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Abstract— A single-letter achievable rate region for the two-
user discrete memoryless multiple-access channel is proposed.
The rate region includes the Cover-Leung region [1], and it is
shown that the inclusion is strict. The proof uses a block-Markov
superposition strategy based on the observation that the messages
of the two users are correlated given the feedback. The rates of
transmission are too high for each encoder to decode the other’s
message directly using the feedback, so they transmit correlated
information in the next block in order to learn the message of one
another. They then cooperate in the following block to resolve
the residual uncertainty of the decoder. Our scheme may be
viewed as a natural generalization of the Cover-Leung scheme
with a delay of one extra block and a pair of additional auxiliary
random variables. The scheme can also be extended to obtain
larger rate-regions with more auxiliary random variables.

I. INTRODUCTION

The two-user discrete memoryless multiple-access channel
(MAC) is shown in Figure 1. The channel has inputs X,Y ,
output Z and is characterized by the conditional law PZ|XY .
The capacity region for this channel without feedback (S1 and
S2 open in Figure 1) was determined by Ahlswede [2] and
Liao [3]. Gaarder and Wolf [4] demonstrated that feedback
can enlarge the capacity region of this channel using the
example of a binary erasure MAC. Cover and Leung [1]
then established a single-letter achievable rate region for a
discrete memoryless MAC with feedback. The Cover-Leung
(C-L) region was shown to be the feedback capacity region for
a class of discrete memoryless MACs [5]. However the C-L
region is smaller than the feedback capacity in general, the
white Gaussian MAC being a notable example [6], [7]. The
capacity region of the MAC with feedback was characterized
by Kramer [8], [9] in terms of directed information. This is a
‘multi-letter’ characterization and the existence of a single-
letter capacity characterization for the discrete memoryless
MAC with feedback remains an open question. Recently, a
single-letter achievable region that includes the C-L region
was reported in [10].

The basic idea behind the Gaarder-Wolf and the C-L
schemes is the following. Each message pair is conveyed to
the decoder over two successive blocks of transmission. In
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Fig. 1. The multiple-access channel. When S1, S2 are closed there is
feedback to both encoders.

the first block, the two encoders transmit messages at rates
outside the no-feedback capacity region. At the end of this
block, the decoder cannot decode the message pair; however,
each encoder can decode the message of the other using
the feedback (the rates must be low enough to ensure this).
The two encoders can now cooperate and send a common
message to resolve the decoder’s uncertainty in the next block.
This procedure is repeated over several blocks with fresh
information superimposed over resolution information in every
block. This block-Markov superposition scheme yields the
following rate region for the MAC with feedback.

Cover-Leung Region: Consider a joint distribution of the
form PUXY Z = PUPX|UPY |UPZ|XY , where PZ|XY is fixed
by the channel and U is a discrete random variable with
cardinality min{|X | · |Y| + 1, |Z| + 2}. Then the following
rate pairs (R1, R2) are achievable.

R1 < I(X; Z|Y U), R2 < I(Y ;Z|XU),
R1 + R2 < I(XY ; Z)

(1)

In the C-L strategy described above, suppose that the rates
are too high for the encoders to decode the message of one
another using the feedback. In this case, encoder 1 has its own
message plus a list of possible messages for encoder 2. This
list, created from all the Y sequences that are jointly typical
with the known (X, Z) sequence pair, is clearly smaller than
the original message set of encoder 2. Similarly, encoder 2 has



a list of all possible messages for encoder 1. Thus at the end
of the first block, the encoders have correlated information
they wish to transmit over the next block. Note that this is
more general than the C-L scheme which imposes perfect
correlation between the encoders’ messages given a block
of channel output. Transmission of correlated sources and
correlated message graphs over the MAC have been studied
in [11] and [12], respectively. We use these ideas to develop a
new block-Markov superposition coding scheme. This scheme
yields a single-letter rate region that includes the C-L region.
We show that the inclusion is strict using the example of the
AWGN MAC.

II. PRELIMINARIES AND MAIN RESULT

We use uppercase letters to denote random variables, lower-
case for their realizations and bold-face notation for random
vectors. Unless otherwise stated, all vectors have length N .
Thus A , AN , (A1, . . . , AN ). For any α such that 0 <
α < 1, ᾱ , 1 − α. The typical set of a random variable
with pmf P is denoted T (P ). Logarithms are with base 2,
and entropy and mutual information are measured in bits.

Consider a two-user discrete memoryless multiple-access
channel with input alphabets X and Y , output alphabet Z
defined by the probability mass functions PZ|XY (.|x, y) for
all x ∈ X , y ∈ Y . The channel is memoryless, i.e., it satisfies

P (Zn|Xn, Y n, Zn−1) = P (Zn|Xn, Yn), n = 1, 2, . . .

There is feedback to both encoders (S1 and S2 are both closed
in Figure 1).

Definition 1: An (N, 2NR1 , 2NR2) code with block length
N and rates (R1, R2) for a MAC with feedback consists of

1) A sequence of mappings for each encoder:

e1n : {1, . . . , 2NR1} × Zn−1 → X , n = 1, . . . , N

e2n : {1, . . . , 2NR2} × Zn−1 → Y, n = 1, . . . , N

2) A decoder mapping given by

g : ZN → {1, . . . , 2NR1} × {1, . . . , 2NR2}
Assuming the messages (W1,W2) are drawn uniformly from
the set {1, . . . 2NR1} × {1, . . . 2NR2}, the error probability is

Pe,N =

∑2NR1 ,2NR2

m1=1,m2=1 Pr(g(Z) 6= (m1, m2)|W1,W2 = m1,m2)
2NR12NR2

A rate pair (R1, R2) is achievable for the discrete mem-
oryless MAC with feedback if there exists a sequence of
(N, 2NR1 , 2NR2) codes such that Pe,N → 0 as N → ∞.
The closure of all achievable rate pairs is the capacity region
with feedback. The following theorem is the main result of
this paper.

Theorem 1: For the MAC described by PZ|XY , consider
any joint distribution of the form

PUWABXY Z = PUPWABPX|UWAPY |UWBPZ|XY (2)

with U,W,A,B are discrete random variables such that:

1) There exists a function f : Z ×A× B × U ×W →W
such that

PW (k) =
∑

(z,a,b,u,w):
f(z,a,b,u,w)=k

PZABUW (z, a, b, u, w) (3)

where PZABUW is the marginal derived from (2).
2) There exist conditional probability distributions

QĀ|ZXABUW (denoted Q1) and QB̄|ZY ABUW

(denoted Q2) such that for all (ā, b̄) ∈ A × B and all
(z, a, b, u, w) ∈ Z ×A× B × U ×W

∑
x,y

Q1(ā|z, x, a, b, u, w)Q2(b̄|z, y, a, b, u, w)

· PXY |ZABUW (x, y|z, a, b, u, w)
= PAB|W (ā, b̄|f(w, u, a, b, z)),

(4)

where PXY |ZABW and PAB|W are marginals derived
from (2).

For such a joint distribution, the following rate-region is
achievable.

R1 < min{I(X; Z|Y BWU),
I(X; Z|Y ABWU) + I(A; Z|BWU) + I(U ; Z)}

R2 < min{I(Y ; Z|XAWU),
I(Y ; Z|XABWU) + I(B;Z|AWU) + I(U ; Z)}

R1 + R2 < I(XY ; Z|UW ) + I(U ;Z)

A. Overview of Coding Scheme

Consider B blocks of transmission, with a fresh pair of
messages in each block. Let (m1b,m2b) denote the messages,
and Xb,Yb the input sequences for block b. The input Xb

has three components: Ub,Ab and a fresh message from user
1. Yb comprises Ub,Bb and a fresh message from user 2.
The fresh messages transmitted by the two users in any block
are independent; however, conditioned on the output of that
block, the messages are correlated. Consider the block (b−1),
at the end of which the decoder as well as both encoders
receive Zb−1. At this point, encoder 1 makes a list of possible
m2(b−1). This list, exponentially smaller than 2NR2 in size, is
resolved by the sequence Bb that is decoded by encoder 1 at
the end of block b. Similarly, encoder 2 determines m1(b−1) at
the end of block b by decoding Ab. At this point, the decoder
cannot decode the pair (Ab,Bb) since it is disadvantaged
compared to the encoders. Hence, at the end of block b, it is
left with a list of possible message pairs (m1(b−1),m2(b−1)).
This list is resolved by both encoders together in block (b+1)
using a common sequence Ub+1.

Note that Ab and Bb are correlated random sequences since
(m1(b−1), m2(b−1)) is a correlated message pair [12] given
Zb−1. The correlation between Ab and Bb cannot be arbitrary-
it is generated using the information available at each encoder
at the end of block (b− 1). At this time, both encoders know
(z,a,b,u,w)b−1. In addition, encoder 1 also knows xb−1 and
generates Ab ∼ Q1(.|(z,x,a,b,u,w)b−1). Similarly, encoder
2 generates Bb ∼ Q2(.|(z,y,a,b,u,w)b−1).



In order to obtain a single-letter characterization, we need to
make sure that the (Ab,Bb) pair has the same joint distribution
in each block b. This is achieved using Wb, which summarizes
the information known to both encoders just before they
transmit block b. wb is defined as f((z,a,b,u,w)b−1), where
(3) ensures that wb ∼ PW . Then (4) ensures that given
wb, the (Ab,Bb) pairs- each corresponding to one possible
(m1(b−1),m2(b−1))- are as if picked independently of each
other from the typical set T (PAB|W ). Conditioned on wb,
(4) guarantees that all the sequences corresponding to block
b will be independent of all the sequences corresponding to
block b−1, ∀b. This ensures stationarity of the coding scheme.

The coding scheme described above is similar in spirit to
that of Han for two-way channels [13]. If we set W = A =
B = φ, the conditions are trivially satisfied and we obtain the
Cover-Leung region (1). In the C-L coding scheme, the rates
(R1, R2) are low enough so that each encoder can decode the
message of the other at the end of the same block. In our
strategy, the rates are too high to do this, so the encoders wait
one more block to decode their messages (using A and B). In
both schemes, the encoders cooperate to resolve the decoders
list one block after they decode each other’s message.

It is easy to see that our scheme can be extended as follows.
Suppose that the rates are high enough so that the correlated
information A and B cannot be decoded, i.e., the encoders
are not able to decode the messages even with a delay of
one block. We can then introduce another pair of (correlated)
auxiliary random variables that the encoders decode with a
delay of two blocks. In other words, we can extend our rate
region by introducing an extra pair of auxiliary random vari-
ables. Clearly, this can be repeated to obtain potentially larger
rate-regions, albeit with more auxiliary random variables.

III. PROOF SKETCH OF THEOREM 1
Fix a joint distribution PUWABXY Z as in (2) with corre-

sponding f, Q1, Q2 such that (3) and (4) are satisfied.

A. Random Codebook generation
Choose 2NR0 sequences u[m] independently from the typ-

ical set T (PU ), 1 ≤ m ≤ 2NR0 . For each (w,u,a,b) ∈
T (PWUAB), generate 2NR1 sequences x[i] with xn ∼
PX|UWA, 1 ≤ i ≤ 2NR1 and 2NR2 sequences y[j] with
yn ∼ PY |UWB , 1 ≤ j ≤ 2NR2 .

For each (z,x,a,b,u,w) ∈ T (PZXABUW ), generate one
sequence ā with ān ∼ Q1(.|zn, xn, an, bn, un, wn). Similarly,
for each (z,y,a,b,u,w) ∈ T (PZY ABUW ), generate one
sequence b̄ with b̄n ∼ Q2(.|zn, yn, an, bn, un, wn).

B. Encoding
For block 1, (u,w,a,b)1 are chosen a priori at random

from T (PUWAB), and x1[i],y1[j] are transmitted from the
respective codebooks, if (i, j) are the messages in block 1.
For 2 ≤ b ≤ B, the encoders generate the inputs Xb,Yb for
block b as follows.

1) Both encoders agree on the index in {1, . . . , 2NR0} to
resolve the decoder’s list of message pairs for block (b−
2), and choose ub corresponding to that index.

2) At the end of block (b − 1), both encoders know
(z,a,b,u,w)b−1, and thus wb = f((z,a,b,u,w)b−1).
Encoder 1 chooses Ab = ā, where ā is the sequence
corresponding to (z,x,a,b,u,w)b−1 (cf. Section III-
A). Similarly, encoder 2 chooses Bb = b̄, with b̄
corresponding to (z,y,a,b,u,w)b−1.

3) Finally, (u,w,a,b)b determines the codebooks of en-
coder 1 and 2, from which xb[i] and yb[j] are transmitted
if the messages are i and j, respectively. No new
messages are transmitted in blocks (B − 1) and B-
(xB−1[1],yB−1[1]) and (xB [1],yB [1]) are taken to be
the codewords for these two blocks. The reduction in
rate due to this is insignificant if B is very large.

C. Decoding

Upon receiving zb, the decoder decodes the message pair
corresponding to block (b−2), while the encoders decode the
messages (of one another) corresponding to block (b−1). This
is explained below.

At the Decoder (3 ≤ b ≤ B): At the end of block (b− 1),
• the decoder has correctly decoded ub−1 from zb−1,
• it knows the tuple (z,a,b,u,w)b−2 (thus also wb−1).

At this point, the decoder has the following list of all possible
message pairs for block (b− 2):

Lb−2 , {(i, j) : (z,x[i],y[j],a,b,u,w)b−2 jointly typ.
AND (zb−1,ai,bj ,ub−1,wb−1) jointly typ.},

(5)

where ai denotes the ā−sequence corresponding to
(z,x[i],a,b,u,w)b−2, and bj denotes the b̄−sequence
corresponding to (z,y[j],a,b,u,w)b−2 (cf. Section III-A).

Upon receiving zb, the decoder determines the unique m∗ ∈
{1, . . . , 2NR0} such that (zb,u[m∗]) is jointly typical. This is
done correctly with high probability if

R0 < I(U ; Z)− ε (6)

If the list-size |Lb−2| is smaller than 2NR0 , the decoder can
resolve it using m∗. Assuming (i∗, j∗) is the message pair
transmitted, we have Lb−2 = {(i∗, j∗)} ∪ LY ∪ LX ∪ LXY ,
where

LY , {(i∗, j), j 6= j∗ : (z,x[i∗],y[j],a,b,u,w)b−2 jointly typ.
AND (zb−1,ai∗ ,bj ,ub−1,wb−1) are jointly typ.},

LX , {(i, j∗), i 6= i∗ : (z,x[i],y[j∗],a,b,u,w)b−2 jointly typ.
AND (zb−1,ai,bj∗ ,ub−1,wb−1) are jointly typ.},

LXY , {(i, j), i 6= i∗, j 6= j∗ : (z,x[i],y[j],a,b,u,w)b−2 jointly
typ. AND (zb−1,ai,bj ,ub−1,wb−1) are jointly typ.},

Consider LY . The probability of (z,x[i∗],y[j],a,b,u,w)b−2

being jointly typical can be upper-bounded by
2−N(I(Y ;Z|XABWU)−ε). Conditioned on wb−1, note that
all the sequences in block b − 1 are independent of all the
sequences in block b − 2. Since wb−1 is known at both
encoders at the beginning of block b − 1, the probability
of (zb−1,ai∗ ,bj ,ub−1,wb−1) being jointly typical, given



(z,x[i∗],y[j],a,b,u,w)b−2 is jointly typical, can be
upper-bounded by 2−N(I(B;Z|AWU)−ε). We therefore have

E|LY | < 2NR22−N(I(Y ;Z|XABUW )−ε)2−N(I(B;Z|AUW )−ε)

Using similar upper bounds for E|LX | and E|LXY |, we obtain

E|Lb−2| < 1 + 2N(R2−I(Y ;Z|XABUW )−I(B;Z|AUW )+2ε)

+ 2N(R1−I(X;Z|Y ABUW )−I(A;Z|BUW )+2ε)

+ 2N(R1+R2−I(XY ;Z|UW )+2ε)

(7)

Using (7) in the Markov inequality, one can show that with
high probability, |Lb−2| < 2N(A+4ε), where

A ,max{R1 + R2 − I(XY ;Z|UW ),
R1 − I(X; Z|Y ABUW )− I(A; Z|BUW ),
R2 − I(Y ; Z|XABUW )− I(B;Z|AUW )}.

Thus Ub = u[m∗] can resolve the list Lb−2 if 2N(A+4ε) <
2NR0 . Combining this with (6), we conclude that m∗ can
uniquely index the correct message pair (i∗, j∗) in Lb−2 if

R1 + R2 − I(XY ; Z|UW ) < I(U ;Z)− 5ε,

R1 − I(X;Z|Y ABUW )− I(A;Z|BUW ) < I(U ;Z)− 5ε,

R2 − I(Y ; Z|XABUW )− I(B; Z|AUW ) < I(U ;Z)− 5ε.
(8)

The decoder now also knows the tuple (z,a,b,u,w)b−1 since
ab−1 = ai∗ and bb−1 = bj∗ . This is the information required
for decoding at the end of the next block b + 1.

At the Encoders (2 ≤ b ≤ B): At the end of block
(b − 1), the encoders agree on a common ub and also know
(z,a,b,u,w)b−1 and wb = f((z,a,b,u,w)b−1). In the
next block, zb is received. Let bj denote the b̄−sequence
corresponding to (z,y[j],a,b,u,w)b−1, 1 ≤ j ≤ 2NR2 .
If there is a unique j∗ such that (zb,xb,ab,bj∗ ,ub,wb) is
jointly typical, encoder 1 decodes j∗ to be the message sent
by encoder 2 in block (b − 1). An error is made only if
there exists j 6= j∗ such that (z,y[j],a,b,u,w)b−1 and
(zb,xb,ab,bj ,ub,wb) are each jointly typical. The probability
of this event can be upper bounded by

2NR2∑

j=1

2−N(I(Y ;Z|XABWU)−ε)2−N(I(B;Z|XAWU)−ε).

A similar upper bound can be obtained for the probability
of encoder 2 incorrectly decoding i∗, the message sent by
encoder 1 in block (b − 1). Hence the probability of each
encoder decoding the other’s message incorrectly can be made
arbitrarily small if

R2 + 2ε < I(Y ;Z|XABWU) + I(B; Z|XAWU)
= I(Y B; Z|XAWU) = I(Y ;Z|XAWU),

R1 + 2ε < I(X; Z|Y ABWU) + I(A; Z|Y BWU)
= I(XA; Z|XBWU) = I(X; Z|Y BWU).

(9)

At this point, the decoder has a list Lb−1 of possible mes-
sage pairs for block (b − 1) (cf. (5)). The encoders both
set Ub+1 = u[m∗], where m∗ ∈ {1, . . . , 2NR0} uniquely

determines (i∗, j∗) ∈ Lb−1. Note that if no error is made
by the encoders in decoding i∗, j∗ at the end of block b, both
encoders know (ab,bb) to be equal to (ai∗ ,bj∗), as required
for the next block.

Probability of Error: Using (4), one can show that
(u,w,a,b,x,y, z)b is jointly typical according to (2) with
high probability ∀b. Further, we have shown that the proba-
bility of error at the decoder and each encoder can be made
arbitrarily small if (8) and (9) are satisfied.

IV. EXAMPLE

Consider the AWGN MAC with power constraint P on each
of the inputs. This channel, with X = Y = Z = R, is defined
by

Z = X + Y + N (10)

where N is a Gaussian noise random variable with mean 0 and
variance σ2 that is independent of X and Y . The inputs x and
y for each block satisfy 1

N

∑N
n=1 x2

n ≤ P, 1
N

∑N
n=1 y2

n ≤ P.
For this channel, the equal-rate point on the boundary of the
C-L region [1] is (RCL, RCL) where

RCL =
1
2

log

(
2

√
1 +

P

σ2
− 1

)
(11)

The achievable rate region of Theorem 1 for the discrete
memoryless case can be extended to the AWGN MAC using
a similar proof, recognizing that in the Gaussian case super-
position is equivalent to addition.

For the joint distribution PUWABXY Z in (2), define U ∼
N (0, 1) and (W,A, B) jointly Gaussian with mean zero and
covariance matrix

KWAB =




1 γ −γ
γ 1 λ
−γ λ 1


 . (12)

The input distributions PX|UWA and PY |UWB are defined by

X =
√

αP IX +
√

βP A +
√

α + βP U,

Y =
√

αP IY +
√

βP B +
√

α + βP U

(13)

where IX , IY are independent N (0, 1) random variables,
α, β > 0 and α + β ≤ 1. IX and IY represent the fresh
information and U is the resolution information for the decoder
that the encoders cooperate to send. A is the information that
encoder 2 decodes using feedback, and B the information that
encoder 1 decodes. We need to verify that the two conditions
of Theorem 1 are satisfied by this joint distribution and then
evaluate the rates.

A. Verifying the conditions
At the end of block b, both encoders know

(Z,A,B,U,W)b. This tuple is represented as Wb+1

in the next block b+1 using a function f((Z,A,B,U,W)b).
Define the function as

W̄ = f(Z, A,B, U)

, Z −√βP A−√βP B − 2
√

α + βP U√
2αP + σ2

.
(14)



TABLE I
COMPARISON OF EQUAL-RATE BOUNDARY POINTS

P/σ2

0.5 1 5 10 100
RCL 0.2678 0.4353 0.9815 1.2470 2.1277
R∗ 0.2754 0.4499 1.0067 1.2709 2.1400

RFBcap 0.2834 0.4642 1.0241 1.2847 2.1439

From (13) and (10), we see that f removes the effect of
(U,A,B)b from Zb, resulting in a Wb+1 that is the sum
of the fresh information in block b and the channel noise.

Sequences Ab+1 and Bb+1 are generated using Xb and Yb,
respectively, along with the common tuple (Z,A,B,U,W)b.
Define the following functions to generate (A,B)b+1:

q1 : Ā =k1
X −

√
α + βP U −√βP A√

αP
+ k2f(U,A, B, Z),

q2 : B̄ =− k1
Y −

√
α + βP U −√βP B√

αP
− k2f(U,A, B, Z)

(15)

where k1, k2 ∈ R. With respect to (4), this is equivalent to

Q1(ā|z, x, a, b, u, w) = 1(q1(z, x, a, b, u, w) = ā),

Q2(b̄|z, y, a, b, u, w) = 1(q2(z, y, a, b, u, w) = b̄).

(15) ensures that (A,B)b+1 depend on (Z,A,B,U)b only
through ‘Zb with the effect of (A,B,U)b removed’. In other
words, conditioned on Wb+1 = f((Z,A,B,U)b), (A,B)b+1

is independent of all the sequences in block b as required by
(4). Indeed, it can be formally verified that (4) holds if the
following equalities are satisfied.

E[Ā2] = E[B̄2] = 1, E[ĀB̄] = λ, E[ĀW̄ ] = −E[B̄W̄ ] = γ.
(16)

Evaluating the conditions in (16) using (14) and (15), we have

1 = E[Ā2] =k2
1 + k2

2 + 2k1k2

√
αP

2αP + σ2
, (17)

λ = E[ĀB̄] = −k2
2 − 2k1k2

√
αP

2αP + σ2
, (18)

γ = E[ĀW̄ ] = k2 + k1

√
αP

2αP + σ2
. (19)

Once we choose (α, β, λ), (17) and (18) determine k1 and k2.
Using these in (19), we obtain the value of γ in order for the
joint distribution to be valid for Theorem 1.

B. Evaluating the rates

For a valid (α, β, λ, γ), the achievable rates can be evaluated
from Theorem 1 to be

R1, R2 < min{G,H},
R1 + R2 <

1
2

(
1 +

2P

σ2
+

2P

σ2
(α + β + λβ)

)
,

(20)

where

G =
1
2

log
(

1 + (α + β)
P

σ2

− β
P

σ2
· λ2 + γ2(1− λ2 + 2λ)− γ4(1 + 2λ)

(1− γ2)2

)
,

H =
1
2

log(1 +
4α + βP/σ2

2(α + β + βλ)P/σ2 + 1
) +

1
2

log(1 + α
P

σ2
)

+
1
2

log
(

1 +
β(1 + λ)P/σ2

1 + 2αP/σ2
(2− 1 + λ

1− γ2
)
)

.

For different values of the signal-to-noise ratio P/σ2, we
(numerically) compute the equal-rate point (R∗, R∗) on the
boundary of (20). For various values of P/σ2, Table I com-
pares R∗ with RCL, the equal-rate point of the C-L region
given by (11), and with the equal rate-point RFBcap on the
boundary of the feedback capacity region [6]. We observe that
our equal-rate points represent a significant improvement over
the C-L region, and are close to the feedback capacity for
large SNR. In [8, pp. 82-84], a two-letter generalization of
the Cover-Leung region is given. The equal-rate point on the
boundary of that region for P/σ2 = 10 is 1.2566, which is
smaller than the corresponding R∗ given in Table I.

It is part of ongoing work to compare our rate region with
that of [10]. Though direct comparison of the two regions
appears difficult in general, it may be possible for specific
channels. Moreover, as explained at the end of Section II, our
strategy can be extended to yield larger rate-regions by adding
more auxiliary random variables.
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