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ABSTRACT

In this paper we discuss modifications to tracking models,
and sequential Monte Carlo algorithms for their estimation
from sequential and batch data. New models for tracking
are proposed which involve a dynamical model on both the
hidden state value and its arrival times. In this way we aim
to have a more flexible and parsimonious representation of
time-varying state characteristics which is more amenable
to estimation using Bayesian filtering. In order to perform
inference in this scenario new particle filters and smoothers
are proposed for cases where the state process arrives at
unknown times that are generally different from the obser-
vation arrival times.

1. INTRODUCTION

In tracking problems it is often required to adapt the pa-
rameters of the model automatically to the characteristics
of the target. In particular, targets wishing to evade detec-
tion may adopt unpredictable behaviour, exhibiting both
fast and slow manoeuvres, see for example figure 1 in which
we see both sharp turns and long straight sections. In clas-
sical filtering methods it is typically hard to find approaches
robust enough to track the variable characteristics of a tar-
get with time. In model-based filtering it is possible to
capture the time-varying nature of a target if the models
are sufficiently flexible. However, this can lead to relatively
complex models that might be seen as overparameterised.

Here we propose a departure from the standard state-
space modelling approach to the problem in which the mod-
els are re-expressed in terms of a random time-arrival pro-
cess for new states, which is in general different from the
(known) arrival rate of the data. In this way we hope to
be able to track rapid manoeuvres with many state values,
while smoother trajectories are modelled with only a few
state values - see figure 1. A dynamic model is thus spec-
ified for both the time arrivals of new states and the state
values at those times. Since the observed data are mea-
sured on a different time grid from the states, the likelihood
function for data given states is specified in a special way
which depends on states in a local time region surrounding
each data point. A simple example of this involves a lo-
cal polynomial or spline fit through the state values, with
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likelihoods evaluated at the interpolated values of the state
process corresponding to the arrival time of each data point.

The models are necessarily of variable dimension, since
it is not known a priori how many state values will occur
within a given time interval. We discuss new sequential
Monte Carlo (‘particle filtering’) methods [1–3] for infer-
ence in this modified state-space framework, including both
forward filters for the purely on-line setting and backward
smoothers for retrospective inference about a target trajec-
tory.

By expressing the state process in a more parsimonious
manner, we aim to achieve more efficient algorithms with
less degeneracy than particle filters applied to standard
state-space models. In a related problem from audio pro-
cessing an early version of the models, with state process on
a fixed grid of time values, has already shown some signifi-
cant improvements in estimation accuracy and reduction of
degeneracy over the standard approaches [4, 5]. In applica-
tions to kernel regression [6, 7] the new sequential variable
dimension methods have shown promise compared to stan-
dard batch-based approaches.

2. VARIABLE-DIMENSION STATE-SPACE
MODELS

The modified state-space model is specified in terms of a
random state arrival process:

τk ∼ f1(τk|τk−1)

and corresponding parameter values:

θk ∼ f2(θk|θk−1, τk, τk−1)

Or, with xk = [θk, τk],

xk ∼ f(xk|xk−1)

Then, a likelihood model must be specified for the ob-
servations. However, this is not immediate since data points
are on a different time scale to observations. Each observa-
tion yt is now assumed to depend on a local neighbourhood
Nt of θk and τk values:

yt ∼ g(yt|{θk, τk; k ∈ Nt})

The model is illustrated in figure 2, in which a neighbour-
hood Nt of two adjacent states is assumed. One of the
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Fig. 1. Example: non-uniform time-sampling.
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Fig. 2. Variable rate parameter process.

simplest realisations of this process is a linear interpola-
tion in which the two closest τk values either side of t are
used to interpolate an intermediate state value, so that
Nt = {τk, τk−1} and

φt = θk +
t− τk−1

τk − τk−1
(θk − θk−1)

Here τk and θk are respectively the k-th abscissa and ordi-
nate values. Then, for example, we can choose g(yt|θNt) =
g(yt|φt) = N (φt, σt), where N () is the normal distribu-
tion. In more sophisticated settings splines or other smooth
regression functions can be adopted for the interpolation,
leading to a more complex neighbourhood Nt.

2.1. Filtering for the variable-dimension case

As for standard state-space models, Bayesian filtering algo-
rithms can be based on recursions which update the poste-
rior distribution at time t to that at time t + 1. A conve-
nient way to express this recursion in the non-uniform time-
sampling case is in terms of a ‘long’ sequence of states x1:K ,
where K is considered to be countable but beyond the time
horizon of the current time point t. This artifice is helpful
in the derivation in that it maintains a fixed-dimension tar-
get distribution, for which standard importance sampling
ideas are readily understood. An alternative derivation in-
volves a dual-space idea to extend the parameter space to
constant dimensionality [6, 7].

First consider the posterior distribution at time t − 1
for the time sequence of states x1:K :

p(x1:K |y1:t−1) = p(x1:max(Nt−1)|y1:t−1)

× f(xmax(Nt−1)+1:K |xmax(Nt−1))

and its update to time t:

p(x1:K |y1:t) ∝p(x1:max(Nt−1)|y1:t−1)

× f(xmax(Nt−1)+1:max(Nt)|xmax(Nt−1))

× p(yt|xNt)× f(xmax(Nt)+1:K |xmax(Nt))

Here, max(Nt) denotes the member of Nt having the largest
time index. Note also that the terms of the general form
‘f(xk+1:k+l|xk)’ in these expressions indicate the state tran-
sition probability for a collection of adjacent states, which
can be computed from the single time state transition den-
sities as follows:

f(xk+1:k+l|xk) =

k+l∏

j=k+1

f(xj |xj−1)

The ratio of these posterior distributions is then given
by

ρt =
p(x1:K |y1:t)

p(x1:K |y1:t−1)
∝ g(yt|xNt)

since

f(xmax(Nt−1)+1:K |xmax(Nt−1))

= f(xmax(Nt−1)+1:max(Nt)|xmax(Nt−1))

× f(xmax(Nt)+1:K |xmax(Nt−1))



This simple result, which parallels that for the uniform
time-sampling case, leads to a practical ‘bootstrap’ style
algorithm [1] for Monte Carlo filtering in the non-uniform
time-sampling case. The principle of it is as follows.

• Assume that at time t we have a collection of state
sequences, or ‘particles’ {x(i)

1:K}N
i=1 each drawn from

the posterior distribution p(x1:K |y1:t). Since K is be-
yond the feasible time horizon of states at time t, it is

possible to evaluate the likelihood function g(yt|x(i)
Nt

)

from a valid neighbourhood of states x
(i)
Nt

in each par-
ticle.

• Now consider updating the particles to time t+1 with
the introduction of a new data point yt+1. Consider
p(x1:K |y1:t), from which we have N (approximate)

draws x
(i)
1:K , to be an importance function for the new

posterior distribution p(x1:K |y1:t+1). The importance
weight for the ith particle is thus given by:

w
(i)
t+1 =

p(x
(i)
1:K |y1:t+1)

p(x
(i)
1:K |y1:t)

∝ g(yt+1|xNt+1)

• Notice however that the importance weight does not
depend on any states outside of the neighbourhood
Nt+1. This is the key to a practical implementation
scheme, since states beyond Nt+1 need not be gen-
erated at all: we simply need to maintain sufficient
state values at each time t to complete a valid neigh-
bourhood Nt for the computation of the likelihood
g(yt|xNt).

• As for the standard particle filter, the scheme may
be modified to incorporate an alternative importance
function [2, 3], say q(xt|xt−1), which may also depend
on the observed data. The derivation for the vari-
able data-rate particle filter can be modified fairly
straightforwardly to incorporate this case, and the
importance weights then become:

w
(i)
t+1 ∝

g(yt+1|xNt+1)f(xmax(Nt)+1:max(Nt+1)|xmax(Nt))

q(xmax(Nt)+1:max(Nt+1)|xmax(Nt))

• We have considered particles which are unweighted at
time t, i.e. resampling is assumed at every time step.
This would not make sense for many variable rate
models and we would recommend resampling much
more infrequently. In this case the weights are ac-
cumulated as for the standard particle filter at time
steps where resampling has not occurred.

Thus a simple filtering scheme can be summarised as
follows:

1. Initialize a collection of particles at time t = 0. The
procedure involves drawing from the initial distribu-
tion f(x0) and then the transition distribution f(x1|x0),
f(x2|x1) etc. until each particle contains a valid neigh-
bourhood of time indices N0. Set the initial weights

to w
(i)
t = 1/N .

2. Then, for t = 1 to ..., and i = 1 to N
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Fig. 3. Example: linear interpolation in 1D. (Top) Sinus
curve and linear interpolator. (Bottom) Empirical segment
length-curvature distribution.

• Sample

x
(i)

max(Nt−1)+1:max(Nt)

∼ f(xmax(Nt−1)+1:max(Nt)|x(i)

max(Nt−1))

Important note: this step involves drawing a
random number of states xk, continuing until a

valid neighbourhood N (i)
t is obtained for time

t.

• Calculate weight:

w
(i)
t ∝ w

(i)
t−1 × p(yt|x(i)

Nt
)

• (Optional) - resample particles with replacement

according to weights w
(i)
t , setting w

(i)
t = 1/N .

To conclude this section we show some results in figures
3 and 4 of applying the filtering algorithm to the problem of
linear interpolation in one and two dimensions, respectively.
More knot points are allocated to areas of high curvature,
whereas areas of low curvature are associated with longer
segments. This is further exemplified by the empirical seg-
ment length-curvature distribution in the bottom of figure
3 that clearly shows that short segments are relatively in-
frequent and mostly associated with high curvature regions,
while in contrast longer segments occur in higher frequency,
and are almost uniquely confined to regions of low curva-
ture.

2.2. Monte Carlo Smoothing

A Monte Carlo backwards smoothing procedure similar in
principle to [8–10] can be devised for the variable dimension
problem. Although the forward filtering procedure gener-
ates in principle a smoothed set of state trajectories, the



Fig. 4. Example: linear interpolation in 2D.

inherent degeneracy in forward filtering procedures can be
reduced by backwards smoothing. In essence we are able to
generate new trajectories that allow cross-over between the
trajectories stored in the filtering pass. Specifically, we need
to store, for each time t, the local neighbourhood of state

values in each particle, {x(i)
Nt
} ∼ p(xNt |y1:t). The idea pro-

ceeds as follows. We can write the distribution of a state
from time just prior to Nt+1 conditional on future states
and all data y1:T as:

p(xmin(Nt+1)−1|xmin(Nt+1):K , y1:T )

∝ p(xmin(Nt+1)−1|y1:t)

× p(xNt+1 |xmin(Nt+1)−1)p(yt+1|xNt+1)

∝ p(xmin(Nt+1)−1|y1:t)

× p(xmin(Nt+1)|xmin(Nt+1)−1)

This indicates how to generate smoothed trajectories based
on the stored ‘filtering’ densities p(xNt |y1:t), as follows,

• Sample x̃NT from the final output of the particle fil-
tering distribution at time T

• For t = T − 1 to 1:

– Choose x̃Nt = x
(i)
Nt

with probability

∝ p(x̃min(Nt+1)|x(i)

min(Nt+1)−1)

• Finally, the sampled sequence x̃1:max(NT ) is a random
sample from p(x1:max(NT )|y1:T )

3. CONCLUSION

We have presented models and algorithms for tracking in
environments where targets can be expected to have a high
degree of mobility and time-varying characteristics. New
particle filtering and smoothing algorithms have been pro-
posed for Monte Carlo inference in such settings. Further
work will present detailed simulation in realistic tracking
settings, compared with the rather artificial settings pre-
sented here.
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