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Abstract—We propose computationally efficient encoders and
decoders for lossy compression using a Sparse Regression Code.
Codewords are structured linear combinations of columns of
a design matrix. The proposed encoding algorithm sequentially
chooses columns of the design matrix to successively approximate
the source sequence. It is shown to achieve the optimal distortion-
rate function for i.i.d Gaussian sources with squared-error
distortion. For a given rate, the parameters of the design matrix
can be varied to trade off distortion performance with encoding
complexity. An example of such a trade-off is: computational
resource (space or time) per source sample of O((n/ logn)2)
and probability of excess distortion decaying exponentially in
n/ logn, where n is the block length. The Sparse Regression
Code is robust in the following sense: for any ergodic source, the
proposed encoder achieves the optimal distortion-rate function
of an i.i.d Gaussian source with the same variance. Simulations
show that the encoder has very good empirical performance,
especially at low and moderate rates.

I. INTRODUCTION

Developing efficient codes for lossy compression at rates
approaching the Shannon rate-distortion limit has long been an
important goal of information theory. Efficiency is measured
in terms of the storage complexity of the codebook as well
the computational complexity of encoding and decoding. The
Shannon-style i.i.d random codebook achieves the optimal
distortion-rate trade-off but its storage and computational
complexities grow exponentially with the block length. In this
paper, we study a class of codes called Sparse Superposition
or Sparse Regression Codes (SPARCs) for lossy compression
with a squared-error distortion criterion. We present computa-
tionally efficient encoding and decoding algorithms that attain
the optimal rate-distortion function for i.i.d Gaussian sources.

Sparse Regression codes were recently introduced by Bar-
ron and Joseph for communication over the AWGN channel
and shown to approach the Shannon capacity with feasible
decoding [1], [2], [3]. The codebook construction is based
the statistical framework of high-dimensional linear regression.
The codewords are sparse linear combinations of columns of
an n×N design matrix or ‘dictionary’, where n is the block-
length and N is a low-order polynomial in n. This structure
enables the design of computationally efficient compression
encoders based on sparse approximation ideas (e.g., [4], [5]).
We propose one such encoder and analyze it performance.

SPARCs for lossy compression were first considered in
[6] where some preliminary results were presented. The rate-
distortion and error exponent performance of these codes

under minimum-distance (optimal) encoding was characterized
in [7]. The main contributions of this paper are the following.

• We propose a computationally efficient encoding algo-
rithm for SPARCs which achieves the optimal distortion-
rate function for i.i.d Gaussian sources with growing
block length n. The algorithm is based on successive
approximation of the source sequence by columns of the
design matrix. The parameters of the design matrix can
be chosen to trade off performance with complexity. For
example, one choice of parameters discussed in Section
IV yields a n×O(n2) design matrix, per-sample encoding
complexity proportional to ( n

logn )2, and probability of
excess distortion decaying exponentially in n

logn . To the
best of our knowledge, this is the fastest known rate
of decay among lossy compression codes with feasible
encoding and decoding.

• With the proposed encoder, SPARCs share the following
robustness property of random i.i.d Gaussian codebooks
[8], [9]: for a given rate R, any ergodic source with
variance σ2 can be compressed with distortion close to
the i.i.d Gaussian distortion-rate function σ2e−2R.

We briefly review related work in developing computation-
ally efficient codes for lossy compression. It was shown in
[10] that the optimal rate-distortion function of memoryless
sources can be approached by concatenating optimal codes
over sub-blocks of length much smaller than the overall block
length. Nearest neighbor encoding is used over each of these
sub-blocks, which is feasible due to their short length. For
this scheme, it is not known how rapidly the probability of
excess distortion decays to zero with the overall block length.
For sources with finite alphabet, various coding techniques
have been proposed recently to approach the rate-distortion
bound with computationally feasible encoding and decoding,
e.g. [11], [12], [13]. The rates of decay of the probability of
excess distortion for these schemes vary, but in general they
are slower than exponential in the block length.

The survey paper by Gray and Neuhoff [14] contains an
extensive discussion of various compression techniques and
their performance versus complexity trade-offs. These include
scalar quantization with entropy coding, tree-structured vector
quantization, multi-stage vector quantization, and trellis-coded
quantization. Though these techniques have good empirical
performance, they have not been proven to attain the op-
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Fig. 1. A is an n ×ML matrix and β is a ML × 1 vector. The
positions of the non-zeros in β correspond to the gray columns of A
which combine to form the codeword Aβ.

timal rate-distortion trade-off with computationally feasible
encoders and decoders.

Notation: Upper-case letters are used to denote random vari-
ables, lower-case for their realizations, and bold-face letters
for random vectors and matrices. All vectors have length n.
The source sequence is denoted by S , (S1, . . . , Sn), and
the reconstruction sequence by Ŝ , (Ŝ1, . . . , Ŝn). ‖X‖ is the
`2-norm of vector X, and |X| = ‖X‖/

√
n is the normalized

version.N (µ, σ2) denotes the Gaussian distribution with mean
µ and variance σ2. 〈a,b〉 denotes the inner product

∑
i aibi.

All logarithms are with base e.

II. THE SPARSE REGRESSION CODEBOOK

A sparse regression code (SPARC) is defined in terms of a
design matrix A of dimension n×ML whose entries are i.i.d.
N (0, 1). Here n is the block length and M and L are integers
whose values will be specified shortly in terms of n and the
rate R. As shown in Figure 1, one can think of the matrix A as
composed of L sections with M columns each. Each codeword
is a linear combination of L columns, with one column from
each section. Formally, a codeword can be expressed as Aβ,
where β is a ML×1 vector (β1, . . . , βML) with the following
property: there is exactly one non-zero βi for i ∈ {1, . . . ,M},
one non-zero βi for i ∈ {M + 1, . . . , 2M}, and so forth. The
non-zero value of β in section i is set to ci where the value
of ci will be specified in the next section. Denote the set of
all β’s that satisfy this property by BM,L.

Since there are M columns in each of the L sections, the
total number of codewords is ML. To obtain a compression
rate of R nats/sample, we need

ML = enR or L logM = nR (1)

Encoder: This is defined by a mapping g : Rn → BM,L.
Given the source sequence S and target distortion D, the en-
coder attempts to find a β̂ ∈ BM,L such that ‖S−Aβ̂‖2 ≤ D.
If such a codeword is not found, an error is declared.

Decoder: This is a mapping h : BM,L → Rn. On receiving
β̂ ∈ BM,L from the encoder, the decoder produces reconstruc-
tion h(β̂) = Aβ̂.

Storage Complexity: The storage complexity of the dictio-
nary is proportional to nML. There are several choices for

the pair (M,L) which satisfy (1). For example, L = 1 and
M = enR recovers the Shannon-style random codebook in
which the number of columns in A is enR, i.e., the storage
complexity is exponential in n.

For our constructions, we choose M to be a low-order
polynomial in n. Then L is Θ(n/log n), and the number of
columns ML in the dictionary is a low-order polynomial in n.
This reduction in storage complexity can be harnessed to de-
velop computationally efficient encoders for the SPARC. The
results in Section IV show that this choice of (M,L) offers a
good trade-off between complexity and error performance.

III. COMPUTATIONALLY EFFICIENT ENCODER

The source sequence S is generated by an ergodic source
with mean 0 and variance σ2.

The SPARC is defined by the n×ML design matrix A. The
jth column of A is denoted Aj , 1 ≤ j ≤ML. The non-zero
value of β in section i is chosen to be

ci =

√
2Rσ2

L

(
1− 2R

L

)i−1
, i = 1, . . . , L. (2)

Given source sequence S, the encoder determines β̂ ∈ BM,L

according to the following algorithm.
• Step 0: Set R0 = S.
• Step i, i = 1, . . . , L: Pick

mi = argmax
j: (i−1)M+1≤ j ≤iM

〈
Aj ,

Ri−1

‖Ri−1‖

〉
. (3)

Set
Ri = Ri−1 − ciAmi , (4)

where ci is given by (2).
• Step L + 1: The codeword β̂ has non-zero values in

positions mi, 1 ≤ i ≤ L. The value of the non-zero
in section i given by ci.

In summary, the algorithm sequentially chooses the mi’s,
section by section, to minimize a ‘residue’ in each step.

A. Computational Complexity

Each of the L stages of the encoding algorithm involves
computing M inner products and finding the maximum among
them. Therefore the number of operations per source sample
is proportional to ML. If we choose M = Lb for some b > 0,
(1) implies L = Θ(n/log n), and the number of operations per
source sample is of the order (n/ log n)

b+1. We note that due
to the sequential nature of the algorithm, only one section
of the design matrix needs to be kept in memory at each
step. When we have several source sequences to be encoded
in succession, the encoder can have a pipelined architecture
which requires computational space (memory) of the order
nLM and has constant computation time per source symbol.

The code structure automatically yields low decoding com-
plexity. The encoder can represent the chosen β with L
binary sequences of log2M bits each. The ith binary sequence
indicates the position of the non-zero element in section i.
Hence the decoder complexity corresponding to locating the L



non-zero elements using the received bits is L log2M , which
is O(1) per source sample. Reconstructing the codeword then
requires L additions per source sample.

IV. MAIN RESULT

Theorem 1. Consider a length n source sequence S generated
by an ergodic source having mean 0 and variance σ2. Let
δ0, δ1, δ2 be any positive constants such that

∆ , δ0 + 5R(δ1 + δ2) < 0.5. (5)

Let A be an n×ML design matrix with i.i.d N (0, 1) entries
and M,L satisfying (1). On the SPARC defined by A, the
proposed encoding algorithm produces a codeword Aβ̂ that
satisfies the following for sufficiently large M,L.

P
(
|S−Aβ̂|2 > σ2e−2R(1 + eR∆)2

)
< p0 +p1 +p2 (6)

where

p0 = P

( ∣∣∣∣ |S|σ − 1

∣∣∣∣ > δ0

)
, p1 = 2ML exp

(
−nδ21/8

)
,

p2 =

(
M2δ2

8 logM

)−L
.

(7)

Proof. A sketch of the proof is given in Section V. The full
version can be found in [15].

Corollary 1. If the source sequence S generated according
to an i.i.d N (0, σ2) distribution,

p0 < 2 exp(−3nδ20/4),

and the SPARC with the proposed encoder attains the optimal
distortion-rate function σ2e−2R, with probability of excess
distortion decaying exponentially in L.

Remarks:
1) The probability measure in (6) is over the space of

source sequences and design matrices.
2) Ergodicity of the source is only needed to ensure that

p0 → 0 as n→∞.
3) For an i.i.d N (0, σ2) source, Corollary 1 says that with

the choice M = Lb(b > 0) we can achieve a distortion
within any constant gap of the optimal distortion-rate
function σ2e−2R with the probability of excess distor-
tion falling exponentially in L = Θ(n/log n).

4) For a given rate R, Theorem 1 guarantees that the
proposed encoder achieves a squared-error distortion
close to the Gaussian D∗(R) for all ergodic sources
with variance σ2. Lapidoth [8] also shows that for any
ergodic source of a given variance, one cannot attain a
squared-error distortion smaller than this using an i.i.d
Gaussian codebook with minimum-distance encoding.

Gap from D∗(R): To achieve distortions close to the Gaus-
sian D∗(R) with high probability, we need p0, p1, p2 to all go

to 0. In particular, for p2 → 0 with growing L, from (7) we
require that M2δ2 > 8 logM . Or,

δ2 >
log logM

2 logM
+

log 8

2 logM
. (8)

To approach D∗(R), note that we need n,L,M to all go to
∞ while satisfying (1): n,L for the probability of error in (7)
to be small, and M in order to allow δ2 to be small according
to (8). When n,L,M are sufficiently large, (8) dictates how
small ∆ can be: the distortion is approximately log logM

logM higher
than the optimal value D∗(R) = σ2e−2R.

Performance versus Complexity Trade-off : Recall that the
encoding complexity is O(ML) operations per source sample.
The performance of the encoder improves as M,L increase –
both in terms of the gap from the optimal distortion (8) and
the probability of error (7).
• Choosing M = Lb for b > 0 yields L ∼ n/log n and

the resulting encoding complexity is Θ
(
(n/log n)b+1

)
;

the gap from D∗(R) governed by (8) is approximately
log logn
b logn .

• At the other extreme, the Shannon codebook has L =
1,M = enR. Here the SPARC consists of only one
section, and the proposed algorithm essentially performs
minimum-distance encoding. The encoding complexity
is O(enR) (exponential). From (8), δ2 is approximately
logn
n . The gap ∆ from D∗(R) is now dominated by δ0

and δ1 whose typical values for the i.i.d Gaussian case
are Θ(1/

√
n) (from (7) and Corollary 1).

Successive Refinement Interpretation: The proposed encoder
may be interpreted in terms of successive refinement [16]. We
can think of each section of the design matrix A as a codebook
of rate R/L. For step i, i = 1, . . . , L, the residue Ri−1 acts
as the ‘source’ sequence, and the algorithm attempts to find
the column within Section i that minimizes the distortion.
The distortion after step i is the variance of the new residue
Ri. The minimum mean-squared distortion with a Gaussian
codebook [8] at rate R/L is

D∗i = |Ri−1|2 exp(−2R/L) ≈ |Ri−1|2 (1− 2R/L) (9)

for R/L� 1. The typical value of the distortion in Section i
is close to D∗i since the algorithm is equivalent to maximum-
likelihood encoding within each section (see (10) in Section
V). Since the rate R/L is infinitesimal, the deviations from
D∗i in each section can be quite large. However, since the
number of sections L is very large, the final distortion |R2

L|
is close to the typical value σ2e−2R with excess distortion
probability that falls exponentially in L. We emphasize that
the successive refinement interpretation is only true for the
proposed encoder, and is not an inherent feature of the sparse
regression codebook.

Figure 2 shows the performance of the proposed encoder on
a unit variance i.i.d Gaussian source. The dimension of A is
n×ML with M = Lb. The curves show the average distortion
obtained at various rates for b = 2 and b = 3. The value of L
was increased with rate in order to keep the total computational
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Fig. 2. Average distortion of the proposed encoder for i.i.d N (0, 1)
source at various rates. With M = Lb, distortion-rate curves are
shown for b = 2 and b = 3 along with D∗(R) = e−2R.

complexity (∝ nLb+1) similar across different rates. (Recall
that block length n is determined by (1).) The reduction in
distortion obtained by increasing b from 2 to 3 comes at
the expense of an increase in computational complexity by
a factor of L. Simulations were also performed for a unit
variance Laplacian source. The resulting distortion-rate curve
was virtually identical to Figure 2 which is consistent with
Theorem 1.

V. PROOF OF THEOREM 1
We first present a non-rigorous analysis of the proposed

encoding algorithm based on the following observations.
1) |Aj |2 is approximately equal to 1 when n is large, for

1 ≤ j ≤ ML. This is because |Aj |2 is the normalized
sum of squares of n i.i.d N (0, 1) random variables.

2) Similarly, |S|2 is approximately equal to σ2 for large n.
3) If X1, X2 . . . , XM are i.i.d N (0, 1) random variables,

then max{X1, . . . , XM} is approximately equal to√
2 logM for large M [17].

Step i, i = 1, . . . , L: We show that if |Ri−1|2 ≈
σ2
(
1− 2R

L

)i−1
, then

|Ri|2 ≈ σ2 (1− 2R/L)
i
. (10)

(10) is true for i = 0 (the second observation above).
For each j ∈ {(i− 1)M + 1, . . . , iM}, the statistic

T
(i)
j , 〈Aj , Ri−1/‖Ri−1‖〉 (11)

is a N (0, 1) random variable. This is because it is the projec-
tion of i.i.dN (0, 1) random vector Aj in the direction of Ri−1
and Ri−1 is independent of Aj . This independence holds
because Ri−1 is a function of the source sequence S and the
columns {Aj′} 1 ≤ j′ ≤ (i−1)M , which are all independent
of Aj for (i − 1)M + 1 ≤ j ≤ iM . Further, the T (i)

j ’s are
mutually independent for (i− 1)M + 1 ≤ j ≤ iM . This can
be seen by conditioning on the realization of Ri−1/‖Ri−1‖.

We therefore have

max
(i−1)M+1≤j≤iM

T
(i)
j =

〈
Ami ,

Ri−1

‖Ri−1‖

〉
≈
√

2 logM.

(12)

From (4), we have

|Ri|2 = |Ri−1|2 + c2i |Ami |2 −
2ci‖Ri−1‖

n

〈
Ami ,

Ri−1

‖Ri−1‖

〉
(a)
≈ σ2

(
1− 2R

L

)i−1
+ c2i −

2ciσ

√(
1− 2R

L

)i−1
√
n

√
2 logM

(b)
= σ2

(
1− 2R

L

)i
.

(13)

(a) follows from (12) and the induction hypothesis. (b) is
obtained by substituting for ci from (2) and for n from (1).
Therefore, the final residue after Step L is

|RL|2 = |S−Aβ̂|2 ≈ σ2

(
1− 2R

L

)L
≤ σ2e−2R (14)

where we have used (1 + x) ≤ ex for x ∈ R.

Sketch of Formal Proof:

The essence of the proof is in analyzing the deviation from
the typical values of the residual distortion at each step of the
algorithm. These deviations arise from atypicality concerning
the source, the design matrix and the maximum computed
in each step. We introduce some notation to capture the
deviations. The norm of the residue at stage i is expressed
as

|Ri|2 = σ2

(
1− 2R

L

)i
(1 + ∆i)

2, i = 0, . . . , L. (15)

∆i ∈ [−1,∞) measures the deviation of the residual distortion
|Ri|2 from its typical value given in (13).

The norm of Ami , the column of A chosen in step i, is
written as

|Ami |2 = 1 + γi, i = 1, . . . , L. (16)

We express the maximum of the statistic T (i)
j in Step i as

max
(i−1)M+1≤ j≤iM

T
(i)
j =

〈
Ami ,

Ri−1

‖Ri−1‖

〉
=
√

2 logM(1+εi)

(17)
εi measures the deviation of the maximum computed in step i
from

√
2 logM . Armed with this notation, we have from (4)

|Ri|2 = |Ri−1|2 + c2i |Ami |2 −
2ci‖Ri−1‖

n

〈
Ami ,

Ri−1

‖Ri−1‖

〉
= σ2(1− 2R/L)i

[
(1 + ∆i−1)2

+
2R/L

1− 2R/L
(∆2

i−1 + γi − 2εi(1 + ∆i−1))

]
.

(18)

From (18) and (15), we obtain

(1+∆i)
2 = (1+∆i−1)2 +

2R/L

1− 2R/L
(∆2

i−1 +γi−2εi(1+∆i−1))

(19)
for i = 1, . . . , L. The goal is to bound the final distortion

|RL|2 = σ2

(
1− 2R

L

)L
(1 + ∆L)2. (20)



We find an upper bound for (1 + ∆L)2 that holds under an
event whose probability is close to 1. Accordingly, define A
as the event where all of the following hold:

|∆0| < δ0,

L∑
i=1

|γi|
L

< δ1,

L∑
i=1

|εi|
L

< δ2.

for δ0, δ1, δ2 as specified in the statement of Theorem 1.
We upper bound the probability of the event Ac using the
following lemmas (proofs in [15]).

Lemma 1. P
(

1
L

∑L
i=1|γi| > δ

)
< 2ML exp

(
−nδ2/8

)
for

δ ∈ (0, 1].

Lemma 2. For δ > 0, P
(

1
L

∑L
i=1|εi| > δ

)
<
(

M2δ

κ logM

)−L
.

Using these lemmas, we have P (Ac) < p0 +p1 +p2, where
p0, p1, p2 are given by (7). The remainder of the proof consists
of obtaining a bound for (1+∆L)2 under the condition that A
holds. This is done via the following lemma, proved in [15].

Lemma 3. When A is true and L is sufficiently large,

|∆i| ≤ |∆0|wi+
4R/L

1− 2R/L

i∑
j=1

wi−j(|γj |+ |εj |), 1 ≤ i ≤ L

(21)
where w =

(
1 + R/L

1−2R/L

)
.

Lemma 3 implies that when A holds and L is sufficiently
large,

|∆L| ≤ wL
|∆0|+

4R

(1− 2R/L)w

 L∑
j=1

|γj |
L

+

L∑
j=1

|εj |
L


(a)

≤ wL
[
δ0 +

4R

(1−R/L)
(δ1 + δ2)

]
(b)

≤ exp

(
R

1− 2R/L

)[
δ0 +

4R

(1−R/L)
(δ1 + δ2)

]
≤ eR (δ0 + 5R(δ1 + δ2)) = eR∆

(22)

where ∆ is defined in the statement of the theorem. (a) is true
because A holds and (b) is obtained using 1 + x ≤ ex with
x = R/L

1−2R/L . The distortion can then be bounded as

|RL|2 = σ2e−2R(1 + ∆L)2 ≤ σ2e−2R(1 + eR∆)2. (23)

VI. CONCLUSION

We showed that Sparse Regression codes achieve the
i.i.d Gaussian distortion-rate function with a successive-
approximation encoder. In terms of block length n, the
encoding complexity is a low-order polynomial in n and
the probability of excess distortion decays exponentially in
n/log n. The gap from the distortion-rate function D∗(R) is
O(log logM/ logM), as given in (8). An important direction
for future work is designing feasible encoders for SPARCs
with faster convergence to D∗(R) as design matrix dimension
or block length increases. The results of [18], [19] show that

the optimal gap from D∗(R) (among all codes) is Θ(1/
√
n).

The fact that SPARCs achieve the optimal error-exponent with
minimum-distance encoding [20] suggests that it is possible
to design encoders with faster convergence to D∗(R) at the
expense of slightly higher computational complexity.

The results of this paper together with those in [2], [3]
show that SPARCs with computationally efficient encoding
and decoding achieve rates close to the Shannon-theoretic
limits for both lossy compression and communication. Further,
[21] demonstrates how source and channel coding SPARCs
can be nested to effect binning and superposition, which are
key ingredients of multi-terminal source and channel coding
schemes. Sparse regression codes therefore offer a promising
framework to develop fast, rate-optimal codes for a variety of
models in network information theory.
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