
RADIAL BASIS FUNCTION REGRESSION USING TRANS-DIMENSIONAL SEQUENTIAL
MONTE CARLO

J. Vermaak, S. J. Godsill, A. Doucet

ABSTRACT

We consider the general problem of sampling from a se-
quence of distributions that is defined on a union of sub-
spaces. We will illustrate the general approach on the prob-
lem of sequential radial basis function (RBF) regression where
the number of kernels is variable and unknown. Our ap-
proach, which we term Trans-Dimensional Sequential Monte
Carlo (TD-SMC), is based on a generalisation of impor-
tance sampling to spaces of variable dimension. In the spirit
of [1] we augment the target parameter space at the cur-
rent time step with an auxiliary space corresponding to the
parameters at the previous time step. This facilitates the
design of efficient proposal distributions, which can then
be formulated as moves from the auxiliary parameter space
to the target parameter space, lending our algorithm its se-
quential character. These proposals are very general, and
may include within model moves to update parameters, and
trans-dimensional birth or death moves to add or remove
parameters when appropriate. From this perspective our ap-
proach is reminiscent of the Reversible Jump Markov Chain
Monte Carlo (RJ-MCMC) algorithm [2].

1. RBF REGRESSION

Regression with radial basis functions is concerned with fit-
ting a mixture of local kernels to some unknown function,
based on noisy samples from the target function. In most
applications of interest the number of kernels required is
unknown. Existing strategies to estimate the number of ker-
nels alongside the other parameters are batch algorithms.
Here we will develop a sequential strategy that achieves the
same purpose by a single pass through the data.

The RBF regression function for the uncorrupted data
takes the form

zt = β0 +
∑k

i=1
βiK(xt,µi),

wherext ∈ Rd andzt ∈ R denote the input variables and
uncorrupted output, respectively,β = (β0 · · ·βk) ∈ Rk+1

is the vector of regression coefficients, andK(·,µ) is a local
kernel function centred onµ ∈ Rd. The data is assumed to
be corrupted withi.i.d. Gaussian noise,i.e.

yt = zt + vt, vt ∼ N(0, σ2
y),

whereσ2
y is the observation noise variance. For the esti-

mation we assume the availability of a static data set of in-
put/output pairs{xt, yt}T

t=1. Note that the ordering of the
data points may be arbitrary.

The unknown parameters to be estimated are the re-
gression coefficients and the kernel centres,i.e. θ1:k =
(θ1 · · ·θk), with θi = (βi, µi). As is common in RBF
regression problems we assume the support for the kernel
centres at timet to be the input data points available at
time t. The support forθ1:k can thus be written asΘk,t =
(R× {x1 · · ·xt})k. We define the prior distribution for the
unknown parameters as

pt(k, θ1:k) = p(k)p(β0)
∏k

i=1
p(βi)pt(µi), (1)

with

p(k) ∝ λk exp(−λ)/k!, k ∈ {1 · · · kmax}
p(βi) = N(βi|0, σ2

β), i = 0 · · · k
pt(µi) =

∑t

s=1
δxs(µi)/t, i = 1 · · · k.

The prior parameters(λ, σ2
β) are here assumed to be fixed

and known. It is, however, possible to define further hyper-
priors on these parameters and estimate them alongside the
other unknowns.

Given the conditional independence assumption on the
data points and the definition of the prior it is straightfor-
ward to obtain an expression for the full posteriorpt(k, θ1:k|y1:t).
Due to conjugacy the posterior can be marginalised over
the regression coefficients. The resulting marginal posterior
over the kernel centres can be written as

pt(k, µ1:k|y1:t) ∝
|B|1/2 exp(−yTPy/2σ2

y)p(k)pt(µ1:k)
(2πσ2

y)t/2(σ2
β)k+1/2

,

(2)
with B = (KTK/σ2

y+Ik+1/σ2
β)−1 andP = It−KBKT/σ2

y.
In the abovey ∈ Rt is the column vector comprising the
t output data points, andK ∈ Rt×(k+1) denotes the kernel
matrix, with rows given byKs = (1,K(xs, µ1) · · ·K(xs,µk)).
For any estimate of the kernel centres an estimate of the
clean output data points can be obtained asẑ = KBKT/σ2

y,
without the need to explicitly compute the regression coef-
ficients.

Note that even though we consider the problem of se-
quential RBF regression here, our algorithm is applicable to
the sequential estimation of any distributionpt(k, θ1:k|y1:t)
that can be evaluated up to a normalising constant. The
space over which the parameters are defined is allowed to
be of variable dimension and evolve over time.

2. TRANS-DIMENSIONAL SEQUENTIAL MONTE
CARLO

Our aim is to generate samples for a Monte Carlo approxi-
mation to the target posteriorpt(k, θ1:k|y1:t). Designing an
efficient proposal distribution to generate samples directly
in the target parameter space is difficult. This is mostly due
to the fact that the dimension of the parameter space is gen-
erally high and variable. To circumvent these problems we
augment the target parameter space with an auxiliary pa-
rameter space, which we will later associate with the pa-
rameters at the previous time step. The target distribution
over the resulting joint space is defined as

πt(k, θ1:k; k′, θ′1:k′) = pt(k, θ1:k|y1:t)q′t(k
′,θ′1:k′ |k, θ1:k).

(3)
This joint clearly admits the desired target distribution as a
marginal. Apart from some weak assumptions, which we
will discuss shortly, the distributionq′t is entirely arbitrary,
and may depend on the data and the time step. In fact, in
the application to RBF regression we consider here we will
set it to q′t(k

′,θ′1:k′ |k, θ1:k) = δ(k,θ1:k)(k′, θ
′
1:k′), so that

it effectively disappears from the expression above. Note
also thatk andk′ are not constrained in any sense, so that
the target and auxiliary parameter spaces may be of differ-
ent dimension. A similar strategy of augmenting the space
to simplify the importance sampling procedure has been ex-
ploited before in [1] to develop efficient SMC samplers for
a wide range of models. To generate samples in this joint
space we define our proposal to be of the form

Qt(k, θ1:k; k′, θ′1:k′) = pt−1(k′,θ′1:k′ |y1:t−1)
× qt(k, θ1:k|k′, θ′1:k′), (4)

whereqt may again depend on the data and the time step.
This proposal embodies the sequential character of our al-
gorithm. Similar to SMC methods [3] it generates samples
for the parameters at the current time step by incrementally
refining the posterior at the previous time step through the
distributionqt. Designing efficient incremental proposals is
much easier than constructing proposals that generate sam-
ples directly in the target parameter space, since the poste-
rior is unlikely to undergo dramatic changes over consecu-
tive time steps. To compensate for the discrepancy between
the proposal in (4) and the joint posterior in (3) the impor-

tance weight takes the form

Wt =
pt(k, θ1:k|y1:t)q′t(k

′, θ′1:k′ |k, θ1:k)
pt−1(k′,θ′1:k′ |y1:t−1)qt(k, θ1:k|k′, θ′1:k′)

. (5)

Due to the construction of the joint in (3) marginal samples
in the target parameter space associated with this weight-
ing will indeed be distributed according to the target poste-
rior pt(k, θ1:k|y1:t). As might be expected the importance
weight in (5) is similar in form to the acceptance ratio for
the RJ-MCMC algorithm [2]. One notable difference is that
the reversibility condition is not required, so that for a given
qt, q′t may be arbitrary, as long as the ratio in (5) is well-
defined.

In practice it is often necessary to design a number of
candidate moves to obtain an efficient algorithm. Exam-
ples include update moves to refine the model parameters
in the light of the new data, birth moves to add new pa-
rameters to better explain the new data, death moves to re-
move redundant or erroneous parameters, and many more.
We will denote the set of candidate moves at timet by
{αt,i, qt,i, q

′
t,i}M

i=1, whereαt,i is the probability of choos-

ing movei, with
∑M

i=1 αt,i = 1. For each movei the im-
portance weightWt,i is computed by substituting the corre-
spondingqt,i andq′t,i into (5). Note that the probability of
choosing a particular move may depend on the old state and
the time step, so that moves may be included or excluded as
appropriate.

3. EXPERIMENTS AND RESULTS

3.1. Algorithmic Details

We will consider three kinds of moves: a zero moveqt,1,
a birth moveqt,2, and a death moveqt,3. The zero move
leaves the model parameters unchanged. The birth move
adds a new kernel at a uniformly randomly chosen location
over the grid of unoccupied input data points. The death
move removes a uniformly randomly chosen kernel. For
k = 0 only the birth move is possible, whereas the birth
move is impossible fork = kmax or k = t. Similar to [2]
we set the move probabilities to

αt,2 = c min{1, p(k + 1)/p(k)}
αt,3 = c min{1, p(k − 1)/p(k)}
αt,1 = 1− αt,2 − αt,3

in all other cases. In the abovec ∈ (0, 1) is a parameter
that tunes the relative frequency of the dimension chang-
ing moves to the zero move. Given the expressions for the
prior and posterior in (1) and (2), respectively, the generic

expression for the importance weight in (5) becomes

Wt,i ∝
|B|1/2 exp(−(yTPy − y′TP′y′)/2σ2

y)
|B′|1/2(2πσ2

y)1/2(σ2
β)k−k′/2

× λk−k′(t− 1)(k′ − 1)!
t(k − 1)!qt,i(k, µ1:k|k′, µ′1:k′)

,

where the primed variables are those corresponding to the
posterior at timet− 1. Note that for each move we have set
the arbitrary distributionq′t,i to the Dirac delta mass centred
on the values for the centres at the previous time step, so
that this term effectively disappears from the expression for
the importance weight. For the zero move the parameters
are left unchanged, so that the expression forqt,1 in the im-
portance weight becomes unity. This is often a good move
to choose, and captures the notion that the posterior rarely
changes dramatically over consecutive time steps. For the
birth move one new kernel is added, so thatk = k′+1. The
centre for this kernel is uniformly randomly chosen from
the grid of unoccupied input data points. This means that
the expression forqt,2 in the importance weight reduces to
1/(t−k′), since there aret−k′ such data points. Similarly,
the death move removes a uniformly randomly chosen ker-
nel, so thatk = k′ − 1. In this case the expression forqt,3

in the importance weight reduces to1/k′.
In the following sections we will evaluate the perfor-

mance of the sequential RBF regression strategy on two
standard benchmark data sets: the sinc data and the Boston
housing data.

3.2. Sinc Data

This experiment is described in [4]. The training data is
taken to be the sinc function,i.e. sinc(x) = sin(x)/x,
corrupted by additive Gaussian noise of standard deviation
σy = 0.1, for 50 evenly spaced points in the intervalx ∈
[−10, 10]. In all the runs we presented these points to the
sequential estimation algorithm in random order. For the
test data we used 1000 points over the same interval. We
used a Gaussian kernel of width 1.6, and set the fixed pa-
rameters of the model to1 (λ, kmax) = (1, 50). The fraction
of dimension change moves was set toc = 0.25.

The left side of Figure 1 shows the test error as a func-
tion of the number of samplesN . These results were ob-
tained by averaging over 25 random generations of the train-
ing data for each value ofN . As expected, the error de-
creases with an increase in the number of samples. No
significant decrease is obtained beyondN = 250, and we
adopted this value for subsequent comparisons. A typical
minimum mean square error (MMSE) estimate of the clean
data is shown in the bottom of Figure 1.

1To perform the estimation we have, in fact, defined non-informative
inverted gamma priors overσ2

β andσ2
y , and estimated these alongside the

kernel centres. Details can be found in [5].

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Fig. 1. Results for the sinc experiment. Test error as a
function of the number of samples (top), and example fit
(bottom), showing the uncorrupted data (blue circles), noisy
data (red crosses) and MMSE estimate (green squares). For
this example the test error was 0.0309 and an average of
6.18 kernels were used.

In Table 1 we compare the results of the TD-SMC al-
gorithm with a number of batch strategies for the support
vector machine (SVM) [6] and relevance vector machine
(RVM) [7, 8]. The results for the batch algorithms are du-
plicated from [4, 9]. The error for the TD-SMC algorithm
is slightly higher. This is due to the stochastic nature of the
algorithm, and the fact that it uses only very simple moves
that take no account of the characteristics of the data during
the move proposition. This increase should be offset against
the algorithm simplicity and efficiency. The error could be
further decreased by designing more complex moves.

Method Test Error # Kernels
Figueiredo [10] 0.0455 7.0
SVM [6] 0.0519 28.0
RVM [7, 8] 0.0494 6.9
Variational RVM [4] 0.0494 7.4
MCMC [9] 0.0468 6.5
TD-SMC 0.0591 4.5

Table 1. Comparative performance results for the sinc
data. The batch results are reproduced from [4, 9].

3.2.1. Boston Housing Data

We also applied our algorithm to the popular Boston hous-
ing data set. We considered random train / test partitions of
the data of size 300 / 206. We again used a Gaussian kernel,
and set the width parameter to 5. For the model and algo-
rithm parameters we used values similar to those for the sinc
experiment, except for settingλ = 5 to allow a larger num-
ber of kernels. The results are summarised in Table 2. These
were obtained by averaging over 10 random partitions of the
data, and setting the number of samples toN = 250. The
test error is comparable to those for the batch strategies, but
far fewer kernels are required.

Method Test Error # Kernels
SVM [6] 8.04 142.8
RVM [7, 8] 7.46 39.0
TD-SMC 7.18 25.29

Table 2. Comparative performance results for the
Boston housing data. The batch results are reproduced
from [7].

4. CONCLUSIONS

In this paper we introduced the TD-SMC algorithm for sam-
pling from a sequence of distributions defined on a union of
subspaces, and applied it to the problem of sequential RBF
regression. Our algorithm is based on a generalisation of
importance sampling, and incrementally updates a Monte
Carlo representation of the target posterior distribution as
more data points become available. It achieves this through
simple and intuitive model moves, reminiscent of the RJ-
MCMC algorithm. It is further non-iterative, and requires
only a single pass over the data, thus overcoming some of
the computational difficulties associated with batch estima-
tion strategies for RBF regression. Our algorithm is more
general than the RBF regression problem considered here.
Its application extends to any model for which the posterior
can be evaluated up to a normalising constant. Initial ex-
periments on two standard regression data sets showed our
algorithm to compare favourably with existing batch esti-
mation strategies for RBF regression.

5. REFERENCES

[1] P. Del Moral and A. Doucet, “Sequential Monte Carlo
samplers,” Tech. Rep. CUED/F-INFENG/TR.443,
Signal Processing Group, Cambridge University En-
gineering Department, 2002.

[2] P. J. Green, “Reversible jump Markov chain Monte
Carlo computation and Bayesian model determina-
tion,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.

[3] A. Doucet, S. J. Godsill, and C. Andrieu, “On se-
quential Monte Carlo sampling methods for Bayesian
filtering,” Statistics and Computing, vol. 10, no. 3, pp.
197–208, 2000.

[4] C. M. Bishop and M. E. Tipping, “Variational rele-
vance vector machines,” inProceedings of the 16th
Conference on Uncertainty in Artificial Intelligence,
C. Boutilier and M. Goldszmidt, Eds. 2000, pp. 46–
53, Morgan Kaufmann.

[5] J. Vermaak, S. J. Godsill, and A. Doucet, “Sequen-
tial Bayesian kernel regression,” 2003, Submitted to
Advances in Neural Information Processing Systems.

[6] V. N. Vapnik, Statistical Learning Theory, John Wiley
and Sons, New York, 1998.

[7] M. E. Tipping, “The relevance vector machine,” in
Advances in Neural Information Processing Systems,
S. A. Solla, T. K. Leen, and K. R. M̈uller, Eds. MIT
Press, 2000, vol. 12, pp. 652–658.

[8] M. E. Tipping, “Sparse Bayesian learning and the rel-
evance vector machine,”Journal of Machine Learning
Research, vol. 1, pp. 211–244, 2001.

[9] S. S. Tham, A. Doucet, and R. Kotagiri, “Sparse
Bayesian learning for regression and classification us-
ing Markov chain Monte Carlo,” inProceedings of the
International Conference on Machine Learning, 2002,
pp. 634–643.

[10] M. Figueiredo, “Adaptive sparseness using Jeffreys
prior,” in Advances in Neural Information Processing
Systems, 2001.

