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Summary. We describe novel Bayesian models for time–frequency inverse modelling of non-
stationary signals. These models are based on the idea of a Gabor regression, in which a time
series is represented as a superposition of translated, modulated versions of a window function
exhibiting good time–frequency concentration. As a necessary consequence, the resultant set
of potential predictors is in general overcomplete—constituting a frame rather than a basis—and
hence the resultant models require careful regularization through appropriate choices of vari-
able selection schemes and prior distributions.We introduce prior specifications that are tailored
to representative time series, and we develop effective Markov chain Monte Carlo methods for
inference. To highlight the potential applications of such methods, we provide examples using
two of the most distinctive time–frequency surfaces—speech and music signals—as well as
standard test functions from the wavelet regression literature.
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1. Introduction

Here we describe a novel approach for the modelling of time–frequency surfaces, which we term
a Gabor regression (Ng, 2000; Wolfe, 2003). This approach consists of a Bayesian regulariza-
tion scheme in which prior distributions over the time–frequency coefficients are constructed
to favour both smoothness of the estimated function and sparseness of the coefficient repre-
sentation. The methodology that we propose may be related to that of wavelet regression and
variable selection (see, for example, Chipman et al. (1997), Clyde et al. (1998), Vidakovic (1998)
and Abramovich et al. (1998)), but a crucial difference lies in the dependences that are intro-
duced between the coefficients in the model, both through the inherent non-orthogonality and
overcompleteness of the representation and through the prior structures that are imposed on
these coefficients. Such structures borrow Markov random-field ideas from image processing
(see, for example, Besag (1974), Geman and Geman (1984) and Ripley (1988)) to model the
persistences through time and frequency which are expected to be present in many naturally
generated signals of interest.

Although it is common practice to apply a Fourier series representation for nonparametric
analysis of time series (see, for example, Priestley (1981), Wahba (1983), Gallant and Monahan
(1985) and Lenk (1999)), such a representation is no longer appropriate in situations where
spectral content may vary with time. One possible replacement for the Fourier representation in
such cases is a time–scale representation using wavelets (Müller and Vidakovic, 1999; Vidakovic,
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1999); for an interpretation of such an approach in terms of non-stationary processes, see
Nason et al. (2000). Indeed, researchers in many fields have been drawn in particular to wavelets
as one class of compactly supported functions forming an orthonormal basis (in the critically
decimated case). However, Gabor analysis represents a similarly suitable and technically con-
venient choice, as we demonstrate. In fact, just as the Fourier transform diagonalizes stationary
random processes, Gabor representations can be viewed as approximately diagonalizing a class
of slowly time-varying systems—i.e. locally or quasi-stationary random processes (Priestley,
1981)—known as underspread operators (Kozek, 1998).

Gabor analysis begins with the idea of an energy density distributed over a lattice of points in
the time–frequency plane (the spectrogram or squared modulus of the Gabor transform being a
well-known example), corresponding to a representation of the signal in terms of well-localized
time–frequency atoms. This concept is illustrated in Fig. 1, where the lattice is given by aZ×bZ

for time–frequency shift parameters a, b > 0, and the atom whose time–frequency coverage is
centred at the origin is denoted g, such that an atom gm,n is a time-shifted (translated by na) and
frequency-shifted (modulated by mb) version thereof. Gabor frames formalize the notion of the
short time Fourier transform and the concept of valid tilings of the time–frequency plane (see,
for example, Gröchenig (2001)). Indeed, a frame in a (separable) Hilbert space H is a sequence
{Ψk : k ∈ K} having the additional property that there are constants A, B > 0 (frame bounds)
such that

A‖f‖2 �
∑

k∈K
|〈f , Ψk〉|2 �B‖f‖2 ∀f ∈H: .1/

In particular, a Gabor frame .gm,n/ is a special case of inequality (1) in which the set {Ψk} com-
prises translated and modulated versions (indexed by n and m respectively) of a single, basic
window function g.

The notion of a frame incorporates bases as well as certain redundant representations; for
example, an orthonormal basis is a tight frame (A=B) with A=B =1, and the union of
two orthonormal bases yields a tight frame with frame bounds A=B =2. A key result in
time–frequency analysis—the Balian–Low theorem—implies that ‘redundancy is a necessary

(a) (b)

Fig. 1. (a) Tiling of the time–frequency plane via copies of an atom g , translated in time and frequency
(after Feichtinger and Strohmer (1998)) and (b) the real and imaginary parts of some typical Gabor atoms
(see equation (3)), with modulating angular frequency ω D2πm=M
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consequence of good time–frequency localization’ (Gröchenig, 2001), and hence that there is
no well-concentrated ‘Gabor basis’ in the critically sampled case. (An exception to the Balian–
Low theorem for real-valued functions is provided by the idea of Wilson bases (Wilson, 1987),
including certain local trigonometric bases (Coifman and Meyer, 1991) and lapped transforms
(Malvar, 1990), examples of which we consider briefly in Section 5.1.)

Allowing for overlap between adjacent atoms (via a denser sampling of the time–frequency
plane) permits the use of window functions with better time–frequency concentration proper-
ties, albeit at the price of overcompleteness. Hence, the inference of a time–frequency surface
for data measured in additive noise is an inherently ill-posed inverse problem, requiring a high
degree of regularization to avoid overfitting and modelling of noise. A time–frequency repre-
sentation for the data will often have a natural physical interpretation in terms of a generative
model; for example, in the sound signals that we consider later, such a representation can be
directly related to the physical sound production mechanism. As we show, the overcompleteness
of a Gabor representation can actually be an advantage in the context of time–frequency surface
estimation. Moreover, although such an analysis task arises in many areas of science and engi-
neering, the associated applications of regression and compression are equally important—and
in fact these issues are fundamentally related to the mathematics of harmonic analysis which
underlie Gabor systems (Donoho et al., 1998).

The remainder of this paper is organized as follows. In Section 2 we specify the regression
model and introduce the concept of Gabor analysis which underlies it. In Section 3 we discuss
our formulation of prior dependence structures in the time–frequency plane, and in Section 4
we describe the algorithmic implementation of our model by means of a Markov chain Monte
Carlo (MCMC) sampling scheme. In Section 5 we present and interpret simulation results for
three classes of the Gabor regression scheme: overcomplete representations using diffuse priors
to induce sparsity, model-averaged representations using unstructured priors to allow for the
transitions which naturally occur in non-stationary data and model-averaged representations
using conditionally Markov priors to favour persistence of meaningful signal traits and trends
in the time–frequency plane. We conclude in Section 6 with a discussion of related issues and
future extensions to the framework proposed. Sampling scheme derivations are provided in
Appendix A.

2. The Gabor regression model

2.1. Gabor analysis over finite cyclic groups
The Gabor expansion of an L-periodic sequence f ∈ l2.Z/, where l2.Z/ denotes the space of
square summable sequences, is given by

f =
M−1∑
m=0

N−1∑
n=0

cm,ng̃m,n, .2/

where the Gabor synthesis atoms g̃m,n are derived from a (typically smooth) window function
g̃.t/ as

g̃m,n.t/� g̃
(

t − n

N
L

)
exp

(
2πj

m

M
t
)
, t ∈{0, 1, . . . , L−1}, .3/

and cm,n =� 〈f , gm,n〉 are the Gabor expansion coefficients—i.e. the inner products of f and
translated, modulated versions of the dual (analysis) window function g.t/—corresponding to
the Gabor transform of f , which we note may be efficiently computed in practice via a sequence
of fast Fourier transforms applied after windowing f with translates of g.t/.
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Here we are in fact implicitly considering periodic sequences as members of a finite cyclic
group—i.e. in terms of the circular extension of finite length, complex-valued sequences f ∈CL

on the ring ZL =� Z mod.L/. Using vector matrix notation, we may denote the Gabor expansion
as f = G̃c, where the sequence f is expressed in the form of a column vector: f =.f0 f1. . .fL−1/T,
G̃ denotes the L×MN Gabor synthesis matrix having g̃m,n as its .m + nM/th column and the
Gabor expansion coefficients {cm,n} are written in the form of a ‘stacked’ column vector c of
length MN. The explicit definitions that are employed in our derivation follow those of Strohmer
(1998) and are detailed in Appendix A.

2.2. Bayesian model
Let x ∈ CL in general denote a complex-valued time series, the observation of which has been
corrupted by additive noise. From the completeness property of frames, it follows that x may
be represented as a linear combination of frame elements. Hence we consider regression using
a collection of Gabor synthesis atoms {g̃m,n}, under the assumption—without loss of gener-
ality—that the corresponding vector of sampled observations y has been extended to length
L in a proper way at its boundary before being periodically extended on the ring ZL. More-
over, in the applications that we consider here, the data are constrained to be real valued, and
hence by Hermitian symmetry properties we have that cm,n = cÅ

M−m,n for all m∈{1, 2, . . . , M=2}.
The models and sampling algorithms that we describe explicitly incorporate this constraint by
including only modulations in the set {0, 1, . . . , M=2} (where M is assumed to be even), and thus
from equation (2) we have the following linear time series model in which all variables are real:

yt =
M=2∑
m=0

N−1∑
n=0

cm,n g̃m,n.t/+dt , t ∈{0, 1, . . . , L−1}:

The quantity dt is a disturbance or noise term, modelled here as an independent, identically
distributed Gaussian random variable with distribution N .0, σ2/—although this assumption
is readily relaxed within the numerical Bayesian setting that we describe below. The term cm,n
is interpreted as a two-dimensional row vector containing the real and imaginary parts of the
complex coefficient at time–frequency lattice point .m, n/, and g̃m,n.t/ as a column vector con-
taining the real and imaginary parts of the corresponding Gabor synthesis atom at time index t.
For clarity of exposition, we shall use k ∈{0, 1, . . . , K−1} to index complex coefficients, bearing
in mind that K = .M=2+1/N and ck = cm+nM corresponds to cm,n.

3. Frames, sparsity and prior dependence structures

Frame theory guarantees minimal norm expansion coefficients in an l2-sense via the Gabor
transform {〈f , gm,n〉}; however, such a representation is not guaranteed to be maximally sparse
and hence may not be desirable for all applications. Indeed, many time–frequency representa-
tions (including the short time Fourier transform) may be viewed as a convolution of the Wigner
distribution of a function with a smoothing kernel (see, for example, Gröchenig (2001)). Our
approach to time–frequency surface estimation is intended to overcome some of the limitations
of such transform methods, both by providing an ‘unsmoothing’ effect in comparison with
the Gabor transform as well as the potential for a sparse coefficient representation. We note
that some researchers have pursued the variational approach to sparsity directly: for example,
basis pursuit (Chen et al., 2001) provides an algorithm for minimal l1-norm decomposition,
and ‘greedy’ approaches to function approximation such as the matching pursuit algorithm of
Mallat and Zhang (1993) have also been proposed. (For recent results on the uniqueness of sparse
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decompositions, as well as conditions for the equivalence of minimal l1- and l0-representations,
see Donoho and Huo (1999).)

Here, however, we consider regularization and sparsity within the Bayesian framework. In this
vein, periodogram estimators have been interpreted as minimizers of regularized least squares
criteria (Giovannelli and Idier, 2001). Bayesian shrinkage (soft thresholding) and variable selec-
tion (hard thresholding) have been used to induce sparsity in images (Olshausen and Millman,
2000) and other signals (Crouse et al., 1998), as well as more generally in the statistical com-
munity (see, for example, Mitchell and Beauchamp (1988), George and McCulloch (1993) and
Brown et al. (1998)); some recently proposed Bayesian variable selection schemes specifically
address the overcomplete case (Brown et al., 2002; West, 2003). Even without the explicit con-
centration of probability near zero a priori, overcompleteness coupled with heavy-tailed prior
distributions may be used to induce sparsity. Such approaches have recently attracted much
attention in the machine learning community (see, for example, Poggio and Girosi (1998), Lew-
icki and Sejnowski (2000), Figueiredo (2001) and Tipping (2001)). We model sparseness in the
time–frequency coefficients explicitly via variable selection, achieved through the introduction
of γk ∈{0, 1} such that

p.ck|σck
, γk/= .1−γk/ δ0.ck/+γk N .ck|0, σ2

ck
/:

Although such a formulation is by now familiar through the many applications of MCMC
methods to variable selection in the literature (see, for example, George and McCulloch (1997)
and Godsill (2001)), we extend it by modelling dependence across the time–frequency lattice by
using the set of indicator variables {γk}.

Conditionally on γk =1, the prior distribution of the coefficients is a heavy-tailed Student
t scale mixture of normals with inverted gamma mixing distribution p.σ2

ck
|γk =1, κ, νk/=

IG.σ2
ck

|κ, νk/; this specification is designed to capture the wide range of coefficient values ex-
pected in a non-stationary process, with the shape parameter κ determining how heavy tailed
this mixture will be. In comparison with a prior assumption of independent, normally dis-
tributed coefficients sharing a common variance, the regularization that is induced by such a
model prevents oversmoothing of the time–frequency coefficients and can lead to a sparser
representation in terms of coefficient energy concentration on the time–frequency lattice. The
form of the mixing distribution is chosen for ease of implementation; we note that other mix-
ing distributions can be readily incorporated into the sampling scheme when more domain-
specific information is available (see, for example, Godsill and Rayner (1998) and Godsill
(1999)). The scale parameter νk is assigned its own prior; specifically, we assume that νk =f.k/ν,
with ν ∼G.αν , βν/ being gamma distributed. Here f.k/ is a fixed weighting function that can
be used to express a desired degree of smoothness in the reconstructed signal, quantifiable
in terms of the decay of its Fourier transform via Bessel potential spaces (Gröchenig, 2001).
In implementations to date, we have used a weighting function f.k/ = 1=m.k/a, where m.k/

is the frequency modulation number for coefficient k and typically a = 1. For an example
of similar considerations in a Fourier series setting, see Carter and Kohn (1997) and Lenk
(1999).

An important component of the model is the prior distribution for the indicator process
γ ={γk}. Here dependence between coefficients in time and frequency can readily be incorpo-
rated. We may probably expect a priori some continuity through time and frequency for the
coefficients; in particular, for natural signals we expect certain regions of the time–frequency
lattice to be heavily populated, whereas others (where there is little signal activity) will be rather
sparse. To achieve this ‘persistence’ of energy in the time–frequency plane, we specify the distri-
bution of γk conditionally through p.γk|γ−k, φ), where γ−k denotes all the indicator variables
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except γk, and φ are the parameters of the distribution. (For a related discussion concerning
wavelet models for images, see Crouse et al. (1998).)

For this we consider several possibilities for p.γk/, all of which are assumed conditionally
Markov such that p.γk|γ−k, φ/ = p.γk|γN .k/, φ/, where N .k/ is a local neighbourhood of the
time–frequency lattice point k corresponding to atom ck. We have experimented with various
arrangements: N .k/=∅ (i.e. a Bernoulli prior on γk), leading to very sparse but potentially
unstructured coefficient representations which may be most appropriate for compression; Mar-
kov chain priors favouring persistence across time (or equally frequency) on the lattice, which
are potentially useful for signals exhibiting slowly time-varying oscillations; Markov random
fields based on first-order neighbourhood structures, these being well suited to signals whose
time–frequency activity occurs in ‘patches’, in which case we wish to avoid including spurious
isolated components in the model. These latter two models can lead to a more structured and
interpretable time–frequency surface, although at the same time they may possibly induce a
less sparse representation. The precise form of the prior that is chosen will imply a valid joint
distribution p.γ|φ/, although the MCMC algorithms that are presented below require only the
conditional prior distribution p.γk|γ−k, φ/. We note that such models are very flexible and may
readily be constructed in a manner which exploits any available prior information that is relevant
to a particular application.

The remaining prior hyperparameters α, β, αν and βν , along with the priors on the indicator
parameters φ, are generally set to give very diffuse prior distributions, unless specific knowledge
is available. Defining y ={y0, y1, . . . yL−1}, c ={ck}, σc ={σck

} and γ ={γk}, the joint distribu-
tion of all parameters and data may hence be specified as

p.c, σc, σ, ν, γ, φ, y/=p.y|c, σ/ p.c|σc, γ/ p.σc|ν/ p.γ|φ/ p.φ/ p.ν/; .4/

p.y|c, σ/=
L−1∏
t=0

N
{

M=2∑
m=0

N−1∑
n=0

cm,n g̃m,n.t/, σ2

}
,

p.c|σc, γ/=
K−1∏
k=0

p.ck|σck
, γk/,

p.σc|ν/=
K−1∏
k=0

IG.σ2
ck

|κ, νk/:

4. Markov chain Monte Carlo inference

The posterior distribution of the parameters is explored by using an MCMC procedure (Gilks
et al., 1996; Robert and Casella, 1999), the aim of which is to draw a large number of random
realizations from the joint posterior density p.c, σc, σ, ν, γ, φ|y/ as defined in equation (4), from
which any desired posterior inference can be computed as a Monte Carlo integral. In particular,
in this application we shall be concerned with the time–frequency surfaces that are represented
by p.c|y/ and the corresponding indicator distribution p.γ|y/.

The MCMC procedures involve elements of model mixing through variable selection (sam-
pling γ) (George and McCulloch, 1993, 1997; Godsill, 2001) in conjunction with more standard
Gibbs sampling moves for the other parameters. For such a complex model there are clearly
many possible blocking strategies; indeed, the reduced conditionals that are available for certain
parameter subsets facilitate Rao–Blackwellized sampling (Robert and Casella, 1999). The object
of this paper, however, is not to compare the various sampling strategies and their individual
merits—but rather to present a new modelling methodology for time-varying systems. Hence we
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adopt a simple and efficient sampling scheme that has been observed to converge very quickly
in the cases (using both synthetic and natural data) that we have studied.

In the implementation that we consider here, the shape parameter κ and the frequency decay
parameter a are fixed, although we note that these could be updated in a relatively straight-
forward manner. Hence each sweep of the sampling scheme proceeds as follows.

(a) Update σc: a standard Gibbs step is used to update the full conditional for σc—

p.σ2
ck

|c, σ−c, σ, ν, γ, φ, y/=IG
(

γk +κ, γk
‖ck‖2

2
+νk

)
:

The implication here is that, with γk =0, σ2
ck

is drawn from the prior mixing distribution,
since the coefficients and the data are conditionally independent of this parameter. In
fact other choices are possible for this distribution, which is arbitrary provided that it is
proper and leads to an ergodic Markov chain overall, an issue which is explored in detail
in Godsill (2001). Although other choices, which may depend on other parameters in the
current MCMC state or indeed the data themselves, could lead to improved convergence
of the sampler, we have found that this choice is perfectly adequate.

(b) Update c and γ: the full conditional distribution for the Gabor coefficient vector
p.c|σc, σ, ν, γ, φ, y/ = p.c|σc, σ, γ, y/ is multivariate Gaussian (see Appendix A.2), and
hence blocking strategies and Rao–Blackwellization schemes can readily be incorpo-
rated. In particular, we have implemented full block draws from p.c|σc, σ, γ, y/ as well as
successive draws from conditional subblocks of c. In the results that are presented here,
the basic sampling step is a conditional Gibbs draw from p.ck, γk|c−k, γ−k, σ−c, σ, ν, φ, y/,
which is found to ensure rapid exploration of the coefficient and indicator space. More-
over, this and other schemes that are described in Appendix A.2 have the advantage that
the full design matrix need never be constructed.

The block conditional is summarized as follows (see, for example, Barnett et al. (1996)
and Godsill and Rayner (1998) for derivations in a related indicator modelling frame-
work):

p.ck, γk =1|c−k, γ−k, σc−k, σ, ν, φ, y/= τk

1+ τk
N .ck|µk, σ2Σk/,

p.γk =0|c−k, γ−k, σc−k, σ, ν, φ, y/= 1
1+ τk

,

where

Σk �
(

G̃T
k G̃k + σ2

σ2
ck

I2

)−1

,

µk �ΣkG̃T
k .y − G̃−kc−k/

and

τk � p.γk =1|γ−k/

p.γk =0|γ−k/

σ2

σ2
ck

|Σk|1=2 exp
(

µT
k Σ−1

k µk

2σ2

)
.

We emphasize that this result is presented for the case in which the Gabor representation
is constrained to be real valued—i.e. G̃k ∈RL×2, Σk ∈R2×2 and µk, ck ∈R2.

(c) Update φ: the parameter subset φ relates to the joint indicator distribution p.γ|φ/, for
which purpose we present three possibilities—
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(i) an independent Bernoulli prior p.γk|φ/, where φ is assigned a beta prior; in this case φ is
marginalized directly as specified in Appendix A.3, leading to a marginal joint distribu-
tion p.γk/;

(ii) a Markov chain prior in time p.γm,n|γm,n−1, φ/ =φm
γm,n−1, γm,n

, where φm is the transition
matrix of the Markov chain at the mth modulation index; the terms φm

0,0 and φm
1,1 are

assigned independent beta priors, and the initial distribution of each chain is taken to
be its stationary distribution; in this case the transition probabilities may be sampled
by using a Metropolis–Hastings step, for which we use as a proposal distribution the
respective full conditional for the parameter in question in the case of a fixed, uniformly
distributed initial state (see Appendix A.4);

(iii) a first-order Markov random field , in which case Ising-type priors with fixed parameters
are adopted (see, for example, Geman and Geman (1984)).

(d) Update ν: the common scale parameter ν can be drawn from its full conditional distribu-
tion p.ν|σc, κ/; however, the dependence of ν on all components of σc can lead to very
slow convergence if a large proportion of elements in γ are 0. Hence we propose a draw
from the reduced conditional

p.ν|{σck
:γk =1}, κ/=G

{
κ |γ|+αν ,

∑
k:γk=1

f.k/

σ2
ck

+βν

}
,

where |γ| is the cardinality of the set {γk : γk = 1}, following which the remaining terms
{σck

:γk =0} are reimputed from their conditional given the new value of ν. This may be
considered to be a block draw from p.ν, {σck

:γk =0}|{σck
:γk =1}, κ/.

(e) Update σ: the noise variance parameter σ2 is drawn in a Gibbs step from its full condi-
tional, which is of the form

IG
(

L+α

2
,
‖y − G̃c‖2 +β

2

)
:

5. Examples of time–frequency surface estimation

Here we demonstrate the application of the Gabor regression scheme that was detailed in Sec-
tion 2 to a selection of time series. In the experiments that we describe, a window corresponding
to that shown in Fig. 1(b) was employed as the prototype Gabor synthesis function, and a reg-
ular time–frequency lattice was constructed to yield a redundancy of 2 (corresponding to the
common practice in applications of a 50% ‘window overlap’ in time).

5.1. Coefficient shrinkage in the overcomplete case
We first consider the special case of our model obtained when γk =1 for all k, so that the resultant
time–frequency surfaces are overcomplete. In such a case, we have consistently observed that,
as a result of the heavy-tailed coefficient prior p.c/, the estimated time–frequency surfaces have
much smaller l1-norms than the corresponding Gabor transform representations of minimal
l2-norm, and indeed appear ‘sharpened’ in comparison.

It is reasonable to ask what is to be gained by such overcompleteness; in particular Daubechies
et al. (1991) showed how a Wilson basis may be obtained by eliminating members of such an
overcomplete Gabor frame. We hence consider, by way of comparison, a lapped transform basis
obtained by removing members of the collection {g̃m,0} to yield a locally orthogonal set which
was replicated and then translated in such a manner as to emulate the 50% window overlap that
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(a) (b) (c)

Fig. 2. (a) Gabor transform of a piano signal and (b) the 25% largest estimated coefficients as modelled by
an overcomplete frame and (c) a basis derived from the same window function (the grey scale is shown in
proportion to log-magnitude)

was employed in our usual redundancy 2 Gabor frame. Experiments indicate that such a scheme
proves effective for regression (see Wolfe and Godsill (2003) for further quantitative results in
this direction), in which case the time series reconstruction is the final consideration. However,
we note that properties provided by an overcomplete representation (such as translation invari-
ance) may be preferable in applications where the time–frequency coefficients themselves are of
ultimate interest.

To demonstrate these differences in a modelling context, Fig. 2 shows a section of a piano
signal spectrogram, along with the largest 25% of coefficients taken from the posterior mean
estimates (averaged over 5000 iterations after 2000 iterations of ‘burn-in’) of time–frequency
surfaces corresponding to the coefficient vector c resulting from the overcomplete Gabor regres-
sion and the basis regression using the same model. It may be seen that the overcomplete esti-
mation scheme captures time–frequency ridges more effectively than does the estimated basis
representation. The manual thresholding also illuminates the effect of the heavy-tailed prior in
inducing a sparse representation with lower l1-norm, which would hence be more appropriate
for compression via thresholding.

5.2. Variable selection using structured and unstructured models
As detailed in Section 3, the more general formulation of the Gabor regression framework
includes latent indicator variables which switch individual time–frequency atoms in and out
of the model, thus allowing us to perform model selection for compression or Bayesian model
averaging for regression. For this, we now consider variable selection in the context of the Gabor
scheme, using both structured and unstructured models. Although we do not address compres-
sion explicity in this case, we note that results that are similar to those presented in Section 5.1
have been obtained, and in general the average number of selected regressors tends towards a
low percentage of the total, indicating that such a scheme is likely to be an effective methodology
for thresholding.

To test the ability of the Gabor regression model to estimate time–frequency surfaces in the
presence of noise, a short speech utterance was artificially degraded with white Gaussian noise to
yield a signal-to-noise ratio of 15 dB. Fig. 3 shows a comparison of the estimated time–frequency
surfaces in terms of the posterior mean indicator estimate γ̂|y, obtained by using each of the
three prior dependence configurations that were described in Section 3 and step (c) of Section 4.
Note especially the spectral ridges that are captured by the independent Bernoulli prior and the
Markov chain prior in time (particularly at the beginning of the utterance) in contrast with the
large patches of signal activity modelled by the local Markov random-field prior.
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(a)

(c) (d) (e)

(b)

Fig. 3. (a) Gabor transforms of a speech signal and (b) a degraded version thereof, and the corresponding
indicator estimates by using (c) a Bernoulli prior, (d) a Markov chain prior in time and (e) a first-order Markov
random-field prior

We also present the results of a typical realization of our Gabor regression model on several
standard test functions from the wavelet regression literature, each consisting of a 1024-point
time series degraded with additive white Gaussian noise corresponding to the ‘high noise’ case
as specified in Marron et al. (1998). Table 1 summarizes the results of these regression exper-
iments, including the error norms of the degraded and reconstructed signals, as well as the
measured noise variance in comparison with that estimated by the Gabor regression scheme. In
these experiments, Bayesian model averaging was employed in conjunction with an Ising prior
and a tight frame of redundancy 2, based on a 32-sample version of the Gabor window function
that was used in the experiments described above.

Results were averaged over 1000 iterations following 1000 iterations of burn-in, and no attempt
was made to optimize the values of fixed parameters. (As noted below, these and other exper-
iments described herein can be reproduced with the aid of a MATLAB toolbox that has been
developed by the authors.) It may be seen from Table 1 that the Gabor regression scheme has
accurately estimated the noise variance in each case, as well as having reduced the error norm
by over 50% in comparison with the noisy versions of these test functions.

6. Discussion

In this paper we have presented examples of nonparametric time–frequency surface estimation,
for which Bayesian models of the Gabor coefficients have been shown to provide appropriate
methodology. This framework can be naturally extended to include (overcomplete) multiresolu-
tion dictionaries of time–frequency atoms, hence allowing local adaptation to the characteristics
and degree of non-stationarity of the data. Indeed, the multiresolution wavelet-like schemes that
were explored in Ng (2000), Wolfe et al. (2001) and Wolfe (2003) represent one of many possi-
bilities in this direction and constitute a continuing area of research.
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Table 1. Typical Gabor regression results on several standard test
functions (Marron et al., 1998)

Test Measured Estimated Error norm, Error norm,
function variance variance original reconstruction

Step 0.0107 0.0113 3.3079 1.4491
Wave 0.0107 0.0107 3.3079 1.5624
Blip 0.0107 0.0105 3.3079 1.5107
Blocks 0.0107 0.0109 3.3079 1.5979
Bumps 0.0107 0.0098 3.3079 1.5305
HeaviSine 0.0107 0.0106 3.3079 1.5560
Doppler 0.0107 0.0107 3.3079 1.5219
Angles 0.0107 0.0102 3.3079 1.4390
Parabolas 0.0107 0.0107 3.3079 1.4607
TSh Sine 0.0107 0.0105 3.3079 1.5031

Although we have limited our treatment here to the case of overcomplete dictionaries com-
prising time–frequency shifts (Gabor frames) rather than time–scale shifts (wavelet frames), we
note that the underlying framework is sufficiently general to handle either case and indeed can
be extended to frames constructed as unions of these families as well as other types of functions.
We have also developed this methodology bearing in mind the large data sets that are typical
in applications (over 10000 samples per second in speech processing, for example), and a fur-
ther advantage of our approach is that memory requirements for the inference algorithms are
minimal.

Other areas warranting investigation include the extension of our methodology to the sequen-
tial case by using particle filter methods (Doucet et al., 2001), as well as to the case of non-Gauss-
ian and non-stationary noise models, and missing or irregularly sampled data. A thorough
exploration of more general Markov random-field dependence structures is another area of
current work, and automatic selection between different classes of Markov random-field
models is of much interest as a longer-term goal. As a final note, both the data described herein
and the corresponding MATLAB code are available on line at http://www-sigproc.eng.
cam.ac.uk/∼pjw47. Code updates and further results of interest will also be posted as they
become available.
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Appendix A. Sampler derivations for the Gabor regression model

A.1. Real-valued implementation of the sampling scheme
As our interest here is in finite time series x ∈ RL and real-valued noise processes, when formulating the
Gabor synthesis matrix G̃ we need only to consider (assuming that the frequency lattice constant M is
even) modulations m ∈ {0, 1, . . . , M=2} and the corresponding real part of the reconstruction of x from
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its complex Gabor coefficients c. In this case we may specify an implementation which exploits conjugate
symmetry and uses only real numbers.

We may formulate such an implementation by taking advantage of the fact that both the Gabor coeffi-
cient vector c ∈ CK and the Gabor synthesis matrix G̃∈ CL×K may be rewritten in terms of their real and
imaginary parts respectively. Hence, for the sake of implementation, we may use properties of complex
multiplication to redefine G̃ and c as follows:

G̃�




Re{g̃0,0.0/} Im{g̃0,0.0/} · · · Re{g̃M=2,N−1.0/} Im{g̃M=2,N−1.0/}
Re{g̃0,0.1/} Im{g̃0,0.1/} · · · Re{g̃M=2,N−1.1/} Im{g̃M=2,N−1.1/}

:::
:::

: : :
:::

:::
Re{g̃0,0.L−1/} Im{g̃0,0.L−1/} · · · Re{g̃M=2,N−1.L−1/} Im{g̃M=2,N−1.L−1/}




and

c� .Re.c0,0/ −Im.c0,0/ Re.c1,0/ −Im.c1,0/ . . . Re.cM=2,N−1/ −Im.cM=2,N−1//
T,

where we note that in this case the redefined coefficient vector c is trivially related to the ‘true’ vector of
complex Gabor coefficients.

A.2. Full conditional and blocking schemes for sampling c
Considering the redefinitions described in Appendix A.1 such that G̃∈ RL×2K and c ∈ R2K, it is straight-
forward to verify that the distribution of the included Gabor coefficients cγk=1 =� {ck :γk =1}, conditional
on the remaining model parameters and the data, is given for any of the 2K possible configurations of γ by

p.cγk=1|σc, σ, γ, y/∝ exp
{

− 1
2σ2

.cγk=1 −µγk=1/
TΣ−1

γk=1.cγk=1 −µγk=1/

}
,

with

Σγk=1 � .G̃T
γk=1G̃γk=1 +σ2D−2

γk=1/
−1,

µγk=1 �Σγk=1G̃
T
γk=1y,

and

Dγk=1 �diag{.σck0
σck0

σck1
σck1

. . . /}, ki ∈{k′ :γk′ =1},

where it is understood that σcγk=1 , G̃γk=1, Σγk=1, µγk=1 and Dγk=1 are implicitly defined in accordance with
cγk=1, i.e. in a manner corresponding to the terms in the model specified by {γk :γk =1}. Thus, the vector
of included Gabor coefficients cγk=1 may be drawn from a multivariate normal distribution having mean
µγk=1 and covariance matrix σ2Σγk=1.

Such a scheme is of course preferable when possible, as it permits Rao–Blackwellization of the poster-
ior mean coefficient estimate; however, the prohibitively large size of many data sets that are of interest
often renders a multivariate draw of the full synthesis coefficient vector infeasible. In this case G̃ may be
partitioned as detailed in Bernardo and Smith (1994), page 138, to implement conditional subblock draws.
Indeed, a judicious choice of blocking scheme also eliminates the storage problems that are associated with
G̃ and G̃TG̃. Moreover, in the tight frame implementation that is considered here (see Section 2.1), the
subblocks of G̃ containing all modulations at a particular time sampling point n on the time–frequency
lattice will differ only by a phase factor, modulo the redundancy of the chosen Gabor system (Dörfler,
2001). This means that only one Gabor submatrix needs to be stored, along with the necessary phase
factors according to the system redundancy.

A.3. Marginalization of φ for the case of an independent Bernoulli prior p(γk jφ)
To implement the joint sampling step for γk and ck that is described in step (b) of Section 4, we require the
ratio p.γk = 1|γ−k/=p.γk = 0|γ−k/. For a Bernoulli prior on γk for all k, we have that Pr.{γk = 1}|φ/ =φ;
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combined with the hyperprior specification p.φ/=B.αφ, βφ/ it follows that

p.γk =1|γ−k/

p.γk =0|γ−k/
=

∫
p.γk =1, γ−k|φ/p.φ/ dφ∫
p.γk =0, γ−k|φ/p.φ/ dφ

= Γ.|γ−k|+1+αφ/Γ.K −|γ−k|−1+βφ/

Γ.|γ−k|+αφ/Γ.K −|γ−k|+βφ/

= |γ−k|+αφ

K −|γ−k|−1+βφ

,

where |γ−k| is the cardinality of the set {γ ′
k : γ ′

k ∈ γ−k, γ ′
k = 1}, and we note that it is possible to obtain a

uniform hyperprior for the case αφ =βφ =1.

A.4. Sampling the transition probabilities φm
0,0 and φm

1,1
As summarized in step (c) of Section 4, the Markov chain transition probabilities φm

0,0 and φm
1,1 defined

for each modulation index m∈{0, 1, . . . , M=2} are assigned independent beta priors such that φm
0,0 ∼

B.αφm
0,0

, βφm
0,0

/ and φm
1,1 ∼ B.αφm

1,1
, βφm

1,1
/; the initial distribution of each chain is taken to be its station-

ary distribution. In this case the transition probabilities may be sampled by using a Metropolis–Hastings
step, for which we use as a proposal distribution the respective full conditional distribution for a fixed,
uniformly distributed initial state:

q.φmÅ
0,0 |φm.i/

0,0 /�B{|φm
0,0.00/|+αφm

0,0
, |φm

0,0.01/|+βφm
0,0

},

q.φmÅ
1,1 |φm.i/

1,1 /�B{|φm
1,1.11/|+αφm

1,1
, |φm

1,1.10/|+βφm
1,1

},

where |φm
i, i.ij/| is defined as the cardinality of the set {γm,n = j|γm,n−1 = i}.

The stationary distribution Pm of the mth chain is given by

Pm =




1−φm
1,1

2−φm
1,1 −φm

0,0

if γm,0 =0,

1−φm
0,0

2−φm
1,1 −φm

0,0

otherwise,

and hence at the .i+1/th sweep of the sampler we take

φm.i+1/ =
{

φmÅ with probability p.φm.i/, φmÅ/,
φm.i/ with probability 1−p.φm.i/, φmÅ/,

p.φm.i/, φmÅ/=min
(

PÅ
m

P
.i/
m

, 1
)

.
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