
Bayesian harmonic models

for musical signal analysis

Simon Godsill and Manuel Davy

June 2, 2002

Cambridge University Engineering Department and

IRCCyN – UMR CNRS 6597

The work of both authors was partially supported by the EU project MOUMIR



Bayesian music models: Motivation

A typical musical signal and its spectrogram (solo flute):
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The aim is to perform inference about the high level structures in music from

the waveform alone:

• Musical pitch

• Instrument classification

• Timbre

• Signal separation

• ...many other possible inferences depending on the application ...

These are all probabilistic questions that are naturally formulated in a Bayesian

framework.

The problem is substantially more complex in the many instrument, or

‘polyphonic’, case:
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1. Music modelling issues

In my opinion the two key (interconnected) modelling issues for music are:

• Contextual modelling - i.e. the likely sequence of notes (nt), both over time

and within chords at fixed times. This is naturally a Bayesian prior model:

P (n1:t) = P (n1:t) =
∏

τ=1:t

P (nτ |n1:τ−1)

[not necessarily Markovian]
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• Accurate low level signal modelling. This involves a careful consideration of

the physical sound generation mechanism and is ideally based on physical

prior models of musical sound generation.
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2. Other approaches: Literature review

• There is a large literature on the various aspects of this topic, beginning

around 1975 (J.A. Moorer, Stanford). Most approaches are ‘non-statistical’,

and nearly always not model-based. Most only apply to single-note

(monophonic) data. Many are applied for specific instruments only.

• Typically features are extracted from the data, such as peaks in the

spectrogram. Then grouping into notes is performed and finally some note

consistency over time is enforced.

• Statistical approaches are rare, especially Bayesian, and there is no fully

Bayesian approach to the problem to our knowledge (Kashino et al.

(1993/1995/1999), Sterian et al. (1996-1999), include probabilistic models

for aspects of the problem, Klapuri et al. (1996-2002) provide ML-based

methods)

8



• In our view, the problem is sufficiently complex and rich in prior structure

that a fully Bayesian approach to both context and detailed signal

modelling are likely to yield best results.

• Here we concentrate on accurate Bayesian musical signal modelling,

developing on our earlier Bayesian models - Walmsley, Godsill and Rayner

(1998,1999).
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3. Bayesian Harmonic models for music:

⇒ Short-time Fourier Spectrum of a single note (flute)
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Harmonic modelling of music: Simplistic model

⇒ Spectrum of a single note (flute)

=⇒ A simple one-note model:

yt =
M∑

m=1

αm cos[mω0t] + βm sin[mω0t] + vt (1)

with

• ω0 is the Fundamental frequency

• M is the total number of partials (m is the harmonic number)

• αm and βm are the partial amplitudes
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The simplistic model is highly idealised, accounting only for a single note in a

steady state (periodic) regime.

Amongst other things, it does not account for:

1. Time variations in fundamental frequency ω0

2. Amplitude variations with time

3. Residual noise

4. Inharmonicity of partials (real instruments do not generate periodic

waveforms)
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A more general model which captures some of these effects is:

yt = vt +
M∑

m=1

αm,t cos((m + δm)ω0,tt) + βm,t sin((m + δm)ω0,tt)

Such a general model is highly intractable and requires a very careful

construction of the dynamics of the individual components (regularisation) to

avoid frequency/amplitude ambiguities. We can, however, go some way towards

the general case without losing tractability altogether, specifically:
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yt = vt +
M∑

m=1

αm,t cos [(m + δm)ω0t] + βm,t sin [(m + δm)ω0t]

with

• αm,t projected onto smooth basis functions φi,t, αm,t =
I∑

i=1

am,iφi,t

• δm is aimed at modelling inharmonicity (de-tuning)

• ω0 fixed over the (short) time-frame

• vt is a correlated residual noise, modelled as an autoregressive Gaussian

process

vt = γ1vt−1 + γ2vt−2 + . . . + γpvt−p + εt

with εt ∼ N (εt; 0, σ2
ε )

14



Harmonic modelling of music: A realistic model

⇒ Extension to several notes

yt =

vt +
K∑

k=1

Mk∑
m=1

αk,m,t cos [(m + δk,m)ω0,kt] + βk,m,t sin [(m + δk,m)ω0,kt]

with K the total number of notes

15



Probabilistic model: Posterior distribution

⇒ Based in this model, we can we can contruct the posterior distribution

p(θ,ω0, δ,γ, σ2
ε ,M,K|y) ∝ p(y|θ,ω0, δ,γ, σ2

ε ,M,K)

× p(θ|ω0, δ, σ2
ε ,M,K) p(δ|ω0,M,K)

× p(M|ω0,K) p(α) p(ω0|K) p(σ2
ε ) p(K)

where the priors contain our prior knowledge about the musical parameter

values (most are physically interpretable)

• The likelihood function is straightforwardly computed for given parameters.

• Consider the priors...

16



Probabilistic model: Prior distributions

The prior distributions are chosen based on physical considerations and

intuition:

Some salient features are:

• Amplitudes of partials αm,t and βm,t: These decay with increasing

frequency. They are modelled as independent, zero mean, Gaussians, with

tapering variance as m increases (timbre, classification, ...)

• Detuning parameters δm: these take small values (<< 1) and are modelled

as iid zero mean Gaussian with small variance (caveat...)
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• Fundamental frequencies ω0,k: the prior should model the expected pitch

clustering in frequency. Ideally will involve frequency domain interaction

(‘chords’) and also time domain interaction (’melody’). We have

incorporated neither as yet, but will do in future implementations

• Number of harmonics Mk: this is assigned a Poisson distribution -

parameters can in principle be learned from real musical instrument sounds

• Number of notes K: again, a Poisson prior, reflecting the expected

complexity of the music

• Other parameters: assigned (vague) conjugate distributions
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4. Bayesian computations:

• We typically require MC approximations to integrals of the form

I(f) =
∫
Ω

f(Φ) p(dΦ|y) ≈ 1
L

L∑
l=1

f(Φ̃
(l)

)

where Φ = {θ,ω0, δ,M,K,γ, χ2, σ2
ε } is the collection of all unknowns in

the model, f(.) is a given integrable function with respect to the posterior

and Ω is the sample space for the posterior distribution.

• Choice of functional will be application dependent.

• For pitch transcription, we may require an MC estimate for p(ω0|y).

• For source separation we require estimates of the signals themselves: -

note, however, inherent unidentifiability over the labelling of notes. This

can be elegantly overcome by assigning notes labels according to the

Western scale (A,B,C,...) [for Western music].
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• The MCMC algorithm is complex, involving trans-dimensional moves for

both number of harmonics Mk (for each note) and number of notes K.

This is performed using reversible jump MCMC coupled with Metropolised

product space ideas. The critical M-H proposal is for fundamental

frequencies ω0,k. This is performed one-by-one using specially constructed

local and global proposals, aimed at getting out of various ‘traps’ and

ambiguities:

– Independence proposal based on short-time spectrum of data

– Independence proposal based on autocorrelation function of data

– Gaussian random walk proposal

– Proposal to frequencies in the set {ω0/3, ω0/2, 2ω0/3, 3ω0/2, 2ω0, 3ω0}.
These powererful proposals eliminate many of the potential octave and

fifth ambiguities inherent in music transcription systems.

– Note - the full simulation is very slow! For longer extracts we fix K and

set δm’s to zero to make processing feasible.
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Results: ’Commit’ example

⇒ Two instruments playing: trumpet and saxophone
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Results: ’Commit’ example

⇒ Comparison of time series (reconstructed and original)
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Results: ’Commit’ example

⇒ Comparison of spectra (reconstructed and original)
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Results: ’Commit’ example

⇒ Comparison of spectra (error signal and original)
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Results: ’Commit’ example

⇒ Comparison of spectra (Note 1 and original)
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Results: ’Commit’ example

⇒ Comparison of spectra (Note 2 and original)
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With a reduced model (fixed K and δm,k = 0) we track the pitch for the entire

extract:

Ground truth Pitch estimation
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Results: Four note example

Sound examples (a new MCMC convergence diagnostic!?)

• Input extract repeated 70 times

• MCMC output during the convergence period
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Results: Four note example

⇒ Convergence of the four frequencies
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Results: ’Commit’ example

⇒ Posterior densities for four frequencies
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Parker extract and source separation:

⇒ Attempt to perform source separation based on a monophonic model

limited to saxophone frequency range
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6: Discussion:

• Bayesian harmonic models can provide the fundamental building blocks for

automatic transcription systems

• To get really good performance they need to be included in a larger

hierarchical scheme that incorporates context/instrument specific

information

• Computations are too slow at the moment for routine application - better

MCMC algorithms, non-MCMC approximations?
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