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Abstract—Consider two remotely located binary sources X and
Y , where Y is mis-synchronized from X due to deletions and
insertions. The distribution of X is known, and Y is obtained
from X through a process of i.i.d deletions and insertions. What
is the minimum rate of information X needs to send in order to
synchronize Y to X? This is a distributed source coding problem,
so the optimal rate is the conditional entropy of X given Y .
However, the optimal rate is difficult to compute due to the
memory in the joint process (X,Y ). The transformation from
X to Y may be viewed in terms of runs as follows: some runs
of X get shorter/longer, some runs of X get deleted, and some
new runs are added. The optimal rate is difficult to compute
mainly due to the last two phenomena: deleted runs, and new
inserted runs. We start with this observation, and consider an
augmented model where the decoder has additional information
that indicates the positions of the deleted and inserted rounds.
We compute the rate required to supply this information, and
thereby obtain bounds on the optimal synchronization rate.

I. INTRODUCTION

Consider Alice and Bob observing two distributed sources
X and Y , respectively. Y is an edited version of X sequence,
where the edits consist of deletions and insertions. Under
communication rate constraints, Bob would like to reconstruct
Alice’s sequence from Y using minimal communication be-
tween him and Alice. Here is an example:{

X = abracadabradum . . .
Y = abacaddabadum . . . .

(1)

In this case, Y is obtained from X by the deletion the of
two ‘r’s, and an insertion of an an extra ‘d’ following the
original seventh letter. Bob wants to reconstruct X̂ from Y
using minimum communication between him and Alice when
neither party knows what has been deleted or inserted or
the locations of the edits. We will refer to this problem as
synchronization from deletions and insertions.

There are many motivating scenarios where such a problem
needs to be addressed. For instance, in file backup applications,
the remotely located data sources often differ only by a small
number of deletions and/or insertions. It is desirable to have a
synchronization tool that achieves successful backup by trans-
ferring minimal information. The problem of synchronization
also arises in other applications such as file sharing and online
file editing. An interesting and important question to ask is:
what is the minimal communication rate needed to achieve
synchronization?
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Fig. 1. Distributed source coding representation: X and Y are related through
an edit model

Orlitsky [1] considered this question for a model in which
the sequence Y is within a specified edit distance of X , and
Bob is allowed a limited amount of interactive communication
with Alice. Depending on number of rounds of interaction
allowed, bounds on the optimal rate of communication are
derived for the zero-error reconstruction of X .

In this work, we consider a stochastic edit model in which X
and Y are related as follows: to generate Y from X , each bit of
X is independently deleted with probability d, or an extra bit
inserted following it with probability i, or the bit is retained as
is with probability 1−d−i. We relax the requirement of zero-
error reconstruction, and require instead that the probability of
error go to zero as the length of X becomes large. Using this
criterion, we derive bounds on the minimum rate required for
synchronization.

The synchronization problem is an instance of source coding
with side-information [2], depicted in Figure 1. The sequence
Y available at the decoder (Bob) is related to X available at
the encoder (Alice) through the stochastic edit model described
above. Thus we expect the optimal synchronization rate to be
the conditional entropy rate of X given Y . While this is true
and will be established in Section III, computing H(X|Y ) is
a challenging task due to the memory inherent in the joint
distribution of (X,Y ). Note that even if X is characterized
by an i.i.d product distribution, the process of insertions and
deletions induces memory in the joint distribution.

Our approach in this paper is to define a tractable mem-
oryless problem that is close to the original synchronization
problem. In a synchronization problem, it is useful to think
of the source sequence in terms of runs of symbols rather
than individual symbols. For example, let X = 0001111,
and suppose that the bits shown in italics are deleted so that
Y = 00111. To reconstruct X , we can insert the deleted
0 anywhere in the first run, and the one anywhere in the
second run. This suggests that the synchronization problem
could be characterized by a single-letter distribution describing



how a run in X gets transformed into a run (of a different
length) in Y . Then, if we had a one-to-one correspondence
between runs in X and runs in Y , computing the optimal
synchronization rate would be straightforward. However, such
a correspondence is not possible since deletions can lead to
some runs being lost, and insertions to new runs being inserted.

The main idea of the paper is to augment the decoder with
auxiliary sequences which indicate where runs were deleted
and inserted. To obtain bounds on the optimal synchronization
rate, we compute the synchronization rate given these auxiliary
sequences as well as the additional rate needed to provide these
sequences. We consider binary first-order Markov sources X
and an i.i.d process of deletions and insertions to obtain Y .
Markov sources are used to model text, images, and video,
where the synchronization problem often appears in appli-
cations such as distributed editing and file sharing. Further,
first-order Markov processes have independently distributed
run-lengths which leads to analytical bounds on the optimal
rate; besides, they include i.i.d sources as a special case.

The bounds obtained here can be used to evaluate the
performance of practical synchronization protocols, e.g., [3]–
[6]. Though these protocols all use interaction, our bounds are
still valid. This is because that the optimal rate for a problem
of source coding with side information, even with interaction,
is the conditional entropy rate of X given Y . We note that this
is true only when the requirement of the synchronization code
is a vanishing probability of error, which is the case with the
above protocols. For zero-error synchronization, interaction
can strictly decrease the optimal synchronization rate [1].

Since source coding with side-information and channel cod-
ing are dual problems [7], [8], the synchronization problem is
closely related to the problem of communicating over a chan-
nel with synchronization errors. In particular, the bounding
techniques presented here can be used to yield lower bounds
on the capacity of channels with synchronization errors. There
is a large body of work on synchronization channels [9],
[10], and on the deletion channel in particular [11]–[18]. We
mention that the idea of augmenting the channel output with
locations of deleted runs was used to obtain an upper bound
to the deletion channel capacity in [14].

II. PRELIMINARIES

We use uppercase letters to denote random variables, un-
derlined letters for random vectors, and bold-face letters
for random processes. The source sequence available at the
encoder has length n and is denoted X = (X1, X2, . . . , Xn).
Y is the corresponding sequence at the decoder which needs
to be synchronized to X . Its length is denoted m. We note
that m is random, and determined by the realization of the
deletion/insertion process.

To keep the exposition simple, we assume that the source
process X is binary valued and symmetric, i.e., P (Xj =
0) = P (Xj = 1) = 0.5, ∀j. The ideas presented here can
be generalized in a fairly straightforward manner to sources
which are asymmetric or have larger alphabet. Logarithms are
with base 2, and entropy and mutual information are measured

in bits. h(.) denotes the binary entropy function. For any
0 < α ≤ 1, ᾱ , 1− α.

X is a first-order Markov source with parameter γ, i.e.,

P (Xj = 0) = P (Xj = 1) = 0.5,

P (Xj = 1|Xj−1 = 1) = P (Xj = 0|Xj−1 = 0) = γ, ∀j.
(2)

We note that the X is i.i.d when γ = 0.5. We consider three
different edit models relating X and Y:

1) Deletion Model: Y is generated from X by indepen-
dently deleting each bit with probability d, or retaining
the bit with probability 1− d.

2) Insertion Model: Y is generated as follows. After each
bit of X, one bit may be inserted with probability i.
When a bit is inserted after Xj , the inserted bit is
equal to Xj with probability α, and equal to X̄j with
probability 1 − α. When α = 1, this is the ‘sticky’
insertion model [19].

3) Deletion + Insertion Model: This general case combines
the two above models. To generate Y, each bit of X is
independently deleted with probability d, or an extra bit
inserted after it with probability i, or the bit is retained
as is with probability 1− d− i. When a bit is inserted
after Xj , the inserted bit is equal to Xj with probability
α, and equal to X̄j with probability 1− α.

The edit model determines the joint distribution of (X,Y).
For a given edit model, we now define a synchronization code.

Definition 1: An (n, 2NR) synchronization code with block
length n and rate R consists of

1) An encoder mapping

e : {0, 1}n → {1, . . . , 2nR},

2) A decoder mapping

g : {0, 1}∗ × {1, . . . , 2nR} → {0, 1}n

where

{0, 1}∗ ,

 ∪n
k=0{0, 1}k for the deletion model,

∪2n
k=n{0, 1}k for the insertion model,

∪2n
k=0{0, 1}k for the del. + ins. model.

The probability of error of an (n, 2nR) synchronization code
is

Pe,n = Pr(g(Y , e(X)) ̸= X)

A synchronization rate R is achievable if there exists a se-
quence of (n, 2nR) codes such that Pe,n → 0 as n → ∞. The
infimum of all achievable rates is the optimal synchronization
rate R∗.

III. THE OPTIMAL SYNCHRONIZATION RATE

As explained in Section I, the synchronization problem
is a distributed source coding problem. If the joint process
(X,Y) is ergodic, then the optimal synchronization rate is
the conditional entropy rate of X given Y [20]. The result
is also true if is the joint process is information stable [21].



When X is a first-order Markov source and Y is generated
according to either of the three edit models, the joint process
(X,Y) is information stable [10]. We thus have the following
characterization of the optimal synchronization rate.

Proposition 1: Let X be a first-order Markov source, and
let Y be generated according to one of the edit models de-
scribed in Section II. Then the optimal rate for synchronizing
Y to X is

R∗ = lim
n→∞

1

n
H(X|Y ).

Proof: The information stability of the joint process
(X,Y) can be shown using methods analogous to the proof
of Theorem 1 in [10]. Then the limit of 1

nH(X|Y ) exists, and
is the optimal synchronization rate, as explained above.

The remainder of the paper is devoted to computing the
optimal synchronization rate for each of the three edit models.
We will see that in each of these problems, it is difficult to
compute 1

nH(X|Y ) exactly. So we develop a bounding tech-
nique that yields good bounds on the optimal synchronization
rate.

In the sequel, we will often think of the source as a sequence
of alternating runs of zeros and ones. More precisely, a binary
source sequence may be represented by a sequence of positive
integers representing the lengths of its runs, and the value of
the first bit (to indicate whether the first run has zeros or ones).
For example, the sequence 0001100000 can be represented as
(3, 2, 5) if we know that the first bit is 0. The value of the first
bit of X can be communicated to the decoder with vanishing
rate, and we will assume this has been done at the outset.
Hence, denoting the length of the jth run of X by LXj we
have the following equivalence:

X ↔ (LX1, LX2, . . .). (3)

For the first-order Markov binary source of (2), the run-lengths
are independent and geometrically distributed, i.e.,

Pr(LXj = r) = γr−1(1− γ), r = 1, 2, . . . (4)

Thus a first-order binary Markov source is equivalent to a
memoryless source with alphabet N, with symbols drawn
independently according to (4).

IV. DELETION MODEL

The joint distribution of (X,Y ) for the deletion model can
be expressed as follows [15].

P (X,Y ) = P (X) · P (Y |X) with

P (X) =
n∏

j=1

P (Xj |Xj−1), P (Y |X) = S(X,Y )(1− d)mdn−m

(5)

where d is the deletion probability, m is the length of Y , and
S(X,Y ) is the number of times Y appears as a subsequence
in X . For large n, the length m of Y will be close to n(1−d)
due to the law of large numbers. The term S(X,Y ) represents
the main challenge in obtaining an analytical expression for
H(X|Y ) for the deletion model.

To motivate our bounding technique, consider the following
(X,Y ) pair, generated according to the deletion model.

X = 000111000

Y = 0010.
(6)

For this pair (X,Y ), we can associate each run of Y
uniquely with a run in X . Denote by (LX1, LX2, LX3) and
(LY 1, LY 2, LY 3) the lengths of the three runs of X and Y ,
respectively. Recall that

X ↔ LX1 LX2 LX3, Y ↔ LY 1 LY 2 LY 3. (7)

Therefore, for the (X,Y ) pair in (6), we can write

P (Y = 0010|X = 000111000)

= P (LY 1 = 2 LY 2 = 1 LY 3 = 1|LX1 = 3 LX2 = 3 LX3 = 3)

= P (LY 1 = 2|LX1 = 3)P (LY 2 = 1|LX2 = 3)P (LY 3 = 1|LX3 = 3).
(8)

We make the following observation: If no runs in X are
completely deleted, then the conditional distribution of Y
given X may be written as a product distribution of run-length
transformations:

P (Y |X) = P (LY 1|LX1)P (LY 2|LX2)P (LY 3|LX3) . . . (9)

Since the run-lengths of the source sequence X are indepen-
dently distributed according to (4), the joint distribution can
also be written in product form:

P (X,Y ) = P (LX1)P (LY 1|LX1) · P (LX2)P (LY 2|LX2) . . .

where for all runs j,

P (LXj = r, LY j = s) = P (LXj = r) · P (LY j = s|LXj = r)

= γr−1(1− γ) ·
(
r

s

)
dr−s(1− d)s, r = 1, 2, . . . ; 1 ≤ s ≤ r.

(10)

Thus, if the deletion process acting on X to generate Y did
not completely delete any runs of X , the joint distribution
of (X,Y ) can be characterized in terms of a single-letter
distribution of run-lengths given by (10).

Of course, in reality, we do have runs of X that are
completely deleted. For example, consider X = 000111000,
and Y = 000. Y has only one run, and we cannot associate
it uniquely with a run of X: Y could have been obtained
from just the first run of X , or from just the third run, or a
combination of the first and third runs.

Now suppose that in addition to Y , the decoder is also given
an auxiliary sequence S = (S1, . . . , Sm), where Sj ∈ 0, 1, . . .
is the number of runs completely deleted in X between the
bits corresponding to Yj and Yj+1. For example, if X =
00 011100︸ ︷︷ ︸ 0 and the bits shown in italics were deleted to
give Y = 000, then S = (0, 1, 0). On the other hand, if
the last six bits were all deleted, i.e., X = 000 111000︸ ︷︷ ︸, then

S = (0, 0, 2).1

1Y has length m. Sm corresponds to the number of runs deleted after the
bit in X corresponding to Ym.



The auxiliary sequence S enables us to augment Y with
the positions of missing runs. Consider X = 000111000, as
before. If the decoder were given Y = 000 and S = (0, 1, 0),
it can form the augmented sequence Y ′ = 00 − 0, where a
− denotes a missing run, or equivalently a ‘run of length 0’
in Y . Similarly, if the decoder were given Y = 000 and S =
(0, 0, 2), the augmented sequence would be Y ′ = 000−−.

With the “−” markers indicating deleted runs, the number
of runs in the augmented sequence Y ′ is equal to the number
of runs in X . We can therefore associate each run of the
augmented sequence Y ′ uniquely with a run in X . Denote
by LY ′1, LY ′2, . . . the run-lengths of the augmented sequence
Y ′, where LY ′ j = 0 if the run is a −. Then, we have

P (X,Y ′) = P (LX1)P (LY ′1|LX1)·P (LX2)P (LY ′2|LX2) . . .
(11)

where ∀j:

P (LXj = r) = γr−1(1− γ), r = 1, 2, . . .

P (LY ′ j = s|LXj = r) =

(
r

s

)
dr−s(1− d)s, 0 ≤ s ≤ r.

(12)

Due to this product-form decomposition of P (X,Y ′), and
because the number of runs in X is close to n(1 − γ), the
conditional entropy rate is

1

n
H(X|Y ′) = (1− γ + ϵn)H(LX1|LY ′1), (13)

where ϵn is a sequence that → 0 as n → ∞.
Lower Bound: The above argument shows that we can ob-

tain a computable lower bound to the optimal synchronization
rate by augmenting the decoder with the sequence S. Since
conditioning reduces entropy, we have

H(X|Y ) ≥ H(X|Y S) = H(X|Y ′) (14)

where the last equality holds because (Y , S) is equivalent to
Y ′. Thus, using (13), we obtain the following lower bound to
the optimal rate:

R∗(d) ≥ lim
n→∞

1

n
H(X|Y S) = (1− γ)H(LX1|LY ′1).

Upper Bound: We can obtain an upper bound to the optimal
rate by calculating the extra rate required to provide the
decoder with the auxiliary sequence S. We have

H(X|Y ) ≤ H(X,S|Y ) = H(S|Y ) +H(X|S Y ). (15)

The term 1
nH(S|Y ) represents the additional rate needed to

convey the auxiliary sequence to the decoder. To compute
H(S|Y ), we have

H(S|Y ) =
m∑
j=1

H(Sj |Sj−1 Y )

(a)
=

m∑
j=1

H(Sj |Yj Yj+1)

(b)
= n(1− d± ϵn)H(S1|Y1 Y2).

(16)

where ϵn → 0 as n → ∞. Here, (a) holds because X is first
order Markov, and the deletion process is i.i.d. If Yj = Xk,
and Yj+1 = Xk′ for some indices (k, k′), the values of the
deleted bits between Xk and Xk′ are independent of all other
variables given the values of Xk and X ′

k. (b) holds because
the length of Y concentrates around n(1− d) due to the law
of large numbers.

To calculate H(S1|Y1Y2), first observe that if Y1 = Y2, then
S1, the number of deleted runs between Y1 and Y2 belongs
to the set {0, 1, 3, 5, . . .}. If Y1 ̸= Y2, then S1 belongs to the
set {0, 2, 4, 6, . . .}. It can be shown [15] that for the deletion
model, Y is also a first-order Markov sequence with parameter
q, where

q =
γ + d− 2γd

1 + d− 2γd
. (17)

Hence,

H(S1|Y1Y2) = qH(S1|Y1 = Y2) + (1− q)H(S1|Y1 ̸= Y2).

Each of the terms in the above equation can be calculated and
substituted in (16) to obtain

lim
n→∞

H(S|Y )

n
= (1− d)H(S1|Y1Y2)

=
γ(1− d)2

1− γd
log2

q(1− γd)

γ(1− d)
+

βθ(1− d)

(1− θ)2
log2

1

θ

+
βθ(1− d)

1− θ2
log2

q

β
+

β(1− d)

1− θ2
log2

1− q

β
,

(18)

where

q , γ + d− 2γd

1 + d− 2γd
, θ , (1− γ)d

1− γd
, β , (1− γ)(1− d)

(1− γd)2
.

We omit the details of the calculation, and state the lower and
upper bounds in the following proposition.

Proposition 2: Let X be a binary first-order Markov source
with parameter γ, and let Y be generated according to the
deletion model with deletion probability d. Then the optimal
synchronization rate R∗(d) can be bounded as

lim
n→∞

1

n
H(X|Y S) ≤ R∗(d) ≤ lim

n→∞

1

n
(H(S|Y ) +H(X|Y S))

where limn→∞
1
nH(S|Y ) is given by (18) and

lim
n→∞

1

n
H(X|Y S) =

(1− d)(2− γ − γd) log2
1

1−γd

(1− γd)

+
d(1− γ)2h(dγ)

(1− dγ)2
+

(
d− d(1− γ)2

(1− γd)2

)
log2

1

γd
+

(1− γ)2

γ
S,

with

S , −
∞∑

k=1

∞∑
j=1

((1− d)γ)k (dγ)j
(
j + k

k

)
log2

(
j + k

k

)
.

Figure 2 shows the upper and lower bounds of Proposition
2 for a first-order Markov source with γ = 0.75 for various
values of d. We see that the gap between the upper and lower
bounds grows with d. This is because as d increases from 0,
more runs are deleted, and we need a larger rate to augment
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Fig. 2. Upper and lower bounds on the optimal rate for the deletion model
for a first-order Markov source with parameter γ = 0.75. The entropy/bit of
X = h(γ) is also shown.

the decoder with S. Around d = 0.5, the upper bound starts
exceeding the per-symbol entropy of the source h(γ). Hence,
for d > 0.5, it is not worth spending the additional rate to
equip the decoder with the sequence S of deleted runs; it is
more efficient to just send the entire X sequence.

The price we pay (over the optimal rate) for augmenting
the decoder with the sequence S is

1

n
(H(X|Y )−H(X S|Y )) =

1

n
H(S|XY ).

In words, H(S|X Y ) represents the uncertainty in the posi-
tions of the deleted runs given both X and Y . As an example,
consider

X = 001100 Y = 00.

Given both X and Y , we know that the run of ones was
deleted, but we do not know where the deleted run markers
should be inserted. It is possible to bound H(S|XY ) by
calculating the entropy of such events, and thereby improve
the upper bound of Proposition 2. This will be discussed in
an extended version of this paper.

V. INSERTION MODEL

In the insertion model, an extra bit may be inserted after
each bit of X with probability i, where 0 < i < 1. When a
bit is inserted after Xj , the inserted bit is equal to Xj with
probability α, and equal to X̄j with probability 1 − α. We
call the former a duplication, and the latter a complementary
insertion. For large n, from the law of large numbers, the
length m of Y will be close to n(1 + i).

First consider the case of α = 1, i.e., we only have dupli-
cations. Here, we can associate each run of Y with a unique
run in X , which leads to a product-form representation for the
joint distribution P (X,Y ). As before, denoting the runs of X
and Y by LX1, LX2, . . . and LY 1, LY 2, . . ., respectively, we

have:

P (X,Y ) = P (LX1LX2 . . .) · P (LY 1LY 2 . . . |LX1LX2 . . .)

= P (LX1)P (LY 1|LX1) · P (LX2)P (LY 2|LX2) . . .
(19)

where ∀j:

P (LY j = s|LXj = r) =

(
r

s− r

)
is−r(1− i)2r−s, r ≤ s ≤ 2r.

(20)

Therefore, the optimal synchronization rate when α = 1 is

lim
n→∞

1

n
H(X|Y ) = (1− γ)H(LX1|LY 1),

which is straightforward to compute using (20). We note that
the channel coding problem corresponding to α = 1, dubbed
the sticky insertion channel, was studied in [19].

For 0 < α < 1, the inserted bits may create new runs, and
so we cannot associate each run of Y with a run in X . To see
this, consider the following example. Let

X = 000111000, Y = 001011100000, (21)

where the inserted bits are indicated in italics. There is one
duplication - in the third run, and two complementary inser-
tions - in the first and second runs. While a duplication never
introduces a new run, a complementary insertion introduces a
new run (e.g., the 1 inserted in the first run), except when it
occurs at the end of a run of X (the 0 inserted at the end of
the second run).

For 0 < α < 1, it appears difficult to even write a succinct
expression for the joint distribution P (X,Y ), so calculating
the conditional entropy rate exactly is not feasible.

Suppose now that an auxiliary sequence T = (T1, . . . , Tm)
of length m is available at the decoder, where Tj = 1 if bit Yj

is a complementary insertion, and Tj = 0 otherwise. For the
(X,Y ) pair in (21), T = (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0) since
only the first two insertions are complementary.

Using the auxiliary sequence T , the decoder can remove the
complementary insertions from Y (the bits indicated by the
ones in T ) to form an updated sequence Y ′. The runs of Y ′

will be in one-to-one correspondence with the runs of X . The
auxiliary sequence T can be used to obtain a computable upper
bound on the optimal synchronization rate for the insertion
model as follows.

H(X|Y ) ≤ H(X,T |Y )

= H(T |Y ) +H(X|T Y )

≤ H(T |Y ) +H(X|Y ′)

(22)

where the last inequality holds because Y ′ is a function
of Y and T , obtained by removing just the complementary
insertions from Y . We now compute each of the terms in (22).

Computing H(T |Y ): The term 1
nH(T |Y ), which represents

the additional rate needed to convey the auxiliary sequence to



the decoder, can be upper bounded as follows. We have

H(T |Y ) =
m∑
j=1

H(Tj |T j−1 Y )

≤
m∑
j=1

H(Tj |Tj−1 Yj−1 Yj)

= n(1 + i± ϵn)H(Tj |Tj−1 Yj−1 Yj).

(23)

Observe that that Tj = 0 if Tj−1 = 1 since the model allows
only one insertion after each bit. Also note that Tj = 0 if the
triple (Yj−1, Yj) is not equal to either (1, 0) or (0, 1). Using
the notation (y, ȳ) to represent either a (1, 0) or (0, 1), we need
to consider three different ways in which (Yj−1 = y, Yj = ȳ)
can occur with Tj−1 = 0: (original bit, inserted bit), (original,
original), and (inserted, original). Out of these three ways,
only the first corresponds to Tj = 1. In a typical Y sequence
of length close to n(1 + i), the number of times each of the
above patterns appears can be calculated and is given below:

Pattern (Yj−1 = y, Yj = ȳ No. of occurrences
(original, inserted) niᾱ
(original, original) n(1− γ)(1− i)
(inserted, original) niα(1− γ)

Hence the total number of times the pattern (y, ȳ) appears
in the sequence Y is the sum of the quantities in (V). This
is equal to n(1 − γ + γiᾱ), where The conditional entropy
H(Tj |Tj−1, Yj−1, Yj) in (23) is thus equal to

H(Tj |Tj−1 Yj−1Yj) =
n(1− γ + γiᾱ)

n(1 + i)
h

(
iᾱ

1− γ + γiᾱ

)
.

(24)
Using this in (23), we obtain

lim
n→∞

1

n
H(T |Y ) ≤ (1− γ + γiᾱ)h

(
iᾱ

1− γ + γiᾱ

)
. (25)

Computing H(X|Y ′): Recall that Y ′ is the sequence formed
from Y by removing the complementary insertions. The runs
of X and Y ′ are in one to one correspondence, and so the
joint distribution of (X,Y ′) can be expressed as a product of
P (LXj , LY ′ j), j = 1, 2, . . ., where LXj (LY ′ j) represents the
length of the jth run of X (Y ). Thus we have

H(X|Y ′) = n(1− γ ± ϵn)H(LX1|LY ′1)

where ϵn → 0 as n → ∞. Since only duplications occur
in the LXj → LY j transformation, the joint distribution
P (LXj , LY ′ j) for all runs j can be written as

P (LXj = r) = γr−1(1− γ), r = 1, 2, . . .

P (LY ′ j = s|LXj = r) =

(
r

s− r

)
(iα)s−r(1− iα)2r−s, r ≤ s ≤ 2r.

(26)

Using this, we can compute H(LX1|LY ′1) and obtain

lim
n→∞

1

n
H(X|Y ′) = (1− γ)H(LX1|LY ′1).

The upper bound on the optimal rate for the insertion model
is given by the following proposition.
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Fig. 3. Upper bound on the optimal rate for the insertion model for first-
order Markov source with parameter γ = 0.75. Curves for α = 0.5, 0.8, and
1 are shown.

Proposition 3: Let X be a binary first-order Markov source
with parameter γ, and let Y be generated according to the in-
sertion model with duplication probability iα, and complemen-
tary insertion probability iᾱ. Then the optimal synchronization
rate R∗(i, α) can be upper bounded as

R∗(i, α) ≤ (γ̄ + γiᾱ)h

(
iᾱ

γ̄ + γiᾱ

)
+ γ̄H(LX1|LY ′1)

where H(LX1|LY ′1) is computed using the joint distribution
in (26).

Remarks: To obtain the upper bound, we need a rate of
1
nH(T |Y ) to augment the decoder with the auxiliary se-
quence T . Given T , the decoder needs an additional rate of
1
nH(X|TY ). This is reflected in the second line of (22). The
inequality in third line of (22) may be interpreted as follows.
Instead of using the sequences (T , Y ) directly, the decoder
only uses a function Y ′ of these sequences. (Recall that Y ′

is formed by removing the complementary insertions in Y ,
which correspond to the ones in T .) We do this because the
joint distribution of (X,Y ′) can be decomposed as a product
of runs, with a single-letter distribution given by (26).

However, we pay a price for this tractability because using
Y ′ instead of (T , Y ) is sub-optimal in general. To see this,
consider the extreme case of i = 1 with some 0 < α < 1.
This means there is an insertion after every bit of X . The
synchronization rate H(X|Y ) is zero because the decoder
can just discard all the even bits of Y to recover X . In
contrast, H(X|Y ′) is strictly positive since the decoder cannot
determine the duplications exactly once the complementary
insertions are removed.

This is illustrated in Figure 3, where the upper bound of
Proposition 3 is plotted for a first-order Markov source X
with γ = 0.75. The entropy of this source is 0.811 bits/source
symbol. For α = 1, there are only duplications, and there is
no auxiliary sequence. Therefore the upper bound is tight and
is equal to the optimal synchronization rate. Accordingly, for
α = 1, the synchronization rate goes to zero as i gets close to
1. However, the upper bound is clearly not tight for α = 0.5



and 0.8 since it does not go to 0 as i gets large. The smaller
the α, the greater the fraction of complementary insertions,
and larger the overhead for large i.

Computing the quantity H(X|TY ) exactly will significantly
improve the upper bound for large i, as well provide a
lower bound on the optimal synchronization rate. This is an
interesting direction for future work.

VI. DELETION + INSERTION MODEL

In this model, to generate Y from X , each bit of X is
deleted with probability d, or an extra bit may be inserted
with probability i, or the bit is retained as is with probability
1 − d − i. When a bit is inserted, it is a duplication with
probability α, and a complementary insertion with probability
1−α. For large n, from the law of large numbers, the length
m of Y will be close to n(1 + i− d).

We can think of Y as being generated from X in two steps:
First generate an intermediate sequence Z from X by deleting
each bit with probability d. Then, after each bit of Z, an extra
bit is inserted with probability i′ , i

1−d . Inserted bits are
duplications with probability α, or complementary insertions
with probability 1− α.

One way to synchronize Y to X is first recover Z with
the rate specified by Proposition 3, and then recover X from
Z using the rate specified by Proposition 2. However, this is
not an efficient way of synchronizing because it does not take
advantage of the fact that deletions and duplications within
the same run cancel each other out. We propose a better way
to synchronize by considering two auxiliary sequences at the
decoder - one indicating complementary insertions, and the
other indicating deleted runs.

Suppose the decoder is given two auxiliary sequences, T
and S. T is a sequence of the same length as Y indicating the
complementary insertions in Y . Y has length approximately
n(1−d+i), out of which there are close to niᾱ complementary
insertions. As in the insertion model, the decoder uses T to
eliminate the complementary insertions from Y to form the
sequence Y ′, which has length approximately n(1− d+ iα).
Now another, auxiliary sequence S indicates the positions
where new runs need to be inserted in Y ′. Using this, we
can create an augmented sequence Y ′′ in which missing runs
are indicated by “-” markers, as in Section IV. The runs of
the augmented sequence Y ′′ are in one to one correspondence
with the runs of X .

The auxiliary sequences (S, T ) can be used to obtain a
computable upper bound on the optimal synchronization rate
for the deletion+insertion model as follows. We have

H(X|Y ) ≤ H(X,T , S|Y )

= H(T |Y ) +H(S|T Y ) +H(X|S T Y )

≤ H(T |Y ) +H(S|Y ′) +H(X|Y ′′)

(27)

where the last inequality holds because (a) Y ′ is a function
of Y and T , obtained by removing the complementary in-
sertions from Y , and (b) Y ′′ is equivalent to (S, Y ′). The
term H(S T |Y ) represents the bits needed to convey the
auxiliary sequences to the decoder. In order to obtain a

single-letter characterization, this term has been bounded by
H(T |Y ) + H(S|Y ′). We now compute each of the terms in
(27).

Computing H(T |Y ): We have

H(T |Y ) =
m∑
j=1

H(Tj |T j−1 Y )

≤
m∑
j=1

H(Tj |Tj−1, Yj−1, Yj)

= n(1 + i− d± ϵn)H(Tj |Tj−1 Yj−1Yj)

(28)

The conditional entropy H(Tj |Tj−1, Yj−1, Yj) in (28) can be
calculated in manner similar to Section V is equal to

H(Tj |Tj−1Yj−1Yj) =

(
q̄ + qi′ᾱ

1 + i′

)
h

(
i′ᾱ

q̄ + qi′ᾱ

)
(29)

where i′ , i
(1−d) and q , γ+d−2γd

1+d−2γd . Using this in (23), we
obtain

lim
n→∞

1

n
H(T |Y ) ≤ (q̄(1− d) + qiᾱ)h

(
iᾱ

q̄(1− d) + qiᾱ

)
.

(30)
Computing H(S|Y ′): Given (T , Y ), we can remove the

complementary insertions from Y to form Y ′, whose length
is approximately n(1− d+ iα). We have

H(S|Y ′) =
∑
j

H(Sj |Sj−1 Y )

≤ n(1− d+ iα)H(Sj |Y ′
j Y ′

j+1).

(31)

H(Sj |Y ′
j Y ′

j+1) can be calculated to be

H(Sj |Y ′
j Y ′

j+1) =
1

1 + i′α

[(
i′α+

γ(1− d)

1− γd

)
log2

i′α+ q

i′α+ γ(1−d)
1−γd

+
βθ

1− θ2
log2

i′α+ q

β
+

βθ

(1− θ)2
log2

1

θ
+

β

1− θ2
log2

1− q

β

]
(32)

where

i′ , i

1− d
, q , γ + d− 2γd

1 + d− 2γd
, θ , (1− γ)d

1− γd
, β , (1− γ)(1− d)

(1− γd)2
.

Computing H(X|Y ′′): The runs of X are in one to one
correspondence with the runs of Y . The joint distribution
of (X,Y ′′) can therefore be expressed as a product of
P (LXj , LY ′′ j), j = 1, 2, . . ., where LXj (LY ′′ j) represents
the length of the jth run of X (Y ). The conditional distribution
ps|r , P (LY ′ j = s|LXj = r) can be written as

ps|r =
∑
ni∈I

(
r

ni, r + ni − s

)
(iα)nidr+ni−s(1− d− iα)s−2ni ,

0 ≤ s ≤ 2r.
(33)

where I, the set of possible values for the number of
insertions, is given by

I =
{0, 1, . . . , ⌊ s

2⌋} s ≤ r,
{s− r, . . . , ⌊ s

2⌋} s > r,
(34)



0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d = i

U
pp

er
 b

ou
nd

Entropy of X = 0.811 bits/symbol 

α =1

α =0.8

Fig. 4. Upper bound on the optimal rate for the deletion+insertion model
with d = i for first-order Markov source with parameter γ = 0.75. Curves
for α = 0.8 and α = 1 are shown.

Using this, we can compute H(LX1|LY ′′1), and obtain

lim
n→∞

1

n
H(X|Y ′′) = (1− γ)H(LX1|LY ′′1).

The upper bound on the optimal rate for the deletion+insertion
model is given by the following proposition.

Proposition 4: Let X be a binary first-order Markov source
with parameter γ, and let Y be generated according to the
deletion+insertion model with deletion probability d, duplica-
tion probability iα, and complementary insertion probability
iᾱ. Then the optimal synchronization rate R∗(d, i, α) can be
upper bounded as

R∗(d, i, α) ≤ γ̄H(LX1|LY ′′1) + T1 + T2

where H(LX1|LY ′′1) is computed using the joint distribution
in (33) and

T1 = (q̄(1− d) + qiᾱ)h

(
iᾱ

q̄(1− d) + qiᾱ

)
,

T2 = (1− d)

[(
i′α+

γ(1− d)

1− γd

)
log2

i′α+ q

i′α+ γ(1−d)
1−γd

+
βθ

1− θ2
log2

i′α+ q

β
+

βθ

(1− θ)2
log2

1

θ
+

β

1− θ2
log2

1− q

β

]
,

i′ , i

1− d
, q , γ + d− 2γd

1 + d− 2γd
, θ , (1− γ)d

1− γd
, β , (1− γ)(1− d)

(1− γd)2
.

The upper bound is plotted in Figure 4 for a first-order
Markov source X with γ = 0.75 with d = i . The two curves
correspond to duplication probability α = 0.8 and α = 1.

VII. CONCLUSION

We considered the problem of determining the minimal
rate for synchronizing two sequences which differ from one
another by a process of i.i.d deletions and insertions. Though
this is essentially a distributed source coding problem, the
optimal rate is difficult to compute due to the memory in
the joint distribution of the two sources. Our approach was to
augment the decoder with minimal extra information to reduce
it to a tractable memoryless problem. This extra information

indicated the locations of deleted and inserted runs. One
obvious question is: are there other choices for the auxiliary
sequences which result in lower overhead, but still result in
tractable problem? As discussed at the end of Sections IV and
V, even with the current choice of auxiliary sequences, we can
improve the bounds if we can precisely compute the additional
rate to supply these sequences. Another interesting direction
is to use these techniques to obtain good lower bounds on the
capacity of channels with synchronization errors. This will be
addressed in an upcoming paper.
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