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Network Science is highly interdisciplinary.

+ finance + technology + . . .



Many networks have fascinating structure.

Some structures are apparent, local.

Protein interaction network
[A.-L. Barabási & Z. Oltvai, Nature Reviews Genetics 5, 101–113, Feb. 2004]



Many networks have fascinating structure.

Some structures are apparent, local.

The Internet
(C. Hurter et al., Eurographics Conference on Visualization 2012)



Many networks have fascinating structure.

Other structures are latent, global...

(locally, chaos)

Collaboration network of economists
(AER, JPE, Econometrica, RES, QJE. www.cloudycnen.net)



Many networks have fascinating structure.

... just like in nature:

global structure local chaos



Basic Questions

How can we find latent structures in real networks?

How can we explain and model these structures?



Mathematical perspective

Model large networks as random graphs. (Edges drawn at random.)

A leap of faith.

Similar to statistical physics: model complex systems as random ones.
Randomness at the microscopic level averages out at the macroscopic level:
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Random graphs: Erdös-Rényi model G(n, p)

Edges drawn independently at random, with probability p ∈ [0, 1].

[Paul Erdös, Alfred Rényi 59]: the birth of random graph theory.

G(n, p) with n = 1000, p = 0.00095

(A. Novozhilov’s course in Mathematics of Networks, NDSU)
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Inhomogeneous Erdös-Rényi model G(n, (pij))

Edges are still independent, but can have different probabilities pij .

Allows to model networks with structure = communities (clusters).

Example. Stochastic block model with two communities G(n, p, q):
Edges within each community: probability p; across communities: probability q < p.
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Inhomogeneous Erdös-Rényi model G(n, (pij))

Multiple communities are possible to model, too:

Stochastic block model Real data (aggression network of students)

(UC Davis Center for Visualization)



Network Model Recovery

Model Recovery Problem. Observe one instance of a network from G(n, (pij)).
Recover the model, i.e. the connection probabilities pij .

Application to real graphs:

?−→

pij = “latent bonds” between vertices.

Link prediction.
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Network Model Recovery Problem

A particular case, for stochastic block models:

Community Detection Problem. Observe a network drawn from the stochastic block
model G(n, p, q). Recover the two communities.

?−→



From graphs to matrices

Adjacency matrix A:

−→ A =



0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 1
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
1 1 0 0 0 1 0 1
0 1 0 1 1 0 1 0



For inhomogeneous Erdös-Rényi model:

A = (Bernoulli(pij)) EA = (pij)

Model Recovery Problem. Observe A; recover EA.
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A = (Bernoulli(pij)) EA = (pij)

Model Recovery Problem. Observe A; recover EA.



Relation to matrix completion

Evident but not thoroughly explored.

Matrix completion: recover a low-rank matrix from a few randomly chosen entries.
.1

.7 .6 .1
.9

.9 .1
.1 .5

.1 .8
.3

.6

 ?→


1 .7 .6 .7 .1 .4 .3 .2
.7 1 .6 .5 .2 .1 .2 .1
.6 .6 1 .9 .4 .2 .3 .3
.7 .5 .9 1 .2 .1 .3 .2
.1 .2 .4 .2 1 .8 .6 .5
.4 .1 .2 .1 .8 1 .7 .6
.3 .2 .3 .3 .6 .7 1 .9
.2 .1 .3 .2 .5 .6 .9 1



Network model recovery: recover a (low-rank?) matrix EA = (pij) from random
measurements A = (Bernoulli(pij)).

0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 0

 ?→


1 .7 .6 .7 .1 .4 .3 .2
.7 1 .6 .5 .2 .1 .2 .1
.6 .6 1 .9 .4 .2 .3 .3
.7 .5 .9 1 .2 .1 .3 .2
.1 .2 .4 .2 1 .8 .6 .5
.4 .1 .2 .1 .8 1 .7 .6
.3 .2 .3 .3 .6 .7 1 .9
.2 .1 .3 .2 .5 .6 .9 1



Most relevant comparison is to single-bit matrix completion [Davenport et al ’12].
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Most relevant comparison is to single-bit matrix completion [Davenport et al ’12].



Existing approaches

Mostly apply to stochastic block models.

Insights from Combinatorics, Computer Science, Statistics, Physics:

combinatorial techniques (min-cut, hierarchical clustering)

spectral methods – this talk

statistical inference (likelihood maximization)

variational methods

Markov chain Monte Carlo

belief propagation

convex optimization

semidefinite programming – this talk

. . .



Spectral methods

Based on two observations:

(a) eigenstructure(A) ≈ eigenstructure(EA);

(b) eigenstructure(EA) reveals the latent structure of the network.

More on (b) later. By Davis-Kahan theorem, (a) would follow if

A ≈ EA in the operator norm.

Is this true? In other words:

Question. Do random graphs concentrate near their “expected” graphs?
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Dense random graphs concentrate

Consider an inhomogeneous Erdös-Rényi random graph
G(n, (pij)) with expected degrees npij ∼ d.

Theorem. A random graph with expected degrees d & logn concentrates:

‖A− EA‖ .
√
d w.h.p. while ‖EA‖ ∼ d.

Proofs:

[Kahn-Szemeredi 89] → [Feige-Ofek 05, Lei-Rinaldo 13, Chin-Rao-Vu 15]:
Simple concentration of xT(A− EA)y for fixed x, y; then complicated union
bound over x, y (tailored the coefficient profiles of x, y).

Other approaches: [Hajek-Wu-Xu 14; Bandeira-van Handel 14; Le-Vershynin 15].

Weaker results: [Furedi-Komlos 80] with d & log4 n;
[Oliveira 10] with ‖A− EA‖ .

√
d logn by matrix Bernstein inequality.
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G(n, (pij)) with expected degrees npij ∼ d.

Theorem. A random graph with expected degrees d & logn concentrates:

‖A− EA‖ .
√
d w.h.p. while ‖EA‖ ∼ d.

Proofs:

[Kahn-Szemeredi 89] → [Feige-Ofek 05, Lei-Rinaldo 13, Chin-Rao-Vu 15]:
Simple concentration of xT(A− EA)y for fixed x, y; then complicated union
bound over x, y (tailored the coefficient profiles of x, y).

Other approaches: [Hajek-Wu-Xu 14; Bandeira-van Handel 14; Le-Vershynin 15].

Weaker results: [Furedi-Komlos 80] with d & log4 n;
[Oliveira 10] with ‖A− EA‖ .

√
d logn by matrix Bernstein inequality.



Sparse random graphs do not concentrate

Observation. A random graph G(n, p) with expected degrees d = np� logn does not
concentrate:

‖A− EA‖ � ‖EA‖.

See [Krivelevich-Sudakov 03].

What is wrong with sparse graphs?

The degrees are wild, do not concentrate near d anymore.
High-degree vertices blow up ‖A‖: some columns of A are too large.
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Sparse random graphs do not concentrate

High-degree vertices dominate the picture. Spectral methods reveal only those
vertices. Local information, no latent structure [Mihail-Papadimitriou 02].

The Internet



Regularization approach

Preprocess the network.

Regularize the high-degree vertices: reweight (or remove) enough edges from them.

Does this restore concentration?

This is a non-trivial question. (Are these vertices the only troublemakers?)

Yes, if we remove all high-degree vertices and all their edges [Feige-Ofek 05].
But these vertices hold the network together (hubs)! Their removal can cause
network to fall apart.

Yes, in full generality. Any type of regularization helps, as long as it brings down
the degrees to ∼ d. [Le-Levina-V, Le-V 05].
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Regularization and concentration: theory

Inhomogeneous E-R random graph with d = maxnpij .

Regularize vertices with degrees > 2d:
make all degrees ≤ 2d by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A′ of the regularized graph concentrates:

‖A′ − EA‖ .
√
d w.h.p.

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

The graph can be very sparse, d = O(1).

Proof:

1 simple concentration of A in cut norm;

2 upgrade to operator norm on a subgraph by Grothendieck-Pietsch factorization;

3 iteration to extend the control over all graph.

By-product: a new graph decomposition.



Regularization and concentration: theory

Inhomogeneous E-R random graph with d = maxnpij .

Regularize vertices with degrees > 2d:
make all degrees ≤ 2d by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A′ of the regularized graph concentrates:

‖A′ − EA‖ .
√
d w.h.p.

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

The graph can be very sparse, d = O(1).

Proof:

1 simple concentration of A in cut norm;

2 upgrade to operator norm on a subgraph by Grothendieck-Pietsch factorization;

3 iteration to extend the control over all graph.

By-product: a new graph decomposition.



Regularization and concentration: theory

Inhomogeneous E-R random graph with d = maxnpij .

Regularize vertices with degrees > 2d:
make all degrees ≤ 2d by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A′ of the regularized graph concentrates:

‖A′ − EA‖ .
√
d w.h.p.

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

The graph can be very sparse, d = O(1).

Proof:

1 simple concentration of A in cut norm;

2 upgrade to operator norm on a subgraph by Grothendieck-Pietsch factorization;

3 iteration to extend the control over all graph.

By-product: a new graph decomposition.



Regularization and concentration: theory

Inhomogeneous E-R random graph with d = maxnpij .

Regularize vertices with degrees > 2d:
make all degrees ≤ 2d by reducing the weights of edges arbitrarily.

Theorem. The adjacency matrix A′ of the regularized graph concentrates:

‖A′ − EA‖ .
√
d w.h.p.

[Le-Levina-V, Le-V 05]; partial case in [Feige-Ofek] (complete removal of vertices).

The graph can be very sparse, d = O(1).

Proof:

1 simple concentration of A in cut norm;

2 upgrade to operator norm on a subgraph by Grothendieck-Pietsch factorization;

3 iteration to extend the control over all graph.

By-product: a new graph decomposition.



Regularization and concentration: applications

Eigenvectors reveal the latent structure?

Concentration (possibly after regularization) ⇒

A ≈ EA.

Davis-Kahan theorem ⇒ eigenvectors satisfy

vi(A) ≈ vi(EA).

Eigenvectors vi(EA) carry information about network structure.
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Eigenvectors reveal the network structure.

Example. Community detection in stochastic block model G(n, p, q).

EA =


p p q q
p p q q

q q p p
q q p p

 has rank 2; v1(EA) =


1
1

1
1

 , v2(EA) =


1
1

−1
−1

 .

v2(EA) encodes community structure ⇒ v2(A) encodes the structure, too.

Spectral Clustering Algorithm: given a graph with adjacency matrix A,

Compute the second leading eigenvector of A;

Recover communities based on the signs of its coefficients.
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Using eigenvectors: theory.

Corollary (Community Detection). Consider the stochastic block model G(n, p, q)
with p = a/n and q = b/n. Suppose

(a− b)2 ≥ Cε(a + b).

Then the regularized spectral clustering algorithm recovers communities up to εn
misclassified vertices, and with high probability.

Proof: straightforward consequence of concentration [Le-Levina-V; Le-V 05].

Detection threshold. The condition on is optimal up to Cε, which must →∞.
No algorithm can succeed if

(a− b)2 ≤ 2(a + b).

There are algorithms that do better than random guess if

(a− b)2 > 2(a + b).

See [Mossel-Neeman-Sly 13-14; Massoulié 13; Bordenave-Lelarge-Massoulié 15].
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Performance of regularized spectral clustering

Without regularization With regularization

n = 400 vertices, expected degree 5. Connection probabilities p = 5/n and b = 0.5/n.



Application: network visualization by PCA

Further application of

eigenstructure(A) ≈ eigenstructure(EA).

Assume EA has low rank, exactly or approximately.
Then PCA on A should reveal the latent structure of the network.

How? project the columns of A onto the space of the 3 leading eigenvectors.



Application: network visualization by PCA

Further application of

eigenstructure(A) ≈ eigenstructure(EA).

Assume EA has low rank, exactly or approximately.
Then PCA on A should reveal the latent structure of the network.

How? project the columns of A onto the space of the 3 leading eigenvectors.



Application: network visualization by PCA

Power grid of U.S.A.



Application: network visualization by PCA

Without regularization:

Not very useful...
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Graph Laplacian

In R2, the heat diffusion is described by the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 .

From Gabriel Peyré’s manifold methods class (left); Morpheo research team (right)

On a graph, the discrete Laplacian is the n× n matrix

∆ := I −D−1/2AD−1/2

where D is the diagonal matrix with the degrees on the diagonal.

Adjacency and Laplacian are two most fundamental matrices associated to graphs.
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For sparse graphs (d� logn), fails to concentrate.

What’s wrong? Low-degree vertices: isolated vertices, trees. (They get overheated.)
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Concentration of Laplacian

Would regularization help?

Connect low-degree vertices to the rest of the graph by light weighted edges;
bring up all degrees to ∼ d.

⇐⇒ Aij 7→ Aij+d/n

Proposed by network scientists [Chaudhuri+ 12, Amini+ 13].
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Concentration of regularized Laplacian: theory

Theorem. The Laplacian ∆′ of the regularized graph concentrates:

‖∆′ − E∆′‖ . 1√
d

while ‖∆′‖ ∼ 1.

[Le-Levina-V, Le-V 05].

Proof: Deduced from concentration of regularized adjacency matrices.

Application to community detection: use the 2nd eigenvector of the Laplacian.
Theoretical performance: same as for adjacency; empirically even better.

Physical interpretation: Make the graph vibrate; the wave with lowest frequency
recovers the communities.
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Performance of regularized spectral clustering

Artificial data: sparse stochastic block model

Without regularization With regularization

This tree gets overheated



Performance of regularized spectral clustering

Real data: political blogs after 2004 U.S. presidential election [Adamic-Glance 04].

Without regularization With regularization

1,222 vertices (liberal/conservative); edges = hyperlinks; average degree = 27.



Optimization Methods

Goal: fit the desired type of structure to a given network.

Strongest community structure: union of cliques.

How to fit? Maximize correlation between the network and a union of cliques.

Optimization: max 〈A,Z〉 where A = adjacency matrix of the network,
Z = adjacency matrix of a union of cliques with k edges.

Z =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1

1 1
1 1



Optimization. max 〈A,Z〉: Z ∈ {0, 1}n×n is block-diagonal,
∑

Zij = k.

Integer optimization problem. NP-hard.
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Semidefinite relaxation

Optimization. max 〈A,Z〉: Z ∈ {0, 1}n×n is block-diagonal,
∑

Zij = k.

Fact. A matrix Z ∈ {0, 1}n×n is block diagonal ⇔ Z is positive semidefinite.

A semidefinite relaxation:

SDP. max 〈A,Z〉: Z ∈ [0, 1]n×n is positive semidefinite,
∑

Zij = k.
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Semidefinite relaxation: theory

SDP. max 〈A,Z〉: Z ∈ [0, 1]n×n is positive semidefinite,
∑

Zij = k.

General stochastic block model: ∀ many communities, ∀ connection probabilities pij ,
within communities > p; across communities < q. (Not necessarily low rank!)

Theorem (Community Detection by SDP). Consider a general stochastic block
model with p = a/n and q = b/n. Suppose

(a− b)2 ≥ Cε(a + b).

Then the SDP (with k=number of edges) recovers communities up to εn
misclassified vertices, and with high probability.

[Guedon-V. 14]. Proof: Grothendieck inequality + concentration in cut norm.

Exact recovery for dense networks (a, b ≥ logn); thresholds known [Abbe et al. 14].
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Semidefinite relaxation in action

Example. Dolphins in Doubtful Sound, New Zealand [Lusseau et al. 03].

True communities Communities found by SDP
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Semidefinite relaxation in action

Take a closer look at

SDP. max 〈A,Z〉: Z ∈ [0, 1]n×n is positive semidefinite,
∑

Zij = k.

Output: k strongest “latent bonds” between vertices.

Next slide: increase k gradually ⇒ dynamic picture.
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Performance of semidefinite relaxation

SDP enhances the latent structure of the network:
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SDP densifies communities, sparsifies cuts across communities.

SDP did not know the number of communities in advance.
It decided that 2 communities should fit best.
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SDP enhances the latent structure of the network:
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SDP densifies communities, sparsifies cuts across communities.

SDP did not know the number of communities in advance.
It decided that 2 communities should fit best.



Compressed sensing vs. networks

Compressed sensing Structure recovery in networks

Signal: vector, matrix Signal: network model (pij)
Structure: sparsity, low rank Structure: low rank, ??? (open)
Measurements: random linear, few Measurements: 0/1 random, few
Outliers: permitted in robust PCA Outliers: permitted (high/low degree vertices)
Exact recovery; exact thresholds Exact recovery; exact thresholds
Recent blowup (2004+) Recent blowup (2012+)


