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Many people are interested in sparsity. Why?

• Real world statistics often have sparsity

– Natural statistics of images, sounds, and other signals
– Compressed sensing, independent components analysis
– Feature/variable selection in e.g. gene expression data
– The structure of many natural graphs is sparse.

• Sparsity assumptions can be a very good regulariser to avoid overfitting

– Feature selection
– SVMs
– Data dependent generalisation bounds

• Sparsity can be exploited for fast computation

– Matrix factorisation for recommender systems
– Sparse solutions in kernel machines



Outline

• The Bayesian view

• Bayesian nonparametrics and sparsity

• Sparse factor models



Part I: The Bayesian view



Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Probabilistic Modelling

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ
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Three Key Observations

1. Modelling and prediction require assumptions; the Bayesian approach uses
probability theory to express uncertainty in all such assumptions

2. Given these assumptions, the rest is applications of the sum and product rules,
or approximations thereof

3. There is no “optimisation rule” in probability theory; optimisation is used either
to approximate integration, or to make decisions under some loss



Part II: Bayesian nonparametrics and sparsity



Why Bayesian nonparametrics

• Why Bayesian?

Simplicity (of the framework)

• Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Overview of nonparametric models and uses

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling goal Example process
Distributions on functions Gaussian process
Distributions on distributions Dirichlet process

Polya Tree
Clustering Chinese restaurant process

Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree

Kingman’s coalescent
Sparse binary matrices Indian buffet processes
Survival analysis Beta processes
Distributions on measures Completely random measures
... ...



Sparse Matrices



From finite to infinite sparse binary matrices

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)1

1Naming inspired by analogy to “Chinese restaurant process” (CRP) from probability theory.



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of sparse binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

• Models for overlapping clusters (w/ Heller, 2007)



Infinite Independent Components Analysis

Model: Y = G(Z⊗X) + E

x ⊗ z

G

y

...

where Y is the data matrix, G is the mixing matrix Z ∼ IBP(α, β) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

(w/ David Knowles, 2007, 2011)



Infinite Sparse Factor Analysis

NONPARAMETRIC BAYESIAN SPARSE FACTOR MODELS 1545

FIG. 4. Boxplot of reconstruction errors for simulated data derived from the E. Coli connectivity
matrix of Kao et al. (2004). Ten data sets were generated and the reconstruction error calculated for
the last ten samples from each algorithm. Numbers refer to the number of latent factors used, K . a1
denotes fixing α = 1. sn denotes sharing power between noise dimensions.

could potentially be resolved by placing an appropriate per factor ARD-like prior
over the scale parameters of the Gamma distributions controlling the precision of
elements of G. Finally, the Nonparametric Sparse Factor Analysis (NSFA) pro-
posed here and in Rai and Daumé III (2008) performs very well. With fixed α = 1
(a1) or inferring α, we see very similar performance. Using the soft coupling (sc)
variant which shares power between dimensions when fitting the noise variances
seems to reduce the variance of the sampler, which is reasonable in this example
since the noise was in fact isotropic.

Since the reconstruction error does not penalize spurious factors, it is important
to check that NSFA is not scoring well simply by inferring many additional fac-
tors. Histograms for the number of latent features inferred for the nonparametric
sparse model are shown in Figure 5. This represents an approximate posterior over
K . For fixed α = 1 the distribution is centered around the true value of K = 16,
with minimal bias (EK = 16.1). The variance is significant (standard deviation of
1.46), but is reasonable considering the noise level (SNR = 10) and that in some
of the random data sets, elements of Z which are 1 could be masked by very small
corresponding values of G. This hypothesis is supported by the results of a similar
experiment where G was set equal to Z. In this case, the sampler always converged
to at least 16 features, but would also sometimes infer spurious features from noise
(results not shown). When inferring α some bias and skew are noticeable. The
mean of the posterior is now at 18.3 with standard deviation 2.0, suggesting there
is little to gain from sampling α in this data.

NONPARAMETRIC BAYESIAN SPARSE FACTOR MODELS 1543

Noise variance. The additive Gaussian noise can be constrained to be isotropic,
in which case the inverse variance is given a Gamma prior: ψ−1

d = ψ−1 ∼
Gamma(a, b) which gives the posterior update ψ−1|− ∼ Gamma(a + ND

2 , b +
∑

d,n Ê2
dn).

However, if the noise is only assumed to be independent (which we have found
to be more appropriate for gene expression data), then each dimension has a sep-
arate noise variance, whose inverse is given a Gamma prior: ψ−1

d ∼ Gamma(a, b)

which gives the posterior update ψ−1
d |− ∼ Gamma(a + N

2 , b + ∑
n E2

dn) where
the matrix of residuals Ê = Y − GX. We can share power between dimensions by
giving the hyperparameter b a hyperprior Gamma(a0, b0) resulting in the Gibbs
update b|− ∼ Gamma(a0 + aD,b0 + ∑D

d=1 ψ−1
d ). This hierarchical prior results

in soft coupling between the noise variances in each dimension, so we will refer to
this variant as sc.

Algorithm 1 One iteration of the NSFA sampler
for d = 1 to D do

for k = 1 to K do
Sample Zdk

end for
Sample κd

end for
for n = 1 to N do

Sample X:n
end for
Sample α,φ,λg

5. Results. We compare the following models:

• FA—Bayesian Factor Analysis; see, for example, Kaufman and Press (1973) or
Rowe and Press (1998).

• AFA—Factor Analysis with ARD prior to determine active sources.
• FOK—The sparse Factor Analysis method of Fokoue (2004), Fevotte and God-

sill (2006) and Archambeau and Bach (2009).
• SPCA—The Sparse PCA method of Zou, Hastie and Tibshirani (2004).
• BFRM—Bayesian Factor Regression Model of West et al. (2007).
• SFA—Sparse Factor Analysis, using the finite IBP.
• NSFA—The proposed model: Nonparametric Sparse Factor Analysis.

Note that all of these models can be learned using the software package we
provide simply by using appropriate settings.



Part III: Sparse factor models

• Mohamed, S., Heller, K.A., and Ghahramani, Z. (2009) Bayesian Exponential Family PCA. In Advances in Neural
Information Processing Systems 21:1089–1096. Cambridge, MA: MIT Press.

• Mohamed, S., Heller, K.A., and Ghahramani, Z. (2012) Bayesian and L1 Approaches for Sparse Unsupervised
Learning. ICML 2012.

• Mohamed, S., Heller, K. A. and Ghahramani, Z. (2014) Bayesian Approaches for Sparse Latent Variable Models:
Reconsidering L1 Sparsity. In Rish, I., Cecchi, G., Lozano, A. and Niculescu-Mizil (Eds.) Practical Applications of
Sparse Modeling. MIT Press.



Factor Models and Matrix Factorization

Factor analysis and matrix factorization models have the following general form:

xn = Θvn + en =
∑
k

θkvnk + en

where xn ∈ RD is a data vector, vn ∈ RK is a vector of latent factors, Θ ∈ RD×K
is a matrix of parameters (factor loadings), and en is Gaussian noise.

v1

xD

vK

x1 x2

...

...

θ     
X θ

V

≈      
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Factor analysis and matrix factorization models have the following general form:
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∑
k
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where xn ∈ RD is a data vector, vn ∈ RK is a vector of latent factors, Θ ∈ RD×K
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v1
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vK

x1 x2

...

...

θ     
X θ

V

≈      

We can rewrite this in matrix form to more clearly see it as matrix factorization:

X
D×N = Θ

D×KVK×N + E
D×N

These models have been around for over 100 years (Spearman, 1904).
We are interested in sparse variants...



Sparse Factor Models

v1

xD

vK

x1 x2

...

...

θ     

• Consider a sparse factor model:

xn = Θvn + en =
∑
k

θkvnk + en

where xn is a data vector, vn is a sparse vector of latent factors, Θ is a matrix
of parameters,2 and en is Gaussian noise.

• Sparsity: our “solution”3 should have many of the elements of vnk = 0

• Extension to general exponential family distributions for non-Gaussian xn:

xn ∼ Expon(Θvn)

This generalization can handle binary, count, discete, positive, and many other
data types, and combinations! It is a sparse version of Exponential Family PCA.

2To keep things simple, we don’t consider sparse Θ.
3There is a different notion of a solution under a Bayesian or optimization viewpoint.



Aside: Exponential Family

p(x|θ) in the exponential family if it can be written as:

p(x|θ) = f(x)g(θ) exp{φ(θ)>s(x)}

φ vector of natural parameters
s(x) vector of sufficient statistics
f and g positive functions of x and θ, respectively.

Examples include: Gaussian, exponential, gamma, chi-squared, beta, Dirichlet,
Bernoulli, categorical, Poisson, Wishart...



Sparse Factor Models: Optimization approach

v1

xD

vK

x1 x2

...

...

θ     

• The classical approach for inducing sparsity is to optimise a cost
function/likelihood with an L1 regularizer on the elements of vn.

min
V,Θ

∑
n

`(xn,Θvn) + α‖V ‖1 + βR(Θ)

Is this a good idea?



Sparse Factor Models: Bayesian approach with Laplace priors

Exponential family likelihood as before:
v1

xD

vK

x1 x2

...

...

θ     

xn ∼ Expon(Θvn)

Use conjugate prior for Θ, and Laplace prior on the elements of vn.

p(vnk|α) ∝ exp{−α|vnk|}

• Maximum a posteriori (MAP) in this model is equivalent to L1 regularization

• We also explore doing full Bayesian inference by averaging (over V , Θ, etc).

• Other variants are non-negative vnk etc...



Weak vs Strong Sparsity

• Weak Sparsity: L1, or priors that have high density at 0

• Strong Sparsity: L0, or priors that have probability mass at 0



Bayesian Sparse Factor Models: Spike and Slab Priors

Exponential family likelihood as before:

xn ∼ Expon(Θvn)

Use conjugate prior for Θ, and spike and slab prior on the elements of vn:

vnk = znkwnk znk ∼ Bern(πk) wnk ∼ Norm(µk, σ
2
k)

where znk is a binary indicator variable creating a spike (δ-function) at 0 with
probability πk, and wnk is drawn from a slab distribution.

The spike and slab distribution encourages strong sparsity in the factors.

How does this compare to L1 regularisation?



Inference and Learning

• Strongly Sparse Bayesian Model (Spike&Slab):
Inference is done via MCMC, combining:

– Slice sampling for Θ
– Gibbs sampling for π, µ, Σ
– and Laplace marginalisation of the slab distribution to sample Z

• Weakly sparse Bayesian models using Laplace (LXPCA) and Exponential non-
negative (NXPCA) priors:

– All variables are continuous so we use Hamiltonian Monte Carlo.

• Regularised L1 models (L1):

– cross validation to determine hyperparameters
– fast L1 projection method of Schmidt, Fung and Rosales (2007).



Bayesian Sparse Factor Models: Test Prediction Results
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(a)Data: artificial block images

Spike&Slab: Spike and slab with MCMC * (This paper)

L1: Optimization with cross validation *

bICA: Binary ICA (Kaban and Bingham 2006)

NXPCA: Non-negative exponential family PCA (MCMC) *

LXPCA: Laplace exponential family PCA (MCMC) *

BXPCA: Bayesian exponential family PCA (MCMC) (Mohamed et al 2008)

EPCA: Exponential family PCA (Opt) (Collins, Dasgupta, Schapire, 2002)



Bayesian Sparse Factor Models: Test Prediction Results

Table 1. Summary of real data used.
# Data N D Type

1 Natural scenes 10,000 144 Real
2 Animal attributes 33 102 Binary
3 Newsgroups 100 200 Counts
4 Hapmap 100 200 Binary



Bayesian Sparse Factor Models: Test Prediction Results

! " # $ % & ' !( !%

()"

()#

()$

()%

*
+
,
-

./0120345612758239

! " # $ % & ' !( !%
!((

"((

#((

$((

%((

&((

:((

'((

;
.
<

./0120345612758239

,=5>1?,@/A .! ;B<CD .B<CD EB<CD

Data: Binary human judgements of different animals

Spike&Slab: Spike and slab with MCMC * (This paper)

L1: Optimization with cross validation *

NXPCA: Non-negative exponential family PCA (MCMC) *

LXPCA: Laplace exponential family PCA (MCMC) *

BXPCA: Bayesian exponential family PCA (MCMC) (Mohamed et al 2008)

EPCA: Exponential family PCA (Opt) (Collins, Dasgupta, Schapire, 2002)



Bayesian Sparse Factor Models: Test Prediction Results
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Data: natural scenes dataset (real-valued)

SS: Spike and slab with MCMC * (This paper)

L1: Optimization with cross validation *

Laplace: Laplace exponential family PCA (MCMC) *



Bayesian Sparse Factor Models: Timing Results
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(c) Hapmap Data

K L1 Spike-Slab
5 475 ±36 1446 ±24
6 483±57 1418± 29
8 592±207 1400±18
10 934±440 1367±32

(d) Newsgroups sparsity
Figure 4. (a) - (c) Comparison of predictive probabilities (NLP). ‘S&S fixed’ is the time-matched spike-and-slab perfor-
mance (elaborated upon in sect. 7). (d) Num. of non-zeros in newsgroups reconstruction - the true number is 1436.

Note: optimization times include cross-validation for setting regularizers.



Bayesian Sparse Factor Models: The Big Picture
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Discussion

Modelling contribution

• A new general latent factor model for strongly sparse unsupervised learning based
on spike-and-slab priors and exponential family likelihoods

Algorithmic contribution

• An MCMC inference method for this model

Experimental contribution
Some potentially controversial conclusions of this work:

• Strong sparsity is useful in unsupervised learning; it may better approximate the
goal of L0 optimisation

• The Bayesian sparse model has much better test performance than
optimization/cross-validation L1 approach

• MCMC can be faster than optimisation (i.e. can get better predictive performance
given the same compute-time budget)

Thanks.
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Other Related Work

Lots!

• Spike and Slab Priors: (Mitchell and Beauchamp, 1988; Ishwaran and Rao,
2005)

• Feature selection, compressed sensing and regression using L1 norm: e.g.
Tibshirani (1996); dAspremont et al. (2005); Candes (2006); Lee et al. (2006).

• Bayesian sparse regression: Seeger. et al. (2007); Carvalho et al. (2010);
OHara and Sillanpaä (2009).

• Sparse PCA: (Zou et al., 2004; dAspremont et al., 2005; Rattray et al., 2009).

• Matrix factorisation: lots of papers!

• Sparse deep belief networks: Courville et al. (2010)
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Indian buffet process
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as his plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability mk/n, and trying a
Poisson(α/n) number of new dishes.

• The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)



Properties of the Indian buffet process

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0Kh!

∏
k≤K+

(N −mk)!(mk − 1)!

N !

Shown in (Griffiths and Ghahramani 2006, 2011):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α logN).
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• Has a stick-breaking representation (Teh, et al 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

• More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh

and Görür 2010)



Posterior Inference in IBPs

P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)

Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k
N

• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to
sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =
∫
P (X|Z, θ)P (θ)dθ cannot be computed,

requires sampling latent θ as well (e.g. approximate samplers based on (Neal 2000)

non-conjugate DPM samplers).

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)

see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)



The Big Picture:
Relations between some models

finite 
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