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ABSTRACT

Methodsfor determiningthe letters of our geneticcode,
known asDNA sequencing,currentlydependon clever use
of electrophoresisto generatedatasetsindicativeof theun-
derlying sequence.Typically the subsequentoff-line data
processingis carriedout usinga combinationof heuristic
methodswith little mathematicalrigour. In this paper, we
presentanovelmodelwhichis ableto accuratelypredictthe
effectof themany biologicalprocesseswhich areinvolved,
and moreover, which is usableon-line. Off-line methods
have beenhamperedby the needfor processingin aslittle
time aspossibleafter thedatais generated;performingthe
processingon-linehasenableda moreadvancedalgorithm
to beusedwith associatedimprovedperformance.Theal-
gorithm is framedwithin a Bayesianprobabilistic frame-
work, therebyallowing representationof therandomnature
of thegenerativeprocess,andreliesonnew advancesin the
burgeoningfield of SequentialMonteCarloMethodsto per-
form therequiredhighly non-linearfiltering andmodelse-
lectionoperations.

1. INTRODUCTION

Deoxyribonucleicacid(DNA) is themoleculeusedto encodethe
geneticinformation within eachof us. For our purposes,DNA
canbe thoughtof asa sequenceof symbols(in reality, chemical
bases)takenfrom a four letteralphabetcomprising:A (Adenine),
G (Guanine),C (Cytosine),andT (Thymine).

In 1974,Sangerproposedamethodfor DNA sequencingwhich,
with technicalimprovements,hassincebeenalmostuniversally
accepted[10]. Theideabehindtheprocessis simple.Initially, via
a processof replicationandtruncationthe DNA sequenceof in-
terestis usedto form a largepopulationof partial replicas.Each
replicais identicalto thesequenceof interestoverarangeof bases,
alwayscommencingwith thefirst baseof theinitial sequence,and
terminatingsomerandomdistancedown thestrand.Thatis, for the
sequenceACGGGthepopulationwouldcontainanumberof each
of the following: A, AC, ACG, ACGG,andACGGG.Eachfrag-
ment is fluorescentlylabelledaccordingto its terminatingbase.
Subsequently, theentirepopulationis alignedat thestartof a large
rectangulargel, and an electric field is applied. The fragments
progressthroughthegel at ratesapproximatelyinverselypropor-

tional to their length, resultingin the varioussubpopulationsar-
riving at theendof thegel in sequenceorder. A laserpositioned
neartheendof thegel excitesthefluorescentlabels,allowing an
emissiondetectorto estimatethenumberof fragmentsterminated
by a givenbasepassingateachtime instant.

After somepreprocessing,four datasetsareobtained(hence-
forth, “channels”),correspondingto thevariationof fragmentcon-
centrationwith time for eachof the four terminatingbases.This
collection of datais known asan electropherogramand is quite
clearly indicative of the underlyingbasesequence.The electro-
pherogramis a mixtureof peaksin four channels,with eachbase
in thesequenceassociatedwith onemajorpeakin thecorrespond-
ing channel,andthreesecondarypeaksin theremainingchannels
resultingfrom leakageeffects;thepeakscorrespondingto apartic-
ular basehave commonpositionandshape.An exampledataset
is shown in figure1.

A rangeof prior information,mainlydetailingtheeffectof base
sequenceontheamplitudesandpositionsof thepeaks,is available
to constraintheproblem;[11] providesagoodreview. Thecurrent
stateof the art from an off-line signal processingperspective is
describedin [3], wherea combinationof heuristicpeakdetection
algorithmsis proposed.[5] presentsa moreadvancedalgorithm
basedon statisticalmodellingof the underlyingprocess,with an
associatedincreasein computationalburden.

Here,amodelsimilar to thatof [7] [6], which is capableof rep-
resentingavailableprior informationaboutthesystem,is detailed.
The model is developedin a framework which allows sequential
updatingof the requiredinference. One of the major improve-
mentsof the model is that it allows removal of slowly varying
backgroundnoise,which may be correlatedwith the desiredsig-
nal. It is alsoableto tracknonstationarityin thevariousprocesses
- no previoussequentialalgorithmhasattemptedthis. Theresult-
ing algorithmcanberunon-lineandhasimmediateapplicationto
all datasetswhichcompriseaseriesof peaksarriving sequentially
in time (for example,somespectroscopy applications).A simple
versionof the algorithm is presentedbelow, which doesnot ac-
count for backgroundvariation,nor (fully) nonstationarityin the
processes.The final versionof the paperwill includemodifica-
tionsfor themoreadvancedcase.

2. PROBLEM FORMULATION

2.1. Signal Model

We presenta modelsuitedto sequentialprocessingof thesystem;
an alternative block basedapproachis detailedin [5]. Electro-



pherogramdata is well describedas the summationof a series
of peaks,observed in noise. A generalmodel for electrophero-
gram data in the four channelsat time � ( ���������
	�	�	
��
�� ),������������� ���
	�	
	
������� ��� , is thus:� ���! ��#" $% & ' �)( &+* &-, �/. (1)

where 0 denotes the total number of bases, ( & ���1 & � � ��1 & � 2 ��1 & � 3 ��1 & � � � is a vector defining the amplitudes in
the four channelscorrespondingto base4 (and is representative
of the numberof fragmentspassingthe endof the gel at a given
time via the emissionspectraof the dyes), and

* &), ��. defines
the peak shape.  �� �5�76 ��� � ��6 ��� 2 ��6 �8� 3 ��6 ��� � � representsthe
noisein the systemat time � . Here, we considerthe subsetof
electropherogramdatawherethenoisecanbeassumedGaussian
with zero mean and constant variance, 9 2: (a slightly more
complicatednoisemodelis presentedin [5]): ��<;>=@?A ��CB D � 9 2:
E ��F-��G (2)

where E ��F-� denotesthe identity matrix. In many cases,thepeaks
canbeassumedtruncatedGaussianin shapesuchthat:* & , �IHKJ & ��L & . � ,NM�O L & .QP�R SUT�V�WYX[Z �M L & , �\Z]J & . 2�^�_ , B �`Z`J & B�acb .

(3)

whereb is defineda-priori to besufficiently largethatfor therange
of possiblevariances,thetruncationeffect is minimal. L & denotes
thevarianceof thepeak.

The “base-state”of the system at base position 4 , d & ���e & � P 27�fe & � P �
�Qe & � g�� , is definedasa basetriplet, e.g., ��hi�fjk�fli� ,
with the last elementcorrespondingto the currentbase,and the
otherelementscontainingtheprevious two (theprevious two are
includedto accountfor sequencedependenteffects,e.g. [8]). The
following prior structureis proposedfor theparametersof base4 :e & � g ; J , e & � g B e & P ��� g�.)� d & � P 2Qm P � � d & P ��� g�m P � (4)J & � J & P �n" � "co & � o & ;qp ? o & B r/s , d & .)�ut s , d & .vG (5)

( & ; �wx ' � p�? 1 & � x B rIy � x , d & .U��t y � x , d & . G (6)L & ;qp , L & B r{z , L & P � .U�ut z , L & P � .�. (7)

where p , 	 . is theGammadistribution, and | & m x � ��} & �
	
	
	���} x � .
The functions ~ r{y � x , d & .��vt y � x , d & .U� r s��ut s � r z��ut z�� are consid-
ered time invariant and known a-priori. The statesevolve ac-
cordingto a Markovian structure.Further, J �Y;�= , J ��B 	 . , L �k;p , L�� B 	 . , and d ��� P 2Qm g ; J , d ��� P 2Qm g�. , a prespecifiedinitial statedis-
tribution. It shouldbenotedthat in electropherogramdatathereis
almostnever morethanonebasein a given unit time interval as
evidencedby the " � in equation(5); the framework is extensible
to thecasewheretherearemultiple peaksin a unit interval.

2.2. State-Space Form

Thesetof peaksaffectingthedataat time � is givenby theindex
set� �<��� 4�� B �`Z`J & B8a�b � 4 �����7��	
	
	
� 0 ��� . Thedataat time � is

thencompletelydefinedby:� �<� %&+����� ( &N*�� �`Z`J
&� L &>� "> �� (8)

and, therefore,the stateof the systemat time � can be writ-
ten � ���@� ( & ��J & ��L & � d & ��4 � � �U� . The dimensionof the state,0 ��������� � � , varieswith time accordingto thenumberof peaks
affecting the data. Here,we make the mild (andnot strictly nec-
essary)assumptionthat 0 ����� , in order to ensurethat, given� � � P � � 0 � P � � , the prior on � � � � 0 � � is completelydetermined.
Theresultingmodelis a HiddenMarkov Model.

The peakspacingprior of the previous sectionrequiressome
reformulationto be usedwithin a sequentialframework. Given� � � P ��� 0 � P ��� , and assumingnone of the peaksaffecting the
data at time �qZ�� becomesuperfluous,the probability of a
new peakbeing introducedis the probability, as definedby the
peak spacingprior, of there being a new peak in the interval
, � ">b Z�	 �8��� ">bI" 	 ��� , where � � � �¡  V[� � � � is introduced
asthebaseindex of thelastpeakaffectingthedataat time � :J ? 0 � � 0 � P � " � B J)¢ ��£¥¤ G �¦ s ��§ ��¨�© P/R S � ��¨�©A¨ R Svª p ?«J�Z]J)¢ ��£¥¤ Z�� B 	 G/¬�J¦ s ��§ ��¨C©N¨ R S � ­ ª p ?«J<Z\J)¢ ��£¥¤ Z®� B 	 G/¬�J (9)

Given there is a new peak in this interval, its position a-priori
is drawn accordingto p�? J)¢ � Z\J)¢ ��£¥¤ Z®� B 	 G truncatedappro-
priately. The remainingvariance,amplitude,and stateparam-
etersof the new peak are then definedaccordingto the priors
of the previous section, and the stateof the systembecomes:� �<� � � � P � ��� ( ¢ � �KJ ¢ � ��L ¢ � � d ¢ � ��� , with 0 �<� 0 � P �I" � .

If a stateceasesto berelevantat time � , i.e., its positionis less
than ��Z b , thenthe stateat time � is deterministicallyreduced:� ��� ��m $ � � � � P ��� 2Qm $ ��£¥¤ , 0 �®� 0 � P � Z�� . Similarly, if thereis
no changein thenumberof peaksaffectingthedata: � �¡� � � P � ,0 � � 0 � P � . Effectively, wehavedefineda slidingparameterwin-
dow of variabledimension.

2.3. Estimation Objectives

In a Bayesianframework the posterior distribution at time � ,J , � ��m � ��¯ ��m ��B � ��m � . , is usedfor inference,with theexpectedvalue
of a function of interest ° , � ��m � ��¯ ��m � . underthis posteriorgiven
by

¦�¦ ° , � ��m �U�f¯{��m �¥.�J , � ��m �C��¯{��m � B �{��m �-.�¬ � ��m ��¬8¯{��m � . In most
cases,includingours,theposterioris notamenableto closedform
analysisowing to non-linearity in the parameters,and it is nec-
essaryto resort to numericalmethods. In [5] a batchprocess-
ing schemeusingMarkov ChainMonteCarlo (MCMC) methods
is successfullyusedto simulatevariatesfrom the posterior, and
make associatedinferenceon quantitiesof interest. Thesemeth-
odsare,however, computationallyintensive andmake little useof
sequential-in-timestructurein thesystem.Here,we developa nu-
mericalalgorithmto estimatetheposteriordistributionrecursively
in time for on-lineestimation.

3. SEQUENTIAL SIMULATION

3.1. Ideal Recursion

Sincethesystemis Markovian, a recursionfor calculationof the
posteriorat times ���q� is:



J , � ��m � ��¯ ��m ��B � ��m � . � J , �/� B � ��� 0 �).�J , � �C� 0 � B � � P ��� 0 � P �Q.J , ��� B �{��m � P �Q.± J , � ��m � P � ��¯ ��m � P ��B � ��m � P � . (10)

whereat time � � � ,J , � ��� 0 � B �²�Q. � J , � ��B � � � 0 � .�J , � � � 0 � .J , �{�f. (11)

Weemphasisethat,despitethetime-dependentnotation,all of our
parametersaregenuinelytimevarying.

3.2. Sequential Bayesian Computation

Theideal recursioncannotbeuseddirectly owing to analyticdif-
ficulties. Onealternative is to representtheposteriorat eachtime
by a setof weightedparticles[2, 9]:³J , ¬ � ��m �U��¯I��m � B �²��m �). �5´% & ' �<µ¶

§·&¹¸�>º�»7¼·½¹¾¤�¿ � � À ¼�½Á¾¤�¿ � , ¬ � ��m ����¯I��m �-. (12)

where Â denotesthe numberof particles, µ¶
§·&¹¸� denotesthe nor-

malisedimportanceweight associatedwith the particle of valueÃ � §«&Á¸��m � ��¯ §«&¹¸��m �CÄ , and º » ¼·½¹¾¤u¿ � � À ¼·½¹¾¤�¿ � , 	 . is the delta function. An algo-

rithm for updatingtheparticlesastime progressesis [2, 9]:

Algorithm 1 - Monte Carlo Filter
For � � M �
	
	
	���

For 4 � �7�
	
	
	�� Â :Å Draw from the importance distribution� §«&Á¸� � 0 §«&¹¸� ; O�Æ � � � 0 ��B � §«&Á¸� P � � 0 §�&¹¸� P � ��� ��m ÇÉÈÅ Evaluate the unnormalised importance weights:

¶ §·&¹¸� � J Æ � �CB � §·&¹¸� � 0 §·&¹¸� È J Æ � §«&Á¸� � 0 §«&Á¸�qB � §«&Á¸� P � � 0 §·&¹¸� P � ÈO Æ � §«&¹¸� � 0 §«&¹¸� B � §·&¹¸� P � � 0 §�&Á¸� P � ��� ��m Ç È ¶ §«&Á¸� P �
Å Normalise the importance weights:

µ¶ §«&Á¸� �ËÊ!´%x ' � ¶
§ x ¸�!Ì P � ¶ §«&Á¸�Å Optional: Resample to obtain Â samples approximately dis-

tributed according to J , � ��m � ��¯ ��m �CB � ��m � . . Set the weights
equal.Å Optional: Apply a Markovian transition kernel invariant to
the posterior for each particle stream.

End For
End For

At time � � � the particles
Ã � §«&Á¸� � 0 §«&Á¸� Ä aresimilarly drawn

from an initial importancedistribution, and weightedappropri-
ately.

3.3. Importance Distribution

At time � the importancedistribution predictingwhethera new
peakhasbeenintroducedis chosento bea mixtureof a distribu-
tion basedon a simpledeterministicpeakdetectionalgorithmand
the prior. Given that a new peakis proposed,the peakposition
is thengeneratedaccordingto a truncateduniform on the space
, � ">b Z�	 �8��� ">bI" 	 ��� . Thevarianceof thepeakschangesvery
slowly with time, andsois quitepredictablefrom onebaseto the
next without referenceto thedata.Theprior is thereforesufficient
for anefficient importancedistribution.

Theimportancefunctionfor ( ¢ � (recall � � denotesthenewest
peakaffecting the dataat time � ) is obtainedby approximately
integratingout theeffect of two possiblefuturepeaks(in electro-
pherogramdatait is very rareto have morethan5 peaksin total
affectingagivendatapoint significantly).Detailsof thisstep,will
appearin thefinal version.Alternatively, we have foundlocal lin-
earisationof this distribution, or the statespace,to be useful in
somescenarios(see[2] for a review of thesemethods).Also, in
caseswheretheprior on theamplitudescanbeassumedGaussian,
the amplitudescan be marginalised(with a slight reformulation
suchRao-Blackwellization[9] canbe performedvia the Kalman
filter- this toowill appearin thefinal version).

The importancedistribution for d ¢ � is set to be the full con-
ditional J ? d ¢ � B d ¢ �8£¥¤ �+J ¢ ��£¥¤ �KJ ¢ � � ( ¢ � G which can be directly
evaluated.

Proposingtheinitial setof particlescanbedifficult sinceoften
parametersfor 5 or 6 baseswill berequired.MCMC methodscan
beparticularlyhelpful [5].

3.4. Resampling

The resamplingstepaimsto multiply or discardparticletrajecto-
riesaccordingto how importantthey areto our approximationof
theposteriordistribution. Whenaresamplingstepis performedwe
usethestandardresidualmethoddescribedin [9]. Theresampling
schedulemustbechosencarefullyor degeneracy canresult. The
problemcanbeisolatedby noticingthatthestateat time � mayin-
cludepeakswhich do not yet significantlyaffect the likelihoodat
time � . Therefore,for thesepeaksa resamplingstepcorresponds
to are-weightingaccordingto theprior; it takestimefor new peaks
to filter throughthe likelihoodfunction. If theprior deviatessig-
nificantly from the likelihood,poor resultswill follow. However,
this is rarelythecase,andprovidedtheparticlecloudis relatively
large,degeneracy is usuallynot serious.

3.5. Markov Transition

Our modelis definedon a variabledimensionspace,with param-
etersfixedover moderatetime intervals. Degeneracy of thestan-
dard particlefilter for suchsystemsis commonlyknown. Here,
sincetheinterval of invarianceis not too large,MCMC transitions
canbe usedto help replenishthe particleset[1]. That is, a ker-
nel invariant to the posteriordistribution, J , � ��m � ��¯ ��m �CB � ��m � . , is
applied,theideabeingthatsucha transitioncanonly decreasethe
differencebetweenthecurrentapproximatedistributionandthein-
variantdistribution. Thekernelusedconsistsof a fixeddimension
partbasedon a modifiedGibbssampleranda variabledimension
part basedon a birth/death- split/merge ReversibleJumpkernel.
The readeris referredto the algorithmdescribedin [5] for more
details. In orderto reducethecomputationalload, transitionsare



appliedonly on a subsetof thetotal parameterspace,correspond-
ing to thosepeakscentredrelatively nearthecurrenttime.

4. RESULTS

To maintainsimplicity, weconsideraninstanceof realdatawhere
we mayassumethereareno complicatedsequencedependentef-
fects,andthat eachof the statetransitionsis equally likely. The
prior on peakspacingwastaken to have mean,11, andvariance,
6. The varianceof the drift on peakvariancewith time wasset
to .12, which is typical of electropherogramdata. Themainpeak
of eachquadtupletwasseta-priori to have meanamplitude100
with a varianceof 400 in the channelcorrespondingto the base
in question- a mild assumption- andthe remainingpeaksof the
quadtuplet,to have mean30andvariance100.Thenoisevariance
wassetto 1; b wassetto 18. Thedatasetusedwasapproximately
15000sampleslong, of which a 70 samplewindow is considered
here.100particleswereused.

In figures1 and2 the datais shown superimposedon the de-
noisedsignalaspredictedby thetwo highestprobabilityparticles
at time 70. It is visually apparentthat in both casesthe datafit
is good. However, thoughit is quite hard to seeby eye, the 7
baseinterpretationis morestronglysupportedby thedata(likeli-
hood)thanthe6 base.Thepriorson peakspacingandamplitude,
however, balancethis in favour of the moreparsimonious6 base
model.Theprobabilitiesof thetwo models,asgivenby their fre-
quency in the particleset,were.63 and.32 for the 6 and7 base
systemsrespectively; othermodel orderswerenot stronglysup-
ported. The correctinterpretationwas in fact the 6 basesystem,
with basesequencethesameasthatshown in figure2.
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Fig. 1. Data(solid lines) with denoisedsignal(dottedlines) and
basecalls for 7 baseinterpretation.The four channelsaresuper-
imposed.

5. CONCLUSIONS

Wehavebriefly introducedtheDNA sequencingproblem,andpro-
vided a meaningfulstatisticalframework within which to repre-
sentavailable information. This framework was then translated
into onesuitablefor sequentialestimationof the posteriordistri-
butionof interestasit evolvesin time. Resultsof thealgorithmare
promising,indicatingthatthemodelselectionandfixed-parameter
problemsaretractablein this framework. A moredetaileddiscus-
sionof morecomplex modelsfor sequencingdata(bothin ablock
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Fig. 2. Dataandbasecallsfor 6 baseinterpretation

basedandsequentialframework) will be forthcomingin [4]. The
algorithmis directlyapplicableto a broadrangeof datasets.
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