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Abstract—Consider a binary channel with deletions and inser-
tions, where each input bit is transformed in one of the following
ways: it is deleted with probability d, or an extra bit added
after it with probability i, or it is transmitted unmodified with
probability 1− d− i. We obtain a lower bound on the capacity
of this channel. The transformation of the input sequence by
the channel may be viewed in terms of runs as follows: some
runs of the input sequence get shorter/longer, some runs get
deleted, and some new runs are added. The capacity is difficult
to compute mainly due to the last two phenomena: deleted
runs, and new inserted runs. We consider a decoder which first
decodes the positions of the deleted and inserted runs, and then
the transmitted codeword. Analyzing the performance of such a
decoder leads to a computable lower bound on the capacity.

I. INTRODUCTION

Consider a binary input channel where for each bit (denoted
x), the output is generated in one of the following ways:

• The bit is deleted with probability d,
• An extra bit is inserted after x with probability i. The

extra bit is equal to x with probability α, and equal to
1− x with probability 1− α,

• No deletions or insertions occur, and the output is x with
probability 1− d− i.

The channel acts independently on each bit. We refer to this
channel as the deletion+insertion channel. If the channel input
is a sequence of n bits, the length of the output will be close
to n(1 + i− d) for large n due to the law of large numbers.

When i = 0, the above model is the deletion channel which
has been studied in several recent papers, e.g., [1]–[8]. When
d = 0, we obtain the insertion channel. The insertion channel
with α = 1 is the sticky channel [9], where all insertions are
duplications. We also note that a different channel model with
bit flips and synchronization errors was studied in [10], [11].

In this work, we obtain lower bounds on the capacity
of the deletion+insertion channel. Our starting point is the
result of Dobrushin [12] for general synchronization channels
which states that the capacity is given by the maximum of
the mutual information per bit between the input and output
sequences. There are two challenges to computing the capacity
through this characterization. The first is evaluating the mutual
information, which is a difficult task because of the memory
inherent in the joint distribution of the input and output
sequences. The second challenge is to optimize the mutual
information over all input distributions.

In this paper, we choose the input distribution to be the
class of binary first-order Markov processes and focus on the
problem of evaluating the mutual information. It is known
that first-order Markov input distributions yield good capacity
lower bounds for deletion channels [1], [2] and sticky channels
[9], which are special cases of the deletion+insertion channel.
This suggests they are likely to perform well on the dele-
tion+insertion channel as well.

For a synchronization channel, it is useful to think of the
input and output sequences in terms of runs of symbols rather
than individual symbols. (The runs of a binary sequence are its
alternating blocks of contiguous zeros and ones.) If there was
a one-to-one correspondence between the runs of the input
sequence X and those of the output sequence Y , we could
write the conditional distribution P (Y |X) as a product distri-
bution of run-length transformations; computing the mutual in-
formation would then be straightforward. Unfortunately, such
a correspondence is not possible since deletions can lead to
some runs being lost, and insertions to new runs being inserted.
The main idea of the paper is to use auxiliary sequences which
indicate the positions (in the output sequence) where runs were
deleted and inserted. We will consider a decoder that first
decodes the auxiliary sequences, and then the input sequence
X . We derive a computable expression for the maximum rate
achievable with such a decoder, and thus obtain a lower bound
on the capacity.

A related idea was used in [4], where a genie-aided decoder
with access to the locations of deleted runs was used to
obtain an upper bound on the deletion capacity. We note
that Dobrushin’s capacity characterization was also used in
[3] to obtain bounds on the deletion capacity. The auxiliary
sequences in this paper are quite different from the one used in
[3], resulting in a different mutual information decomposition.
The decomposition in [3] results in the best known achievable
rates for channels with deletions and duplications, but does not
apply to channels with general insertions. Our approach yields
the first characterization of achievable rates for channels with
deletions as well as insertions.

To develop our ideas, we start with the insertion channel
(d = 0) in Section III, and derive a lower bound on its capacity.
For this channel, previous bounds exist only for the special
case of sticky channels (α = 1) [9]. In Section IV, we derive
a lower bound on the capacity of the deletion channel (i = 0),



and compare it with the best known lower bounds. In Section
V, the ideas of Sections III and IV are combined to obtain a
lower bound for the deletion+insertion capacity. Due to space
constraints, we only give a brief sketch of the proofs of two
results. Detailed proofs will be given in an extended version.

II. PRELIMINARIES

Notation: N0 denotes the set of non-negative integers, and N
the set of natural numbers. h(.) is the binary entropy function,
and for any 0 < α ≤ 1, ᾱ , 1 − α. We use uppercase
letters to denote random variables, bold-face letters for random
processes, and superscript notation to denote random vectors.
Thus the channel input sequence of length n is denoted
Xn , (X1, . . . , Xn). The corresponding output sequence at
the decoder has length Mn (a random variable determined by
the channel realization), and is denoted Y Mn . For brevity, we
sometimes use underlined notation for random vectors when
we do not need to be explicit about their length. Thus X ,
Xn = (X1, X2, . . . , Xn), and Y , Y Mn = (Y1, . . . , YMn).

Definition 1: An (n, 2nR) code with block length n and
rate R consists of

1) An encoder mapping e : {1, . . . , 2nR} → {0, 1}n, and
2) A decoder mapping g : {0, 1}∗ → {1, . . . , 2nR}

where {0, 1}∗ is ∪n
k=0{0, 1}

k for the deletion channel,
∪2n
k=n{0, 1}

k for the insertion channel, and ∪2n
k=0{0, 1}

k

for the deletion+insertion channel.
Assuming the message W is drawn uniformly on the set
{1, . . . , 2nR}, the probability of error of a (n, 2nR) code is

Pe,n =
1

2nR

2nR
∑

l=1

Pr(g(Y Mn) 6= l|W = l)

A rate R is achievable if there exists a sequence of (n, 2nR)
codes such that Pe,n → 0 as n → ∞. The supremum
of all achievable rates is the capacity C. The following
characterization of capacity follows from a result proved for
a general class of synchronization channels by Dobrushin.

Fact [12]: Let Cn = maxPXn
1
nI(X

n;Y Mn). Then C ,
limn→∞ Cn exists, and is equal to the capacity of the dele-
tion+insertion channel.

In this paper, we fix the input process to be the class of
binary symmetric first-order Markov processes and focus on
evaluating the mutual information. This will give us a lower
bound on the capacity. The input process X = {Xn}n≥1 is
characterized by the following distribution for all n:

P (X1, . . . , Xn) = P (X1)
n∏

j=2

P (Xj |Xj−1), with

P (X1 = 0) = P (X1 = 1) = 0.5,
P (Xj = 1|Xj−1 = 1) = P (Xj = 0|Xj−1 = 0) = γ, j ≥ 1.

(1)

A binary sequence may be represented by a sequence of
positive integers representing the lengths of its runs, and the
value of the first bit (to indicate whether the first run has
zeros or ones). For example, the sequence 0001100000 can be

represented as (3, 2, 5) if we know that the first bit is 0. The
value of the first bit of X can be communicated to the decoder
with vanishing rate, and we will assume this has been done at
the outset. Hence, denoting the length of the jth run of X by
LX
j we have the following equivalence: X ↔ (LX

1 , LX
2 , . . .).

For a first-order Markov binary source of (1), the run-lengths
are independent and geometrically distributed, i.e.,

Pr(LX
j = r) = γr−1(1− γ), r = 1, 2, . . . (2)

The average length of a run in X is 1
1−γ , so the number

of runs in a sequence of length n is close to n(1 − γ)
for large n. Our bounding techniques aim to establish a
one-to-one correspondence between input runs and output
runs. The independence of run-lengths of X enables us
to obtain analytical bounds on the capacity. We denote by
IP (Xn;Y Mn), HP (Xn), HP (Xn|Y Mn) the mutual informa-
tion and entropies computed with the channel input sequence
Xn distributed as in (1). For all n, we have

Cn = max
PXn

1
n
I(Xn;Y Mn) >

1
n
IP (Xn;Y Mn). (3)

Therefore

C > lim inf
n→∞

1
n
IP (Xn;Y Mn) = h(γ)− lim sup

n→∞

HP (Xn|Y Mn)
n

.

(4)

We will derive upper bounds on lim supn→∞
HP (Xn|Y Mn )

n
and use it in (4) to obtain a lower bound on the capacity.

III. INSERTION CHANNEL

In this channel, an insertion occurs after each bit of X with
probability i ∈ (0, 1). When a bit is inserted after Xj , the
inserted bit is equal to Xj (a duplication) with probability α,
and equal to X̄j (a complementary insertion) with probability
ᾱ. We note that this insertion model is different from the one
considered in [10], [11], where an insertion is defined as an
input bit replaced by two random bits.

When α = 1, we have only duplications - this is the sticky
channel studied in [9]. Here, we can associate each run of Y
with a unique run in X , which leads to a computable single-
letter characterization of the best achievable rates with a first-
order distribution. For 0 < α < 1, the inserted bits may create
new runs, and so we cannot associate each run of Y with a
run in X , as shown by the following example. Let

X = 000111000, Y = 001011100000, (5)

where the inserted bits are indicated in large italics. There is
one duplication - in the third run, and two complementary
insertions - in the first and second runs. While a duplication
never introduces a new run, a complementary insertion intro-
duces a new run, except when it occurs at the end of a run of
X (e.g., the 0 inserted at the end of the second run in (5)). We
derive two lower bounds on the the insertion channel capacity.



A. Lower Bound 1

For any input-pair (Xn, Y Mn), define an auxiliary sequence
IMn = (I1, . . . , IMn) where Ij = 1 if Yj is an inserted bit, and
Ij = 0 otherwise. The sequence IMn indicates the positions
of the inserted bits in Y Mn . Using IMn , we can decompose
HP (Xn|Y Mn) as

HP (Xn|Y Mn) = HP (Xn, IMn |Y Mn)−HP (IMn |XnY Mn)

= HP (IMn |Y Mn)−HP (IMn |XnY Mn)
(6)

since H(Xn|Y Mn , IMn) = 0. Therefore,

lim sup
n→∞

HP (Xn|Y Mn)
n

≤ lim sup
n→∞

HP (IMn |Y Mn)
n

. (7)

We use this inequality in (4) and upper bound HP (IMn |Y Mn)
to obtain the following lower bound on the insertion capacity.

Theorem 1: (LB 1) The capacity of the insertion channel
with parameters (i, α) can be lower bounded as

C(i, α) ≥ max
0<γ<1

h(γ)− (iα+ (1− i)γ)h
(

iα
iα+ (1− i)γ

)

− (iᾱ+ (1− i)γ̄)h
(

iᾱ
iᾱ+ (1− i)γ̄

)

.

One can interpret the lower bound as the rate achieved
by the following coding scheme. Choose a codebook of 2nR

codewords of length n, each chosen independently according
to the distribution in (1). The decoder receives Y Mn , decodes
the inserted bits, and then obtains the codeword by removing
them from Y Mn .

B. Lower Bound 2

For any input-pair (Xn, Y Mn), define an auxiliary sequence
TMn = (T1, . . . , TMn) where Tj = 1 if Yj is a complementary
insertion, and Tj = 0 otherwise. Note that TMn , which
indicates the positions of the complementary insertions, is
different from the sequence IMn , which indicates all the
insertions. Using TMn , we can decompose HP (Xn|Y Mn) as

HP (Xn|Y Mn) = HP (Xn, TMn |Y Mn)−HP (TMn |XnY Mn)

≤ HP (TMn |Y Mn) +HP (Xn|TMnY Mn)
(a)
≤ HP (TMn |Y Mn) +HP (Xn|Ỹ Mn)

(8)

where Ỹ Mn is the sequence obtained from (TMn , Y Mn) by
flipping Yj whenever Tj = 1, 1 ≤ j ≤ Mn. (a) holds in (8)
because Ỹ Mn is a function of (TMn , Y Mn). In words, Ỹ Mn

is formed by flipping the complementary insertions in Y Mn .
Therefore,

lim sup
n→∞

HP (Xn|Y Mn)
n

≤ lim sup
n→∞

HP (TMn |Y Mn) +HP (Xn|Ỹ Mn)
n

(9)
We use (9) in (4) to obtain a lower bound on the insertion

capacity.

Theorem 2: (LB 2) The capacity of the insertion channel
with parameters (i, α) can be lower bounded as

C(i, α) ≥ max
0<γ<1

h(γ)−(γ̄ + γiᾱ)h
(

iᾱ
γ̄ + γiᾱ

)

−γ̄H(LX |LỸ )

where H(LX |LỸ ) is computed using the following joint
distribution:

P (LX = r) = γr−1(1− γ), r = 1, 2, . . . ,

P (LỸ = s|LX = r) =
(

r
s− r

)

is−r(1− i)2r−s, r ≤ s ≤ 2r.

(10)

Proof Sketch: Recall that Ỹ Mn has insertions in the same
locations as Y Mn , but the insertions are all duplications. Hence
Ỹ Mn has the same number of runs (say, Rn) as Xn. We can
represent the sequences in terms of their run-lengths as

Xn ↔ (LX
1 , . . . , LX

Rn
), Ỹ Mn ↔ (LỸ

1 , . . . , L
Ỹ
Rn

).

Thus HP (Xn|Ỹ Mn) = HP (LX
1 , . . . , LX

Rn
|LỸ

1 , . . . , L
Ỹ
Rn

).
Since there is a one-to-one correspondence between the runs of
X and the runs of Ỹ, the process {(LX

1 , LỸ
1 ), (LX

2 , LỸ
2 ), . . .}

is an i.i.d process characterized by the joint distribution in (10).
Combining this with the fact that Rn

n → (1−γ) almost surely,
one can prove that limn→∞

1
nHP (Xn|Ỹ Mn) = γ̄H(LX |LỸ ).

To use the bound (9), we also need to compute
lim supn→∞

1
nHP (TMn |Y Mn). Noting that Mn

n → (1 + i)
almost surely, one can show that

lim sup
n→∞

1
n
HP (TMn |Y Mn) = (1+ i) lim sup

m→∞

1
m
HP (Tm|Y m).

Since conditioning cannot increase entropy, we have

1
m
HP (Tm|Y m) ≤

1
m

∑

j

H(Tj |Tj−1, Yj−1, Yj). (11)

We can formally show that the limit as m → ∞ of the
term on the right hand side of (11) exists, and is equal to
1−γ+γiᾱ

1+i h
(

iᾱ
1−γ+γiᾱ

)

. We have thus obtained an analytical
upper bound on lim supn→∞

1
nHP (TMn |Y Mn). Using this in

(9), and substituting the resulting bound in (4) completes the
proof.

Combining the bounds of Theorems 1 and 2, we observe that
max{LB 1, LB 2} is a lower bound to the insertion capacity.
This is plotted in Figure 1 for various values of i for α =
1, 0.8, 0.5. For α = 1, the bound is very close to the near-
optimal lower bound in [9]. We found that LB 2 is generally
a better bound that LB 1, except when i is large with α < 1.
The intuition for the latter case is that it is more efficient to
decode the positions of all the insertions (since i is large)
rather than just the complementary insertions.

IV. DELETION CHANNEL

In this channel, each input bit is deleted with probability d,
or retained with probability 1− d. To motivate our bounding
technique, consider the pair X = 000111000, Y = 0010. For
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Fig. 1: Lower bound max{LB1, LB2} on the insertion capac-
ity C(i, α). For α = 1, the lower bound of [9] is also shown
using ‘*’.

this pair, we can associate each run of Y uniquely with a run
in X , and hence we can write

P (Y = 0010|X = 000111000)

= P (LY
1 = 2|LX

1 = 3)P (LY
2 = 1|LX

2 = 3)P (LY
3 = 1|LX

3 = 3)

where LX
j , LY

j denote the lengths of the jth runs of X and Y ,
respectively. We observe that if no runs in X are completely
deleted, then the conditional distribution of Y given X may be
written as a product distribution of run-length transformations:

P (Y |X) = P (LY
1 |L

X
1 )P (LY

2 |L
X
2 )P (LY

3 |L
X
3 ) . . . (12)

where for all runs j,

P (LY
j = s|LX

j = r) =

(

r
s

)

dr−s(1− d)s, 1 ≤ s ≤ r. (13)

Therefore, if the deletion process acting on X to generate
Y did not completely delete any runs of X , the joint distri-
bution of (X,Y ) can be characterized in terms of a single-
letter distribution of run-lengths determined by (2) and (13).
However, we do have runs of X that are completely deleted.
For example, if X = 000111000 and Y = 000, we cannot
associate the single run in Y uniquely with a run in X .

For any input-output pair (Xn, Y Mn), define an auxiliary
sequence SMn+1 = (S1, S2, . . . , SMn+1), where Sj ∈ N0 is
the number of runs completely deleted in Xn between the
bits corresponding to Yj−1 and Yj . S1 is the number of runs
deleted before the output symbol Y1, and SMn+1 is the number
of runs deleted after the last output symbol YMn . For example,
if X = 00 011100

︸ ︷︷ ︸
0 and the bits shown in italics were deleted

to give Y = 000, then S = (0, 0, 1, 0).
The auxiliary sequence S enables us to augment Y with the

positions of missing runs. Consider X = 000111000, as be-
fore. If the decoder were given Y = 000 and S = (0, 0, 0, 2),
it can form the augmented sequence Y ′ = 000− −, where a
− denotes a missing run, or equivalently a ‘run of length 0’
in Y . With the “−” markers indicating deleted runs, we can
associate each run of the augmented sequence Y ′ uniquely

with a run in X . Thus we have

P (X,Y ′) = P (LX
1 )P (LY ′

1 |LX
1 ) · P (LX

2 )P (LY ′

2 |LX
2 ) . . .

where ∀j,

P (LY ′

j = s|LX
j = r) =

(
r
s

)

dr−s(1− d)s, 0 ≤ s ≤ r.

Using the auxiliary sequence SMn+1, we can decompose
HP (Xn|Y Mn) as

HP (Xn|Y Mn) = HP (Xn, SMn+1|Y Mn)−HP (SMn+1|XnY Mn).

We therefore have

lim sup
n→∞

HP (Xn|Y Mn)
n

≤ lim sup
n→∞

HP (Xn, SMn+1|Y Mn)
n

.

(14)
Using this in (4), we obtain a lower bound on the deletion
capacity.

Theorem 3: The deletion channel capacity C(d) can be
lower bounded as

C(d) ≥ max
0<γ<1

h(γ)−(1−d)H(S2|Y1Y2)−(1−γ)H(LX|LY ′)

where

H(S2|Y1Y2) =γθ̄ log2
q
θ̄
+

βθ
θ̄2

log2
1
θ
+

βθ
1− θ2

log2
q
β

+
β

1− θ2
log2

q̄
β
,

q =
γ + d− 2γd
1 + d− 2γd

, θ =
γ̄d

1− γd
, β =

γ̄d̄
(1− γd)2

, and

H(LX |LY ′) =(
d
γ̄
−

dγ̄
(1− γd)2

) log2
1
γd

+
dγ̄h(dγ)
(1 − dγ)2

−
d̄(2 − γ − γd) log2(1− γd)

γ̄(1− γd)

−
γ̄
γ

∞∑

k=1

∞∑

j=1

(d̄γ)k (dγ)j
(
j + k
k

)

log2

(
j + k
k

)

.

Proof Sketch: In (14), we first show that
limn→∞

1
nH(SMn+1|Y Mn) exists and is equal to

(1−d)H(S2|Y1Y2). This is because the process {(Sn, Yn)}n≥1
is first-order Markov with the following joint distribution for
all m ∈ N:

P (Sm, Y m) = P (Y1, S1)
m∏

j=2

P (Yj , Sj |Yj−1).

The other term in (14) is 1
nHP (Xn|SMn+1Y Mn), which can

be shown to converge to (1− γ)H(LX |LY ′) since there is a
one-to-one correspondence between the runs of Xn and the
runs of Y ′Mn ↔ (SMn+1, Y Mn).

Figure 2 shows the lower bound of Theorem 3 for various
values of d. We observe that our bound is close to, but smaller
than the bound of [2]. ( [2] contains the best lower-bounds on
the deletion capacity, except for some values of d for which
a slight improvement is reported in [3].) Our approach incurs
a small loss in performance for the deletion channel, but is
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Fig. 2: Lower bound of Theorem 3 on the deletion capacity.
The lower bound from [2] is shown in dashed lines.

general enough to yield computable bounds for channels with
both insertions and deletions. In contrast, the techniques of [3]
are apply only to channels with deletions and duplications.

V. THE DELETION+INSERTION CHANNEL

This channel is defined by three parameters (d, i, α). Each
input bit undergoes a deletion with probability d, a dupli-
cation with probability iα, a complementary insertion with
probability iᾱ. We obtain a lower bound on the capacity by
combining the ideas of Sections III-B and IV. Introduce two
auxiliary sequences TMn = (T1, . . . , TMn), and SMn+1 =
(S1, . . . , SMn+1). TMn indicates the complementary inser-
tions in Y Mn : Tj = 1 if Yj is a complementary insertion,
and Tj = 0 otherwise. SMn+1 indicates the positions of the
missing runs: Sj = k, if k runs were deleted between Yj−1
and Yj . Using these auxiliary sequences, we have

HP (Xn|Y Mn) ≤ H(Xn, TMn , SMn+1|Y Mn)

≤ H(TMn |Y Mn) +H(SMn+1|TMnY Mn) +H(Xn|SMn+1Ỹ Mn)

where Ỹ Mn is the sequence formed from (TMn , Y Mn) by
flipping bit Yj whenever Tj = 1. Using the above inequality
to upper bound for lim supn→∞

1
nHP (Xn|Y Mn) in (4), we

obtain a lower bound on the capacity of the deletion+insertion
channel.

Definition 2: Define a joint distribution P (LX , LY ′

) with
P (LX) given by (2), and for r ∈ N, 0 ≤ s ≤ 2r, ps|r ,

P (LY ′

= s|LX = r) is given by

ps|r =
∑

ni∈I

(
r

ni, r + ni − s

)

inidr+ni−s(1− d− i)s−2ni

where I, the set of possible values for the number of insertions
ni, is given by

I = {0, 1, . . . , b
s
2
c} for s ≤ r, and {s−r, . . . , b

s
2
c} for s > r.

Theorem 4: The capacity of the deletion+insertion channel
can be lower bounded as

C(d, i, α) ≥ max
0<γ<1

h(γ)− (q̄d̄+ qiᾱ)h
(

iᾱ
q̄d̄+ qiᾱ

)

− d̄(A1 +A2 −
θβ

(1− θ)2
log2 θ)− γ̄HP (LX

1 |LY ′

1 )
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Fig. 3: Lower bound on deletion+insertion channel capacity

where q, β, θ are defined in Theorem 3, HP (LX |LY ′

) is
computed using the joint distribution in Definition 2, and

A1 =
θβ(1− i′ᾱ)

1− θ2
log2

i′α+ (1− i′ᾱ)q + i′ᾱq̄
β(1− i′ᾱ)

+
θ2βi′ᾱ
1− θ2

log2
i′α+ (1− i′ᾱ)q + i′ᾱq̄

βi′ᾱ

+D1 log2
i′α+ (1− i′ᾱ)q + i′ᾱq̄

D1
,

A2 =
θ2β(1− i′ᾱ)

1− θ2
log2

(1− i′ᾱ)q̄ + i′ᾱq
β(1− i′ᾱ)

+

θβi′ᾱ
1− θ2

log2
(1− i′ᾱ)q̄ + i′ᾱq

βi′ᾱ
+D2 log2

(1− i′ᾱ)q̄ + i′ᾱq
D2

with i′ , i/d̄, D1 , γ(1 − i′ᾱ)θ̄ + i′ᾱβ + i′α, and D2 ,

γi′ᾱθ̄ + (1− i′ᾱ)β.
The lower bound is plotted in Figure 3 for various values

of d = i, for α = 0.8 and for α = 1.
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