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ABSTRACT

Methodsfor determiningthe letters of our geneticcode,
known asDNA sequencinggurrentlydependon clever use
of electrophoresit generatalatasetsindicative of theun-
derlying sequence.Typically the subsequenoff-line data
processings carriedout lessintelligently using a combi-
nationof heuristicmethodswith little mathematicatigour.

In this paper we presenta new robust model which is
able to accuratelypredict the effect of the mary biologi-
cal processesvhich are involved, and moreover, which is
usableon-line. Off-line methodshase beenhamperedy
the needfor processingn aslittle time as possibleafter
the datais generated;performing the processingon-line
hasenableda moreadvancedalgorithmto be usedwith as-
sociatedimproved performance. The algorithmis framed
within a Bayesianprobabilisticframework, therebyallow-

ing representatiorf the randomnatureof the generatie
processandrelieson new advancesn the burgeoningfield

of SequentiaMonte CarloMethodsto performtherequired
highly non-linearfiltering andmodelselectionoperations.

1. INTRODUCTION

Deoxyribonucleicacid (DNA) is the moleculeusedto encodethe
geneticinformation within eachof us. For our purposesDNA
canbe thoughtof asa sequencef symbols(in reality, chemical
bases}akenfrom afour letteralphabetomprising:A (Adenine),
G (Guanine)C (Cytosine),andT (Thymine).

In 1974,Sangeproposedmethodfor DNA sequencingvhich,
with technicalimprovements,has since beenalmostuniversally
accepted8]. Theideabehindthe processs simple.Initially, viaa
procesf replicationandtruncationthe DNA sequencef interest
is usedto form alarge populationof partialreplicas.Eachreplica
is identicalto the sequencef interestover a rangeof basesal-
ways commencingwith the first baseof the initial sequenceand
terminatingsomerandomdistancedown thestrand.Thatis, for the
sequenc&CGGGthe populationwould containa numberof each
of thefollowing: A, AC, ACG, ACGG,andACGGG.Eachfrag-
mentis fluorescentlylabelledaccordingto its terminatingbase.
Subsequent|ytheentirepopulationis alignedatthe startof alarge
rectangulamel, and an electricfield is applied. The fragments
progresghroughthe gel at ratesapproximatelyinverselypropor
tional to their length, resultingin the varioussubpopulationsr
riving at the endof the gelin sequencerder A laserpositioned

nearthe endof the gel excitesthe fluorescentabels,allowing an
emissiondetectorto estimatethe numberof fragmentgerminated
by a givenbasepassingateachtime instant.

After somepreprocessingfour datasetsare obtained(hence-
forth, “channels”),correspondingo thevariationof fragmentcon-
centrationwith time for eachof the four terminatingbases.This
collection of datais known as an electropherogranandis quite
clearly indicative of the underlyingbasesequence.The electro-
pherogramis a mixture of peaksin four channelswith eachbase
in thesequencassociatedvith onemajorpeakin the correspond-
ing channel andthreesecondarnpeaksin the remainingchannels
resultingfrom leakageeffects;thepeakscorrespondingo a partic-
ular basehave commonpositionandshape.An exampledataset
is shavn in figure 1.

A rangeof prior information,mainly detailingthe effect of base
sequencentheamplitudesandpositionsof thepeaksjs available
to constrainthe problem;[9] providesa goodreview. Thecurrent
stateof the art from an off-line signal processingperspectie is
describedn [3], wherea combinationof heuristicpeakdetection
algorithmsis proposed.[5] presentsa more advancedalgorithm
basedon statisticalmodelling of the underlyingprocesswith an
associatedhcreasen computationaburden.

Here,a modelsimilar to thatof [5], which is capableof repre-
sentingavailable prior information aboutthe system,is detailed.
The modelis developedin a framevork which allows sequential
updatingof therequiredinference.Theresultingalgorithmcanbe
run on-line and hasimmediateapplicationto all datasetswhich
comprisea serieof peaksarriving sequentiallyin time (for exam-
ple, somespectroscopapplications).

2. PROBLEM FORMULATION

2.1. Signal Model

We presenta modelsuitedto sequentiaprocessingf the system;
an alternatve block basedapproachis detailedin [5]. Electro-
pherogramdatais well describedas the summationof a series
of peaks,obsered in noise. A generalmodelfor electrophero-

gram datain the four channelsat time n (n € {1,...,N}),
Yo £ {Yn,1y- -, Yna}, isthus:
k
Yo =€n+ Z bl¢z (n) (1)

i=1
where k denotes the total number of bases, b; e
{bi,1,bi,2,bi,3,b;,4} is a vector defining the amplitudes in



the four channelscorrespondingo base: (andis representate

of the numberof fragmentspassingthe end of the gel at a given

time via the emissionspectraof the dyes), and ¢, (n) defines
the peak shape. e, = {en,1,€n,2,en3,6en4} representshe

noisein the systemat time n. Here, we considerthe subsetof

electropherograrmdatawherethe noisecanbe assumedsaussian
with zero mean and constantvariance, o2 (a slightly more
complicatechoisemodelis presentedhn [5]):

e, ~ N(en|0,azl4x4) 2

wherel x4 denotesthe identity matrix. In mary casesthe
peakscanbeassumedruncatedGaussiarnn shapesuchthat:

6 (n3 pi, vs) = (2m0s)™" exp {—2L (n —pi)Q} I(n—pi| < )
@

wheree is defineda-priorito besuficiently largethatfor therange
of possiblevariancesthetruncationeffectis minimal. v; denotes
thevarianceof the peak.

The “base-state”of the systemat base position i, s; S
{si,—2,8i,-1, 8i 0}, is definedas a basetriplet, e.g., {4, G,C},
with the last elementcorrespondingo the currentbase,andthe
otherelementscontainingthe previous two (the previoustwo are
includedto accounfor sequencelependeneffects,e.g.[6]).

Thefollowing prior structureis proposedor the parametersf
basei:

Si,—2:—1 = 8§—1,0:—1 4

Ai ~ G (Ailap (si), B, (si))  (5)

8i,0 ~ P (84,0[8i-1,0) 5

pi =pi—1+ 1+ A

4
bi ~ [] G (bijlon,; (si), B, (s0)) (6)
j=1
vi ~ G (vilay (vi-1), B, (vi-1)) )

whereg (.) is the Gammadistribution, anda;.; = {as,...,a;}.
The functions { as,; (si) s By j (8i) ap, By, o, B,} areconsid-
eredtime invariant and known a-priori. The statesevolve ac-
cordingto a Markovian structure.Further py ~ N (p1].), v1 ~
G (v1].), ands1,—2:0 ~ p (s1,—2:0), @ prespecifiednitial statedis-
tribution. It shouldbenotedthatin electropherogrardatathereis
almostnever morethanonebasein a given unit time intenal as
evidencedby the +1 in equation(5); the framework is extensible
to the casewheretherearemultiple peaksin aunitinterval.

2.2. State-Space Form

The setof peaksaffectingthedataattime n is givenby theindex
setZ, = {i: |n —pi| < i € {1,..., k}}. Thedataattimen is
thencompletelydefinedby:

yn = bio ("\;J_”) +en ®)

1€ELy

and, therefore, the state of the systemat time n can be writ-

ten @, £ {bi, pi, vi,s; : i € I,}. The dimensionof the state,
k, = dim Z,, varieswith time accordingto the numberof peaks
affecting the data. Here,we make the mild (andnot strictly nec-
essary)assumptiorthat k,, > 0, in orderto ensurethat, given

{6n-1,kn-1}, the prior on {0,, k,} is completelydetermined.
Theresultingmodelis a HiddenMarkov Model.

The peakspacingprior of the previous sectionrequiressome
reformulationto be usedwithin a sequentiaframevork. Given
{6r-1,kn—1}, and assumingnone of the peaksaffecting the
data at time n — 1 becomesuperfluous,the probability of a
new peakbeingintroducedis the probability as definedby the
peak spacingprior, of there being a nev peakin the intenal
(n+e€—.5,n+e+.5], wherey, £ max{Z,} is introduced
asthebaseindex of thelastpeakaffectingthe dataat time n:

p (kn = kn—l + 1|p»y"_1) =
fpe(n+e—.5,n+s+.5] g (p Py — 1|) dp
fpe(n+s+.5,oo] g (p “Pyva_1 — ]'l) dp

9)

Given thereis a new peakin this intenal, its position a-priori
is dravn accordingto G (p4,, — p+,._, — 1|.) truncatedappro-
priately The remainingvariance,amplitude, and state param-
etersof the new peakare then definedaccordingto the priors
of the previous section, and the state of the systembecomes:
60, ={0,_1, {by, Dy, ,0y,,8y, }} Withk, = k,_1 + 1.

If astateceaseso berelevantattime n, i.e., its positionis less
thann — ¢, thenthe stateat time n is deterministicallyreduced:
01k, = On_12:4,_4, kn = kn_1 — 1. Similarly, if thereis
no changan the numberof peaksaffectingthedata:0,, = 6,1,
kn = kn—1. Effectively, we have defineda sliding parametewin-
dow of variabledimension.

2.3. Estimation Objectives

In a Bayesianframework the posterior distribution at time n,
P (@1, k1:n|y1:n), is usedfor inferencewith the expectedvalue
of a function of interestf (81.», k1:») underthis posteriorgiven
by f f f (01m, kl:n)p (Blm, kl:n|y1:n) d01.,dk1.,. In most
casesincludingours,theposterioris notamenabléo closedform
analysisowing to non-linearityin the parametersandit is nec-
essaryto resortto numericalmethods. In [5] a batch process-
ing schemausingMarkov ChainMonte Carlo (MCMC) methods
is successfullyusedto simulatevariatesfrom the posterior and
male associatednferenceon quantitiesof interest. Thesemeth-
odsare,however, computationallyintensve andmale little useof
sequential-in-timestructurein the system.Here,we developanu-
mericalalgorithmto estimatethe posteriordistribution recursvely
in time for on-lineestimation.

3. SEQUENTIAL SIMULATION

3.1. Ideal Recursion

Sincethe systemis Markovian, a recursionfor calculationof the
posteriorattimesn > 1 is:

p (yn|0n7 kn)p (ona knlen—lu kn—l)
P (¥nly1m—1)
Xp (91:n—1, kl:n—llylzn—l)

p (01:71, kl:nlyl:n) =
(10)
whereattimen =1,

P (¥1|01, k1) p (01, k1)
p(y1)

p(01,k1ly1) = (11)



We emphasis¢hat, despitethetime-dependentotation,all of our
parameteraregenuinelytime varying.
3.2. Sequential Bayesian Computation

Theidealrecursioncannotbe useddirectly owing to analyticdif-
ficulties. Onealternatve is to representhe posteriorat eachtime
by a setof weightedparticles[2, 7]:

n

P
ﬁ(dom,klmlylm)=;w£’>éeg; ) (@010, krn)  (12)

where P denoteshe numberof particles,w,(f) denotesthe nor-
malisedimportanceweight associatedvith the particle of value

{Bgz)n,k%} andd ) . (-) is the deltafunction. An algo-
1:m " 1in

rithm for updatingthe particlesastime progressess [2, 7]:

Algorithm 1 - Monte Carlo Filter

Forn=2,...,N
Fori=1,...,P:

e Draw fromthe importance distribution
09 kD ~ 1 (0n, k|0 |, k,(jll,ym)

e Evaluate the unnormalised importance weights:

p (anOSf), ka)) p (955), k165, kf(jll) (i)
A A . ; Wn=1
7 (057, KP165) 1 K2 1 yin) '

T =

e Normalise the importance weights:

p -1
5 = (Z WEZ)) o
=1

e Optional: Resampleto obtain P samples approximately dis-
tributed according to p (01:n, ki:n|y1:n). Set the weights
equal.

e Optional: Apply a Markovian transition kernel invariant to
the posterior for each particle stream.

End For
End For

At timen = 1 the particles{egi),k@} aresimilarly dravn
from an initial importancedistribution, and weightedappropri-
ately

3.3. Importance Distribution

At time n the importancedistribution predictingwhethera new

peakhasbeenintroducedis chosento be a mixture of a distribu-

tion basedn a simpledeterministicpeakdetectionalgorithmand
the prior. Giventhata newv peakis proposed;he peakposition
is then generatedhccordingto a truncateduniform on the space
(n+e—.5,n+e+.5].

The varianceof the peakschangesvery slowly with time, and
sois quite predictabldrom onebaseto the next without reference
to thedata. Theprior is thereforesuficient for anefficientimpor-
tancedistribution.

Theimportanceunctionfor b, (recally,, denoteghe newest
peakaffecting the dataat time n) is obtainedby approximately
integratingout the effect of two possiblefuture peaks(in electro-
pherograndatait is very rareto have morethan5 peaksin total
affectinga givendatapointsignificantly):

w(by,|) = p(by, |Ynintectr, O1:n—1,K1:n_1) (13)

whereR is choserto be a constanof the orderof a few samples.
The approximationswve male are that the two future peaksare
at discretelocations,p* = {pi,p3}, andwith variancesp* £
{vt,v3}" equalto thevarianceof thepeaky,, . Further we assume
the amplitudesat thesepositions b* £ {b7, b;}t, andthecurrent
position are stateindependenand normally distributed a-priori.
We thenintegrate:

ﬂ-(b’Yn|') = Z /p(b'ynvb*yp*lel:n—layn:n+e+R) db*

*

pT.p3

The resulting distribution on b, is a mixture of normalswith

weightsthatcanbe calculatedanalytically The varianceof these
normalsis often artificially increasedo accountfor slight inac-

curaciesin the assumptions.Alternatively, we have found local

linearisationof this distribution, or the statespaceto be usefulin

somescenariogsee[2] for a review of thesemethods).Also, in

casesvheretheprior ontheamplitudesanbeassumedsaussian,
the amplitudescan be mamginalised(with a slight reformulation
suchRao-Blackwellizatior{7] canbe performedvia the Kalman
filter).

The importancedistribution for s, is setto be the full con-
ditional p (s, |Sy,,_1»Pvn_1sPvn» Py, ) Which can be directly
evaluated.

Proposingheinitial setof particlescanbedifficult sinceoften
parameter$or 5 or 6 basewill berequired. MCMC methodscan
be particularlyhelpful [5].

3.4. Resampling

The resamplingstepaimsto multiply or discardparticletrajecto-
riesaccordingto how importantthey areto our approximationof
theposteriodistribution. Whenaresamplingstepis performedve
usethe standardesidualmethoddescribedn [7]. Theresampling
schedulemustbe chosencarefully or degenerag canresult. The
problemcanbeisolatedby noticingthatthe stateattime n mayin-
cludepeakswhich do not yet significantlyaffect the likelihood at
time n. Therefore for thesepeaksa resamplingstepcorresponds
to are-weightingaccordingo theprior; it takestime for new peaks
to filter throughthe likelihoodfunction. If the prior deviatessig-
nificantly from the likelihood,poor resultswill follow. However,
thisis rarelythe case andprovidedthe particlecloudis relatively
large,degenerayg is usuallynot serious.

3.5. Markov Transition

Our modelis definedon a variabledimensionspacewith param-
etersfixed over moderatdime intervals. Degenerag of the stan-
dard particlefilter for suchsystemss commonlyknown. Here,



sincetheintenal of invarianceis nottoo large, MCMC transitions
canbe usedto help replenishthe particleset[1]. Thatis, a ker
nel invariantto the posteriordistribution, p (81.n, k1:n|y1:s), iS
applied theideabeingthatsuchatransitioncanonly decreas¢he
differencebetweerthecurrentapproximatelistributionandthein-
variantdistribution. The kernelusedconsistf afixeddimension
partbasedon a modifiedGibbssampleranda variabledimension
partbasedon a birth/death- split/mege ReversibleJumpkernel.
The readeris referredto the algorithmdescribedn [5] for more
details. In orderto reducethe computationaload, transitionsare
appliedonly on a subsebf thetotal parametespace correspond-
ing to thosepeakscentredrelatively nearthe currenttime.

4. RESULTS

To maintainsimplicity, we consideraninstanceof realdatawhere
we may assumehereareno complicatedsequencelependenef-
fects,andthat eachof the statetransitionsis equallylikely. The
prior on peakspacingwastakento have mean,11, andvariance,
6. The varianceof the drift on peakvariancewith time wasset
to .12, which is typical of electropherograrmiata. The main peak
of eachquadtupletwas seta-priori to have meanamplitude100
with a varianceof 400 in the channelcorrespondingo the base
in question- a mild assumption andthe remainingpeaksof the
quadtupletto have mean30 andvariancel00. The noisevariance
wassetto 1; e wassetto 18. Thedatasetusedwasapproximately
15000sampledong, of which a 70 samplewindow is considered
here.100particleswereused.

In figures1 and 2 the datais shavn superimposean the de-
noisedsignalaspredictedby the two highestprobability particles
attime 70. It is visually apparenthatin both caseshe datafit
is good. However, thoughit is quite hardto seeby eye, the 7
baseinterpretationis more strongly supportecby the data(lik eli-
hood)thanthe 6 base.The priors on peakspacingandamplitude,
however, balancethis in favour of the more parsimoniouss base
model. The probabilitiesof the two models,asgiven by their fre-
queng in the particleset,were .63 and.32 for the 6 and 7 base
systemsrespectiely; other model orderswere not strongly sup-
ported. The correctinterpretationrwasin factthe 6 basesystem,
with basesequencé¢he sameasthatshavn in figure 2.
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Fig. 1. Data(solid lines)with denoisedsignal (dottedlines) and
basecallsfor 7 baseinterpretation.The four channelsare super
imposed.
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Fig. 2. Dataandbasecallsfor 6 baseinterpretation

5. CONCLUSIONS

We have briefly introducedhe DNA sequencingroblem,andpro-
vided a meaningfulstatisticalframewvork within which to repre-
sentavailable information. This framevork was then translated
into onesuitablefor sequentiakstimationof the posteriordistri-
bution of interestasit evolvesin time. Resultof thealgorithmare
promising,indicatingthatthe modelselectionandfixed-parameter
problemsaretractablein this framewvork. A moredetaileddiscus-
sionof morecomplex modelsfor sequencinglata(bothin ablock
basedandsequentiaframenork) will beforthcomingin [4]. The
algorithmis directly applicableto a broadrangeof datasets.
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