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Overview

As tasks in signal processing inference become more complex and subtle, it

becomes appropriate to adopt compute-intensive methodologies

Consider here Monte Carlo methods for inference in (principally) Bayesian

probabilistic settings

In particular | will describe Sequential Monte Carlo methods, or particle

filters for non-linear, non-Gaussian settings.

These find application in numerous sequential settings: tracking, computer

vision, speech and audio, robotics, financial time series, ....
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Monte Carlo Methods
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Monte Carlo Methods

In the Monte Carlo method, we are concerned here with estimating the
properties of some highly complex probability distribution p(z), e.g.

expectations:
EX = /h(x)p(m)daz

where h(.) is some useful function for estimation.



In cases where this cannot be achieved analytically the approximation problem
can be tackled indirectly, as it is often possible to generate random samples

from p(z), i.e. by representing the distribution as a collection of random points:
£ =1,.. N, for large N
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In cases where this cannot be achieved analytically the approximation problem

can be tackled indirectly, as it is often possible to generate random samples

from p(z), i.e. by representing the distribution as a collection of random points:
@, =1,.., N, for large N

We can think of the Monte Carlo representation informally as:

1 — .
p(x) =~ = Z §(z — ')
i=1

Then the Monte Carlo expectation falls out easily as:

N N
EX = /h(w)p(a:)dx = /h(a:)% Zd(w — :E(i))div = %Zh(x(i))



Alternatively, suppose we draw the random samples z(¥) from a distribution
g(x) instead of p(xz). Now the expectation can be estimated using importance

sampling:
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Alternatively, suppose we draw the random samples z(¥) from a distribution
g(x) instead of p(xz). Now the expectation can be estimated using importance

sampling:

N
EX = /h(w)p(x)dw z/h(:c)q<xz];§x)d:c %/ —i)% 25 z — ) dz
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Alternatively, suppose we draw the random samples z(¥) from a distribution
g(x) instead of p(xz). Now the expectation can be estimated using importance

sampling:

N
EX = /h(w)p(x)dw z/h(:c)q<xz];§x)d:c %/ —i)% 25 z — ) dz

p(z)
g(z()

Is the importance weight and we can think informally of

where w(®)

p(z) as
N o N
p(x) ~ Zw(z)d(x — 2\, Zw(z) =1
=1 1=1
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There are numerous versions of Monte Carlo samplers, including Markov chain

Monte Carlo, simulated annealing, importance sampling, quasi-Monte Carlo, ...
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There are numerous versions of Monte Carlo samplers, including Markov chain

Monte Carlo, simulated annealing, importance sampling, quasi-Monte Carlo, ...

Here we limit attention to Sequential Monte Carlo methods, which are proving

very successful for solving challenging state-space modelling problems.
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State space models, filtering and smoothing

We will focus here on a broad and general class of models. Examples include:

e Hidden Markov models
e Most standard time series models: AR, MA, ARMA,...

e Special models from tracking, computer vision, finance, communications,

bioinformatics, ...
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State space models, filtering and smoothing
We will focus here on a broad and general class of models. Examples include:
e Hidden Markov models
e Most standard time series models: AR, MA, ARMA, ...

e Special models from tracking, computer vision, finance, communications,

bioinformatics, ...

Summarise the statistics as a probabilistic ‘state space’ or ‘dynamical’ model

with unknown states z; and observations ;:

Ter1~f(xi1|Ty) State evolution density

Y+ 1~9(Yer1|Ter1) Observation density

16



yt- 1 yt yt+ 1 yt+2

yt—'] =g (yt—'l |Xt— 1) yt ~9 (ytlxt) y‘t+1 ~J (yt+'| |Xt+1) yt+2 el (yt+2lxt+2)

X
-1 X, Xis1 Xi2

Xt = f(xtlxt_»l) Xt+1 & f(xt+1 |X‘t) Xt+2 & f(xt+2lxt+1)
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Estimation tasks

Given observed data up to time ¢:

A
Yot = (Y0, -+ i)

Wish to infer the ‘hidden states’:

18



Specifically:

e Filtering:

Wish to estimate p(x;|yo.;) itself or expectations of the form

h = Eh(w) = [ he)p(ailyn) o

e.g. h(x;) = x; - posterior mean estimation (MMSE estimator)
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Specifically:
e Filtering:

Wish to estimate p(x;|yo.;) itself or expectations of the form

h = Eh(w) = [ he)p(ailyn) o

e.g. h(x;) = x; - posterior mean estimation (MMSE estimator)

e Smoothing (‘fixed lag’):
p(xt—L|y0:t)
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Specifically:

e Filtering:

Wish to estimate p(x;|yo.;) itself or expectations of the form

F — Eh(z,) — / h(z)p(zelyos ) dzs

e.g. h(x;) = x4 - posterior mean estimation (MMSE estimator)

e Smoothing (‘fixed lag’):
p(w—r|Yo:t)

e Smoothing (‘fixed interval’):

Estimate entire state sequence given all data:

p(xo.1|Yy0:T)

21
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Filtering

At time t, Suppose we have p(x¢|yo.r) but wish to find p(xir1|yo:sr1). In

principle we can use the filtering recursions:

Prediction step:
p($t+1\y0:t) — /p(ivtawtﬂ\yo:t)dﬂ?t
— /p(ft\yom)p(xtﬂ\xt,yo:t)dﬂﬂt

= /p(ifit\yo:t)f(ﬂﬂtﬂ\i’?t)dﬂct
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Filtering

At time ¢, Suppose we have p(z;|yo..) but wish to find p(z;11|yo.e41). In

principle we can use the filtering recursions:

Prediction step:
p($t+1\y0:t) = /p(xtaxtﬂ\yo:t)dﬂ?t
- /p(xt\yozt)p(ivtﬂ\%t,yo:t)dﬂ?t

_ / ol e o)

Correction step (Bayes' Theorem):

g(yer1|mer1)p(Tea1|yoe)
p(yt+1\y0:t)

p($t+1|y0:t+1) —

24



The sequential scheme is as follows:

Time t—1 t t+1
Data Yt 1 Yt Yi+1
Filtering | p(x¢—1|yo:¢—1) p(T¢|Yo:t) P(Tt+1|Y0:¢41)
Prediction (¢ |yo.e—1) p(xe41|Yo:t)

However, in the general case the integral is intractable and approximations

must be used. (x; high-dimensional, f(), g() non-Gaussian, ...)
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Sequential Monte Carlo (SMC) - the Particle filter

A generic solution involves repeated importance sampling/resampling
sequentially through time (particle filter) (see e.g. Gordon et al. 1993 (IEE),
Kitagawa 1993 J. Comp.Graph. Stats., Doucet Godsill Andrieu 2000 (Stats.
amd computing), Liu and Chen 1997 (JASA)).

The SMC scheme mimics the filtering recursions as follows:
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Sequential Monte Carlo (SMC) - the Particle filter

A generic solution involves repeated importance sampling/resampling
sequentially through time (particle filter) (see e.g. Gordon et al. 1993 (IEE),
Kitagawa 1993 J. Comp.Graph. Stats., Doucet Godsill Andrieu 2000 (Stats.
amd computing), Liu and Chen 1997 (JASA)).

The SMC scheme mimics the filtering recursions as follows:

e Suppose we have available a collection of samples, or ‘particles’ drawn

randomly from the filtering density at time ¢:

xi(fZ) ~ p(xt‘y():t>7 1=1,..., N (N Iarge)
l.€.
| — .
platlyor) = 5 Y 8z —z;")
1=1
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e Substitute this into the prediction equation:

p($t+1|y0:t) — /p(ﬂﬁt\ZJo:t)f(thrl\iI?t)dﬂ?t

N
1 i
< [ 3 X 8o = ol (s on) o
1=1

1 & .
=~ Z f (@]
1=1
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e Substitute this into the prediction equation:

p($t+1|y0:t) — /p(ﬂﬁt\ZJo:t)f(thrl\iI?t)dﬂ?t

N
1 i
< [ 3 X 8o = ol (s on) o
1=1

1 & .
=~ Z f (@]
1=1

e Then perform the correction step using Bayes' theorem:

1 g(yet1|Tiq1) Ez’]\;1 f($t+1\$§i)))

p(xt_|_1‘y0:t—|—1) ~ N p(yt+1|y0°t)
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e SMC is a collection of methods for drawing random samples from the
above Monte Carlo approximation to p(z¢+1|vyo.¢+1), i.e. producing a new

set of random draws:

ﬂ?gﬁl ~ p(Ti11]Yo:t+1), 1=1,..,N (N large)
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e SMC is a collection of methods for drawing random samples from the
above Monte Carlo approximation to p(z¢+1|vyo.¢+1), i.e. producing a new
set of random draws:

ﬂ?gﬁl ~ p(Ti11]Yo:t+1), 1=1,..,N (N large)

e There are many variants on schemes to achieve this (Bootstrap filter
(Gordon et al. 1993, Sequential Importance sampling, (Doucet Godsill
Andrieu (2000), Liu and Chen (1997)), Auxiliary Particle filters (Pitt and
Shephard (1998)), etc.
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A Basic Particle Filter
The first step initialises the initial states of the filter at ¢ = 0:

xéz) ~ p(xolyo), 1 =1,2,...., N

where it is assumed that this draw can be made easily (use MCMC or static IS
if not).

Then, for t=0,1,2,...

32



e At time ¢, have

N

p(ze|yo:t) = p(rt|yo:t) = wat (¢ — :ct ), ngz) =1

1=1
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e At time ¢, have

p(welyot) = p(we|yo:t) Z ’wt O(xy — SCt ), Z W

1=1

e Fore=1,..,N:

34
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e At time ¢, have

N
p(zt|Yo:t) = P(wt|yo) = Zwt (21 — 5Ct ), wa) =1
i=1
e Fore=1,..,N:
(1) (4)
Ty i1 ~ q(Ter1]zs”)
Update the importance weight:
(4) (i) gy lod ) f (@) o)

wt—|—1 X wt i i
a(zl), 2
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e At time ¢, have

N

p(ze|yo:t) = p(rt|yo:t) = wat (zx — z; )), ngi) =1

1=1
e Fore=1,..,N:
i)y ~ qzes|z)

Update the importance weight:

(4) <z’>9(yt+1\$§21)f (wﬁﬂx?))
W1 & Wt @) (.00
Q(xt—l—l‘xt )

(4)

e Optionally, resample {wgﬂzl} N times with replacement using weights w,/;,

and then resetting w§21 =1/N.

36



Example: standard nonlinear model

= A(mt-1) + vy
. Lt—1

1+ x%_l

It (l‘t

Lt—1

2

Yy = B(xy) + wy
(24)*

= g0 T W

+ 25

+ 8 cos(1.2t) 4+ vy

where v; ~ N (0,02) and w; ~ N(0,02).
This may be expressed in terms of density functions as:

f(@i|ze) = N (@eg1|A(we), 0p)
g9(yelze) = N (3| B(we), o)



PX,1¥.)

N\

1. PREBDICT

)] (i
X1~ q(x 1+1 |Xt

vy L i i ] i
Wt+1ocgyt+1lxt+1)( L L N b

)

|
E

E AMPLE P t+1| 0:t+1

P(X11Yo.

/




Smoothing with particle filters

[Work with Arnaud Doucet, Mike West and William Fong, see Godsill, Doucet
and West JASA (to appear), Fong, Godsill, Doucet and West (IEEE SP 2002)]

e |t is possible to extend the particle framework to provide smoothing as well
as filtering. Smoothing is very useful in problems where batch processing is

required, or some ‘lookahead’ Is allowable in the system.
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Smoothing with particle filters

[Work with Arnaud Doucet, Mike West and William Fong, see Godsill, Doucet
and West JASA (to appear), Fong, Godsill, Doucet and West (IEEE SP 2002)]

e |t is possible to extend the particle framework to provide smoothing as well
as filtering. Smoothing is very useful in problems where batch processing is

required, or some ‘lookahead’ Is allowable in the system.

e \We will consider the fixed interval problem (‘batch’ processing), i.e.

estimation of:

{.CI?(), L1, T2, ...,CL‘T} from {yo, Y1, Y2, ... ,yT}

Fixed lag and other versions can be obtained by suitable modifications to

the algorithms.

40



e First, assume that particle filtering has been done for t = 1,2, ..., T, leading

to

p(z¢|yo:t) =~ Zwt :I:t—a:t)), t=20,1,2,....)7T

41



e First, assume that particle filtering has been done for t = 1,2, ..., T, leading

to

p(z¢|yo:t) =~ Zwt :I:t—a:t)), t=20,1,2,....)7T

e Now factorise the smoothing density as follows:

T

p(zo.r|Yo:r) = H p(z¢|Ter1:1, Yo )
t=0

where, by the assuptions of the Markov state-space model:

p(ﬂﬁt\iﬂtH:T, yO:T) X p($t\y0:t)f($t+1\$t)
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e First, assume that particle filtering has been done for t = 1,2, ..., T, leading

to

p(z¢|yo:t) =~ Zwt :I:t—a:t)), t=20,1,2,....)7T

e Now factorise the smoothing density as follows:

T

p(zo.r|Yo:r) = H p(z¢|Ter1:1, Yo )
t=0

where, by the assuptions of the Markov state-space model:

p(ﬂﬁt\iﬂtH:T, yO:T) X p($t\y0:t)f($t+1\$t)

e This factorisation allows construction of an algorithm operating in the

reverse time direction t =1.7T —1,...,0.

43



Algorithm: Particle smoother

e Draw 7 ~ p(iET‘yO:T)

o Fort=T —1 to 1:

o Calculate w§|it)+1 X wgi)f(it_|_]_‘$l(€i)) fori=1,...
o Choose z; = x%i) with probability wgft)ﬂ
e End

44



Algorithm: Particle smoother

e Draw 7 ~ p(iET‘yO:T)

o Fort=T —1 to 1:

o Calculate w§|it)+1 X wgi)f(it_|_]_‘$l(€i)) fore=1,....N
o Choose z; = x%i) with probability wgft)ﬂ
e End

The sequence
(%O, 517 000 ,ZET)
Is then an (approximate) random draw from

T

p($O:T‘yO:T) — Hp(xt‘xt—I—l:Ta yO:T)
t=0

45



Repeated application allows Monte Carlo estimation of the smoothed state

sequence.

Variants on the algorithm also allow MAP smoothing, see Godsill, Doucet and

West 2001 (Ann. Inst. St. Math.)
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Example - the nonlinear model
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Example - the nonlinear model
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Example - a nonlinear TVAR model for non-stationary speech

Signal process {z;} generated as standard Time-varying autoregression:

50



Example - a nonlinear TVAR model for non-stationary speech

Signal process {z;} generated as standard Time-varying autoregression:

P
2
f(zlzt-1:4-p, ar,0¢,) = N (Z Oti%ct—is 06t>

1=1

g(yt‘xtv OUt) =N (xtv O-gt)
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Example - a nonlinear TVAR model for non-stationary speech

Signal process {z;} generated as standard Time-varying autoregression:

P

2
fztlzt-14-p, at,0¢,) = N Z Ut ict—is Te,

1=1

g(yt‘xtv OUt) =N (xtv O-gt)

o a; = (at1,at2,...,a¢,p) is the P™ order AR coefficient vector

2

e 0., Is the innovation variance at time ¢.

2

e 0, Isthe observation noise variance.

e a; Is assumed to evolve over time as a dynamical model. We choose a

nonlinear parameterisation based on time-varying lattice coefficients
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1 : ; ! L—
0 1000 2000 3000 4000 5000 6000 7000 8000 89000 10000
t

Figure 1: Speech data. 0.62s of a US male speaker saying the words
"...rewarded by...". Sample rate 16kHz, resolution 16-bit, from the
TIMIT speech database
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920 940 960 980 1000 800 820 840 860 880 900 920 940 960 980 1000
t

Figure 2: Noisy speech, t=801,...,1000, and smoothed realisations
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i i

Figure 3: 10 realizations from the smoothing density for the TV-PARCOR
coefficients (LHS) compared with standard trajectory-based method

(RHS).
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Several improvements to the basic smoothing method have been developed
(Fong, Godsill, Doucet and West (2002)), motivated by the TVAR application:

e Block-based smoother - smoothing performed in small batches of NV data
points. Saves on memory requirements and suits applications where data
arrive sequentially in batches.

e Rao-Blackwellised smoothing. As with Monte Carlo filtering, improvements
are achieved if some states are marginalised. The Monte Carlo smoother
formulae are modified appropriately.
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Multirate and trans-dimensional particle filters

Work with William Fong, Jaco Vermaak and Arnaud Doucet
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Multirate and trans-dimensional particle filters

Work with William Fong, Jaco Vermaak and Arnaud Doucet

e In this work particle filters are extended to cases where the state process

arrives at a different rate to the observation process
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Multirate and trans-dimensional particle filters

Work with William Fong, Jaco Vermaak and Arnaud Doucet

e In this work particle filters are extended to cases where the state process

arrives at a different rate to the observation process
e This allows for dynamical model selection within the SMC framework

e Motivated by examples in radar tracking, Bayesian curve fitting, audio
parameter modelling, musical beat tracking and statistical learning theory
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We now construct a modifed dynamical model having random time indices:

Tk ~ f1(7k|TK_1)

and corresponding parameter values:

Or ~ f2(0k|0k—1)
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We now construct a modifed dynamical model having random time indices:

Tk ~ f1(7k|TK_1)

and corresponding parameter values:
O ~ f2(0k|0k—1)

Each observation y; now depends on a local neighbourhood N; of 6, values:

yr ~ g(ye|{Ok; k € Ny)

59
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e An effective particle filter and smoother can be derived and generalised
further for this more sophisticated setting - the trans-dimensional particle
filter - see Vermaak, Godsill and Doucet - poster this morning

e Results so far encouraging for applications in TVAR speech modelling,

Bayesian curve-fitting and statistical learning theory
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Example: musical beat tracking

[work with Tai Lam]

e Musical beat is to be estimated from detected ‘onset times’ from a musical
audio track - formulate as a binary observation process (no amplitude

information used here):

)
ys = 1 Candidate onset detected at frame ¢

Yt = 0 No detection at frame ¢
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Example: musical beat tracking
[work with Tai Lam]

e Musical beat is to be estimated from detected ‘onset times’ from a musical
audio track - formulate as a binary observation process (no amplitude

information used here):

)
ys = 1 Candidate onset detected at frame ¢

Yt = 0 No detection at frame ¢
e Model times of successive beats in the audio using a variable rate process:
T = h(Tk—1, Tk—2) + vk

where h() gives the next predicted beat time in terms of the previous two,

and v 1s a random disturbance.
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e Connect {y;} and 74 via a Bernoulli likelihood function:
y; ~ Bernoulli(a({7x; k € N¢}))

Here N, contains the two closest beat times to the current frame t.

T
Probability of detection
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This is a very simplified model that works nicely on straightforward data. For
more elaborate and robust particle filter models, see the work of Robin Morris

or Steve Hainsworth.
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Example: TVAR speech modelling

[work with William Fong]

e In many modelling scenarios some or all parameters are expected to be
slowly and smoothly varying with time - e.g. in the TVAR speech audio
model, the AR coefficients a;; vary much more slowly and smoothly than

the signal z; and observation ;.
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Example: TVAR speech modelling
[work with William Fong]

e In many modelling scenarios some or all parameters are expected to be
slowly and smoothly varying with time - e.g. in the TVAR speech audio
model, the AR coefficients a;; vary much more slowly and smoothly than

the signal z; and observation ;.

e In a ‘standard’ modelling setup these STV parameters might be modelled
by a random walk with very low variance (or some higher order [smooth]
difference equation). This can lead to computational and numerical

problems.
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Example: TVAR speech modelling
[work with William Fong]

e In many modelling scenarios some or all parameters are expected to be
slowly and smoothly varying with time - e.g. in the TVAR speech audio
model, the AR coefficients a;; vary much more slowly and smoothly than

the signal z; and observation ;.

e In a ‘standard’ modelling setup these STV parameters might be modelled
by a random walk with very low variance (or some higher order [smooth]
difference equation). This can lead to computational and numerical

problems.

e This can be ‘fixed’ by inflating the variance of the random walk model, but
then sampled parameter traces vary too rapidly and model short term

signal fluctuations rather than overall parameter trends.
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e \We propose the alternative approach using the multirate state space model

and particle filter, in which some parameters vary on a different time-scale
to others in the model (see Fong and Godsill ICASSP (2002)).
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Multirate TVAR models

The model now contains two dynamic parameters: 6, the AR coefficients and z,

the signal. 0 is parametrised on a time grid K times coarser than z:
0r ~ f(0,10-—1) b = he({0r; 7 € Ni})
2t ~ f(zt]2t-1, ¢1)

yr ~ g(ye|zt, Pr)

Here h;() is some suitably smooth interpolation function which interpolates
intermediate ¢; values from a local neighbourhood of coefficients 6. We have

used linear interpolators and spline interpolators, but many other possibilities.
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Experimental Results

S1: Good service should be rewarded by big tips
e Speech Data:

S2:  Draw every outer line first, then fill in the interior

Clip  Input SNR Proposed Extended Kalman filter/smoother

S1 0dB 3.86dB 1.92dB
S1 10dB 2.54dB 0.99dB
S1 20dB 1.08dB 0.87dB
52 0dB 4.31dB 2.21dB
52 10dB 2.80dB 1.57dB
52 20dB 1.35dB 1.09dB
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Plot of time-varying posterior distribution for p; 4
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Oustanding Challenges

e The particle filter/smoother plus its adaptations, make a powerful,

computationally intensive, suite of methods for inference in large datasets.
e Fixed parameter problems p(x¢|6,yo.;) are an on-going challenge

e |arge scale problems with many objects, parameters...
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