Conference on Visualization 2012)

Other structures are latent, global...

Collaboration network of economists

(AER, JPE, Econometrica, RES, QJE. www.cloudycnénfinet) (豆 ト (豆 ト) 豆 のの(

... just like in nature:

global structure

local chaos

Basic Questions

- How can we find latent structures in real networks?
- How can we explain and model these structures?

Mathematical perspective

Model large networks as random graphs.

A leap of faith.

(Edges drawn at random.)

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○

Mathematical perspective

Model large networks as random graphs.

(Edges drawn at random.)

<ロ> (四) (四) (三) (三) (三)

A leap of faith.

Similar to **statistical physics**: model *complex* systems as *random* ones. Randomness at the microscopic level averages out at the macroscopic level:

Mathematical perspective

Model large networks as random graphs.

(Edges drawn at random.)

A leap of faith.

Similar to **statistical physics**: model *complex* systems as *random* ones. Randomness at the microscopic level averages out at the macroscopic level:

Random graphs: Erdös-Rényi model G(n, p)

Edges drawn independently at random, with probability $p \in [0, 1]$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Random graphs: Erdös-Rényi model G(n, p)

Edges drawn independently at random, with probability $p \in [0, 1]$.

[Paul Erdös, Alfred Rényi 59]: the birth of random graph theory.

Random graphs: Erdös-Rényi model G(n, p)

Edges drawn independently at random, with probability $p \in [0, 1]$.

[Paul Erdös, Alfred Rényi 59]: the birth of random graph theory.

G(n, p) with n = 1000, p = 0.00095

Inhomogeneous Erdös-Rényi model $G(n, (p_{ij}))$

Edges are still independent, but can have **different** probabilities p_{ij} .

Allows to model networks with structure = communities (clusters).

Inhomogeneous Erdös-Rényi model $G(n, (p_{ij}))$

Edges are still independent, but can have **different** probabilities p_{ij} .

Allows to model networks with structure = communities (clusters).

Example. Stochastic block model with two communities G(n, p, q): Edges within each community: probability p; across communities: probability q < p.

Inhomogeneous Erdös-Rényi model $G(n, (p_{ij}))$

Multiple communities are possible to model, too:

Stochastic block model

Real data (aggression network of students)

(UC Davis Center for Visualization)

<ロ> (四) (四) (日) (日) (日)

Network Model Recovery

Model Recovery Problem. Observe one instance of a network from $G(n, (p_{ij}))$. Recover the model, i.e. the connection probabilities p_{ij} .

Application to real graphs:

Network Model Recovery

Model Recovery Problem. Observe one instance of a network from $G(n, (p_{ij}))$. Recover the model, i.e. the connection probabilities p_{ij} .

<ロ> (四) (四) (四) (日) (日)

Application to real graphs:

Network Model Recovery

Model Recovery Problem. Observe one instance of a network from $G(n, (p_{ij}))$. Recover the model, i.e. the connection probabilities p_{ij} .

Application to real graphs:

 $p_{ij} =$ "latent bonds" between vertices.

Link prediction.

æ

Network Model Recovery Problem

A particular case, for stochastic block models:

Community Detection Problem. Observe a network drawn from the stochastic block model G(n, p, q). Recover the two communities.

<ロ> (四) (四) (三) (三) (三)

From graphs to matrices

Adjacency matrix A:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

From graphs to matrices

Adjacency matrix A:

For inhomogeneous Erdös-Rényi model:

 $A = (\text{Bernoulli}(p_{ij}))$ $\mathbb{E} A = (p_{ij})$

(日) (圖) (문) (문) (문)

From graphs to matrices

Adjacency matrix A:

For inhomogeneous Erdös-Rényi model:

 $A = (\text{Bernoulli}(p_{ij}))$ $\mathbb{E} A = (p_{ij})$

(日) (圖) (문) (문) (문)

Model Recovery Problem. Observe A; recover $\mathbb{E} A$.

Relation to matrix completion

Evident but not thoroughly explored.

Matrix completion: recover a low-rank matrix from a few randomly chosen entries.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○

Relation to matrix completion

Evident but not thoroughly explored.

Matrix completion: recover a low-rank matrix from a few randomly chosen entries.

Network model recovery: recover a (low-rank?) matrix $\mathbb{E} A = (p_{ij})$ from random measurements $A = (\text{Bernoulli}(p_{ij}))$.

F 0	1	0	1	0	0	0	07		F 1	.7	.6	.7	.1	.4	.3	.2
1	0	0	0	0	0	1	1		.7	1	.6	.5	.2	.1	.2	.1
0	0	0	0	1	1	0	0		.6	.6	1	.9	.4	.2	.3	.3
1	0	0	0	0	0	0	1	?	.7	.5	.9	1	.2	.1	.3	.2
0	0	1	0	0	0	1	0	\rightarrow	.1	.2	.4	.2	1	.8	.6	.5
0	0	1	0	0	1	0	0		.4	.1	.2	.1	.8	1	.7	.6
0	1	0	0	0	0	0	1		.3	.2	.3	.3	.6	.7	1	.9
LO	1	0	1	0	0	1	0		L.2	.1	.3	.2	.5	.6	.9	1

Most relevant comparison is to single-bit matrix completion [Davenport et al '12].

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Existing approaches

Mostly apply to stochastic block models.

Insights from Combinatorics, Computer Science, Statistics, Physics:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- combinatorial techniques (min-cut, hierarchical clustering)
- spectral methods this talk
- statistical inference (likelihood maximization)
- variational methods
- Markov chain Monte Carlo
- belief propagation
- convex optimization
- semidefinite programming this talk
- . . .

Based on two observations:

(a) eigenstructure(A) \approx eigenstructure($\mathbb{E}A$);

Based on two observations:

(a) eigenstructure(A) \approx eigenstructure($\mathbb{E}A$);

(b) eigenstructure ($\mathbb{E}A$) reveals the latent structure of the network.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Based on two observations:

(a) eigenstructure(A) \approx eigenstructure($\mathbb{E}A$);

(b) eigenstructure ($\mathbb{E}A$) reveals the latent structure of the network.

More on (b) later. By Davis-Kahan theorem, (a) would follow if

 $A \approx \mathbb{E} A$ in the operator norm.

《曰》 《聞》 《臣》 《臣》 三臣 …

Based on two observations:

(a) eigenstructure(A) \approx eigenstructure($\mathbb{E}A$);

(b) eigenstructure ($\mathbb{E}A$) reveals the latent structure of the network.

More on (b) later. By Davis-Kahan theorem, (a) would follow if

 $A \approx \mathbb{E} A$ in the operator norm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Is this true? In other words:

Question. Do random graphs concentrate near their "expected" graphs?

Consider an inhomogeneous Erdös-Rényi random graph $G(n, (p_{ij}))$ with expected degrees $np_{ij} \sim d$.

<ロ> (四) (四) (三) (三) (三) (三)

Consider an inhomogeneous Erdös-Rényi random graph $G(n, (p_{ij}))$ with expected degrees $np_{ij} \sim d$.

Theorem. A random graph with expected degrees $d \ge \log n$ concentrates:

 $\|A - \mathbb{E} A\| \lesssim \sqrt{d} \quad w.h.p. \ while \quad \|\mathbb{E} A\| \sim d.$

Consider an inhomogeneous Erdös-Rényi random graph $G(n, (p_{ij}))$ with expected degrees $np_{ij} \sim d$.

Theorem. A random graph with expected degrees $d \gtrsim \log n$ concentrates:

 $\|A-\mathbb{E}\,A\|\lesssim \sqrt{d}\quad w.h.p. \ while \quad \|\,\mathbb{E}\,A\|\sim d.$

Proofs:

• [Kahn-Szemeredi 89] \rightarrow [Feige-Ofek 05, Lei-Rinaldo 13, Chin-Rao-Vu 15]: Simple concentration of $x^{\mathsf{T}}(A - \mathbb{E}A)y$ for fixed x, y; then complicated union bound over x, y (tailored the coefficient profiles of x, y).

Consider an inhomogeneous Erdös-Rényi random graph $G(n, (p_{ij}))$ with expected degrees $np_{ij} \sim d$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Theorem. A random graph with expected degrees $d \ge \log n$ concentrates:

 $\|A-\mathbb{E}\,A\|\lesssim \sqrt{d}\quad w.h.p. \ while \quad \|\,\mathbb{E}\,A\|\sim d.$

Proofs:

- [Kahn-Szemeredi 89] \rightarrow [Feige-Ofek 05, Lei-Rinaldo 13, Chin-Rao-Vu 15]: Simple concentration of $x^{\mathsf{T}}(A - \mathbb{E}A)y$ for fixed x, y; then complicated union bound over x, y (tailored the coefficient profiles of x, y).
- Other approaches: [Hajek-Wu-Xu 14; Bandeira-van Handel 14; Le-Vershynin 15].

Consider an inhomogeneous Erdös-Rényi random graph $G(n, (p_{ij}))$ with expected degrees $np_{ij} \sim d$.

Theorem. A random graph with expected degrees $d \ge \log n$ concentrates:

 $\|A-\mathbb{E}\,A\|\lesssim \sqrt{d}\quad w.h.p. \ while \quad \|\,\mathbb{E}\,A\|\sim d.$

Proofs:

- [Kahn-Szemeredi 89] \rightarrow [Feige-Ofek 05, Lei-Rinaldo 13, Chin-Rao-Vu 15]: Simple concentration of $x^{\mathsf{T}}(A - \mathbb{E}A)y$ for fixed x, y; then complicated union bound over x, y (tailored the coefficient profiles of x, y).
- Other approaches: [Hajek-Wu-Xu 14; Bandeira-van Handel 14; Le-Vershynin 15].
- Weaker results: [Furedi-Komlos 80] with $d \gtrsim \log^4 n$; [Oliveira 10] with $||A - \mathbb{E}A|| \lesssim \sqrt{d \log n}$ by matrix Bernstein inequality.

Sparse random graphs do not concentrate

Observation. A random graph G(n, p) with expected degrees $d = np \ll \log n$ does not concentrate:

 $||A - \mathbb{E}A|| \gg ||\mathbb{E}A||.$

See [Krivelevich-Sudakov 03].

<ロ> (四) (四) (三) (三) (三)
Sparse random graphs do not concentrate

Observation. A random graph G(n, p) with expected degrees $d = np \ll \log n$ does not concentrate:

 $||A - \mathbb{E}A|| \gg ||\mathbb{E}A||.$

See [Krivelevich-Sudakov 03].

What is wrong with sparse graphs?

The degrees are wild, do not concentrate near d anymore. **High-degree vertices** blow up ||A||: some columns of A are too large.

◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

Sparse random graphs do not concentrate

High-degree vertices dominate the picture. Spectral methods reveal only those vertices. *Local information*, no latent structure [Mihail-Papadimitriou 02].

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

Does this restore concentration?

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

Does this restore concentration?

This is a non-trivial question. (Are these vertices the only troublemakers?)

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

Does this restore concentration?

This is a non-trivial question. (Are these vertices the only troublemakers?)

• Yes, if we remove all high-degree vertices and all their edges [Feige-Ofek 05]. But these vertices hold the network together (hubs)! Their removal can cause network to fall apart.

<ロ> (四) (四) (三) (三) (三)

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

Does this restore concentration?

This is a non-trivial question. (Are these vertices the only troublemakers?)

- Yes, if we remove all high-degree vertices and all their edges [Feige-Ofek 05]. But these vertices hold the network together (hubs)! Their removal can cause network to fall apart.
- Yes, in full generality. Any type of regularization helps, as long as it brings down the degrees to $\sim d$. [Le-Levina-V, Le-V 05].

Inhomogeneous E-R random graph with $d = \max np_{ij}$.

Regularize vertices with degrees > 2d: make all degrees $\leq 2d$ by reducing the weights of edges arbitrarily.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Inhomogeneous E-R random graph with $d = \max np_{ij}$.

Regularize vertices with degrees > 2d: make all degrees $\leq 2d$ by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A' of the regularized graph concentrates:

 $\|A' - \mathbb{E}A\| \lesssim \sqrt{d} \quad w.h.p.$

(日) (國) (필) (필) (필)

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

Inhomogeneous E-R random graph with $d = \max np_{ij}$.

Regularize vertices with degrees > 2d: make all degrees $\leq 2d$ by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A' of the regularized graph concentrates:

 $||A' - \mathbb{E}A|| \lesssim \sqrt{d} \quad w.h.p.$

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices). The graph can be very sparse, d = O(1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inhomogeneous E-R random graph with $d = \max np_{ij}$.

Regularize vertices with degrees > 2d: make all degrees $\leq 2d$ by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A' of the regularized graph concentrates:

 $||A' - \mathbb{E}A|| \lesssim \sqrt{d} \quad w.h.p.$

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

The graph can be very sparse, d = O(1).

Proof:

- simple concentration of A in cut norm;
- **2** upgrade to operator norm on a subgraph by *Grothendieck-Pietsch factorization*;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

iteration to extend the control over all graph.

By-product: a new graph decomposition.

Regularization and concentration: applications

Eigenvectors reveal the latent structure?

Regularization and concentration: applications

Eigenvectors reveal the latent structure?

Concentration (possibly after regularization) \Rightarrow

 $A\approx \mathbb{E}\,A.$

Davis-Kahan theorem \Rightarrow eigenvectors satisfy

 $v_i(A) \approx v_i(\mathbb{E}A).$

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○

Regularization and concentration: applications

Eigenvectors reveal the latent structure?

Concentration (possibly after regularization) \Rightarrow

 $A\approx \mathbb{E}\,A.$

Davis-Kahan theorem \Rightarrow eigenvectors satisfy

 $v_i(A) \approx v_i(\mathbb{E}A).$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Eigenvectors $v_i(\mathbb{E}A)$ carry information about **network structure**.

Example. Community detection in stochastic block model G(n, p, q).

<ロ> (四) (四) (三) (三) (三)

Example. Community detection in stochastic block model G(n, p, q).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example. Community detection in stochastic block model G(n, p, q).

 $v_2(\mathbb{E} A)$ encodes community structure $\Rightarrow v_2(A)$ encodes the structure, too.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Example. Community detection in stochastic block model G(n, p, q).

 $v_2(\mathbb{E} A)$ encodes community structure $\Rightarrow v_2(A)$ encodes the structure, too.

Spectral Clustering Algorithm: given a graph with adjacency matrix A,

- Compute the second leading *eigenvector* of *A*;
- Recover communities based on the signs of its coefficients.

Using eigenvectors: theory.

Corollary (Community Detection). Consider the stochastic block model G(n, p, q) with p = a/n and q = b/n. Suppose

 $(a-b)^2 \ge C_{\varepsilon}(a+b).$

<ロ> (四) (四) (三) (三) (三)

Then the *regularized* spectral clustering algorithm recovers communities up to εn misclassified vertices, and with high probability.

Using eigenvectors: theory.

Corollary (Community Detection). Consider the stochastic block model G(n, p, q) with p = a/n and q = b/n. Suppose

 $(a-b)^2 \ge C_{\varepsilon}(a+b).$

<ロ> (四) (四) (三) (三) (三)

Then the *regularized* spectral clustering algorithm recovers communities up to εn misclassified vertices, and with high probability.

Proof: straightforward consequence of concentration [Le-Levina-V; Le-V 05].

Using eigenvectors: theory.

Corollary (Community Detection). Consider the stochastic block model G(n, p, q) with p = a/n and q = b/n. Suppose

 $(a-b)^2 \ge C_{\varepsilon}(a+b).$

Then the *regularized* spectral clustering algorithm recovers communities up to εn misclassified vertices, and with high probability.

Proof: straightforward consequence of concentration [Le-Levina-V; Le-V 05].

Detection threshold. The condition on is *optimal* up to C_{ε} , which must $\to \infty$. No algorithm can succeed if

 $(a-b)^2 \le 2(a+b).$

There are algorithms that do better than random guess if

 $(a-b)^2 > 2(a+b).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

See [Mossel-Neeman-Sly 13-14; Massoulié 13; Bordenave-Lelarge-Massoulié 15].

Performance of regularized spectral clustering

n = 400 vertices, expected degree 5. Connection probabilities p = 5/n and b = 0.5/n.

<ロ> (日) (日) (日) (日) (日)

Further application of

 $\operatorname{eigenstructure}(A) \approx \operatorname{eigenstructure}(\mathbb{E} A).$

Further application of

eigenstructure(A) \approx eigenstructure($\mathbb{E} A$).

(日) (圖) (문) (문) (문)

Assume $\mathbb{E} A$ has low rank, exactly or approximately. Then PCA on A should **reveal the latent structure** of the network.

How? project the columns of A onto the space of the 3 leading eigenvectors.

Power grid of U.S.A.

Without regularization:

(日) (圖) (문) (문) (문)

Not very useful...

With regularization:

SOR

With regularization:

SAG

With regularization:

na a

With regularization:

SOC

With regularization:

DQ CP

With regularization:

Sac

With regularization:

SOR

With regularization:

Sac

With regularization:

SOC

With regularization:

SOR
With regularization:

SAR

With regularization:

SOC

With regularization:

With regularization:

SOC

Diffusion approach: heat the graph.

◆□> ◆□> ◆三> ◆三> 三三 のへで

Diffusion approach: heat the graph.

The heat gets trapped in a community \Rightarrow can recover it.

<ロ> (四) (四) (三) (三) (三)

E

In \mathbb{R}^2 , the **heat diffusion** is described by the Laplacian $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

From Gabriel Peyré's manifold methods class (left); Morpheo research team (right)

In \mathbb{R}^2 , the **heat diffusion** is described by the Laplacian $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}$.

From Gabriel Peyré's manifold methods class (left); Morpheo research team (right)

On a graph, the discrete Laplacian is the $n \times n$ matrix

 $\Delta := I - D^{-1/2} A D^{-1/2}$

(日) (圖) (문) (문) (문)

where D is the diagonal matrix with the *degrees* on the diagonal.

In \mathbb{R}^2 , the **heat diffusion** is described by the Laplacian $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}$.

From Gabriel Peyré's manifold methods class (left); Morpheo research team (right)

On a graph, the discrete Laplacian is the $n \times n$ matrix

 $\Delta := I - D^{-1/2} A D^{-1/2}$

where D is the diagonal matrix with the *degrees* on the diagonal.

Adjacency and Laplacian are two most fundamental matrices associated to graphs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ へ ○

For **dense graphs** (expected degrees $d \ge \log n$), Laplacian concentrates.

For **dense graphs** (expected degrees $d \ge \log n$), Laplacian concentrates.

For sparse graphs $(d \ll \log n)$, fails to concentrate.

For **dense graphs** (expected degrees $d \gtrsim \log n$), Laplacian concentrates.

For sparse graphs $(d \ll \log n)$, fails to concentrate.

What's wrong? Low-degree vertices: isolated vertices, trees. (They get overheated.)

<ロ> (四) (四) (三) (三) (三) (三)

(日) (문) (문) (문) (문)

Would regularization help?

Would regularization help?

Connect low-degree vertices to the rest of the graph by *light weighted edges*; bring up all degrees to $\sim d$.

<ロ> (四) (四) (三) (三) (三) (三)

Proposed by network scientists [Chaudhuri+ 12, Amini+ 13].

Theorem. The Laplacian Δ' of the regularized graph concentrates:

 $\|\Delta' - \mathbb{E} \Delta'\| \lesssim \frac{1}{\sqrt{d}} \quad while \quad \|\Delta'\| \sim 1.$

[Le-Levina-V, Le-V 05].

Theorem. The Laplacian Δ' of the regularized graph concentrates:

 $\|\Delta' - \mathbb{E} \Delta'\| \lesssim \frac{1}{\sqrt{d}} \quad while \quad \|\Delta'\| \sim 1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

[Le-Levina-V, Le-V 05].

Proof: Deduced from concentration of regularized adjacency matrices.

Theorem. The Laplacian Δ' of the regularized graph concentrates:

 $\|\Delta' - \mathbb{E}\Delta'\| \lesssim \frac{1}{\sqrt{d}} \quad while \quad \|\Delta'\| \sim 1.$

[Le-Levina-V, Le-V 05].

Proof: Deduced from concentration of regularized adjacency matrices.

Application to community detection: use the 2^{nd} eigenvector of the Laplacian. Theoretical performance: same as for adjacency; empirically even better.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem. The Laplacian Δ' of the regularized graph concentrates:

 $\|\Delta' - \mathbb{E}\Delta'\| \lesssim \frac{1}{\sqrt{d}} \quad while \quad \|\Delta'\| \sim 1.$

[Le-Levina-V, Le-V 05].

Proof: Deduced from concentration of regularized adjacency matrices.

Application to community detection: use the 2^{nd} eigenvector of the Laplacian. Theoretical performance: same as for adjacency; empirically even better.

Physical interpretation: Make the graph vibrate; the wave with lowest frequency recovers the communities.

(日) (國) (문) (문) (문)

Performance of regularized spectral clustering

Artificial data: sparse stochastic block model

Without regularization

With regularization

This tree gets overheated

<ロ> (四) (四) (日) (日) (日)

Performance of regularized spectral clustering

Real data: political blogs after 2004 U.S. presidential election [Adamic-Glance 04].

With regularization

(ロ) (部) (注) (注)

1,222 vertices (liberal/conservative); edges = hyperlinks; average degree = 27.

Goal: fit the desired type of structure to a given network.

< □ > < @ > < 注 > < 注 > … 注

Goal: fit the desired type of structure to a given network.

Strongest community structure: union of cliques.

How to fit? Maximize correlation between the network and a union of cliques.

Goal: fit the desired type of structure to a given network.

Strongest community structure: union of cliques.

How to fit? Maximize correlation between the network and a union of cliques.

Optimization: $\max \langle A, Z \rangle$ where A = adjacency matrix of the network, Z = adjacency matrix of a union of cliques with k edges.

Goal: fit the desired type of structure to a given network.

Strongest community structure: union of cliques.

How to fit? Maximize correlation between the network and a union of cliques.

Optimization: $\max \langle A, Z \rangle$ where A = adjacency matrix of the network, Z = adjacency matrix of a union of cliques with k edges.

Integer optimization problem. NP-hard.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semidefinite relaxation

Fact. A matrix $Z \in \{0, 1\}^{n \times n}$ is block diagonal $\Leftrightarrow Z$ is positive semidefinite.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○

Semidefinite relaxation

Fact. A matrix $Z \in \{0, 1\}^{n \times n}$ is block diagonal $\Leftrightarrow Z$ is positive semidefinite.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

A semidefinite relaxation:

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

General stochastic block model: \forall many communities, \forall connection probabilities p_{ij} , within communities > p; across communities < q. (Not necessarily low rank!)

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

General stochastic block model: \forall many communities, \forall connection probabilities p_{ij} , within communities > p; across communities < q. (Not necessarily low rank!)

Theorem (Community Detection by SDP). Consider a general stochastic block model with p = a/n and q = b/n. Suppose

 $(a-b)^2 \ge C_{\varepsilon}(a+b).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣……

Then the SDP (with k=number of edges) recovers communities up to εn misclassified vertices, and with high probability.

[Guedon-V. 14].

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

General stochastic block model: \forall many communities, \forall connection probabilities p_{ij} , within communities > p; across communities < q. (Not necessarily low rank!)

Theorem (Community Detection by SDP). Consider a general stochastic block model with p = a/n and q = b/n. Suppose

$$(a-b)^2 \ge C_{\varepsilon}(a+b).$$

Then the SDP (with k=number of edges) recovers communities up to εn misclassified vertices, and with high probability.

[Guedon-V. 14]. Proof: Grothendieck inequality + concentration in cut norm.

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

General stochastic block model: \forall many communities, \forall connection probabilities p_{ij} , within communities > p; across communities < q. (Not necessarily low rank!)

Theorem (Community Detection by SDP). Consider a general stochastic block model with p = a/n and q = b/n. Suppose

$$(a-b)^2 \ge C_{\varepsilon}(a+b).$$

Then the SDP (with k=number of edges) recovers communities up to εn misclassified vertices, and with high probability.

[Guedon-V. 14]. Proof: Grothendieck inequality + concentration in cut norm.

Exact recovery for dense networks $(a, b \ge \log n)$; thresholds known [Abbeet al ≥ 14] $\circ \circ \circ$

Example. Dolphins in Doubtful Sound, New Zealand [Lusseau et al. 03].

True communities

Communities found by SDP

Take a closer look at

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

Take a closer look at

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Output: *k* strongest "latent bonds" between vertices.

Take a closer look at

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

Output: *k* strongest "latent bonds" between vertices.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?
Semidefinite relaxation in action

Take a closer look at

SDP. $\max \langle A, Z \rangle$: $Z \in [0, 1]^{n \times n}$ is positive semidefinite, $\sum Z_{ij} = k$.

Output: *k* strongest "latent bonds" between vertices.

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Next slide: increase k gradually \Rightarrow dynamic picture.

<日中、台湾、小学、小学、小学、「中国、中国、

<日中、台湾、小学、小学、小学、「中国、中国、

→白見い(調)・(注)・(注)・(言) 効果()

(日本)(部)(学校)(学校) き 多くの

(日本)(部)(学校)(学校) き 多くの

· 19 · 1월 · 1월 · 1월 · 1월 · 198

(日本)(部)(学校)(学校) き 多くの

<日中、台中、台中、小学、小学、「学」の名(で)

<日中、台中、台中、小学、小学、「学」の名(で)

<日中、台中、台中、小学、小学、「学」の名(で)

Performance of semidefinite relaxation

SDP enhances the latent structure of the network:

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

SDP densifies communities, sparsifies cuts across communities.

Performance of semidefinite relaxation

SDP enhances the latent structure of the network:

《曰》 《聞》 《臣》 《臣》 三臣 …

SDP densifies communities, sparsifies cuts across communities.

SDP did not know the number of communities in advance. It decided that 2 communities should fit best.

Compressed sensing

Signal: vector, matrix Structure: sparsity, low rank Measurements: random linear, few Outliers: permitted in robust PCA Exact recovery; exact thresholds Recent blowup (2004+)

Structure recovery in networks

Signal: network model (p_{ij}) Structure: low rank, ??? (open) Measurements: 0/1 random, few Outliers: permitted (high/low degree vertices) Exact recovery; exact thresholds Recent blowup (2012+)

(日) (圖) (문) (문) (문)