
Achievable Rates for the Broadcast Channel with
Feedback

Ramji Venkataramanan
Dept. of Electrical Engineering

Stanford University, USA

Email: vramji@stanford.edu

S. Sandeep Pradhan
Dept. of Electrical Engineering & Computer Science

University of Michigan, Ann Arbor, USA

Email: pradhanv@eecs.umich.edu

Ŵ2

Ŵ1
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Fig. 1. The discrete memoryless broadcast channel with feedback.

Abstract—A single-letter achievable rate region is proposed
for the two-receiver discrete memoryless broadcast channel with
feedback. It is shown through an example that the rate-region
can be strictly larger than the no-feedback capacity region.
The coding strategy involves block-Markov superposition coding
using Marton’s scheme as the starting point. If the message rates
in the Marton scheme are too high to be decoded at the end of a
block, each receiver is left with a list of messages compatible with
its output. In the next block, we send resolution information for
each receiver to resolve its list. The key observation is that the
resolution information of the first receiver is correlated with that
of the second. We transmit this correlated information efficiently
in the following block using ideas from the Han-Costa coding
scheme.

I. INTRODUCTION

The two-receiver discrete memoryless broadcast channel is

shown in Figure 1. The channel has input X , outputs Y1, Y2,

and is characterized by the conditional law PY1Y2|X . The

largest known set of achievable rates for this channel without

feedback is due to Marton [1]. Marton’s rate region is equal

the capacity region in all cases where it is known. (See [2],

for example, for a list of such channels.)

El Gamal showed in [3] that feedback does not enlarge the

capacity region of a physically degraded broadcast channel.

Later, through a simple example, Dueck [4] demonstrated that

feedback can strictly improve the capacity region of a general

broadcast channel. For the degraded AWGN broadcast channel

with feedback, achievable rates larger than the no-feedback

capacity were established in [5], and more recently, in [6]. In

This work was supported in part by NSF grants CCF-0448115 (CAREER),
CCF-0915619.

Channel
X = (X0, X1, X2)

Y1 = (X0, X1 ⊕ Z)

Y2 = (X0, X2 ⊕ Z)

Fig. 2. The channel input is a binary triple (X0, X1, X2). Z ∼ Bernoulli( 1
2
)

is an independent noise variable.

this paper, we establish a single-letter achievable rate region

for the discrete memoryless broadcast channel with feedback.

Before describing our coding strategy, let us revisit the

example from [4]. Consider the broadcast channel in Figure

2. The channel input is a binary triple (X0, X1, X2). X0 is

transmitted cleanly to both receivers. In addition, receiver 1
receives X1 ⊕ Z and receiver 2 receives X2 ⊕ Z, where

Z is an independent binary Bernoulli( 12 ) noise variable. In

the above, the operation ⊕ denotes the modulo-two sum.

Without feedback, the maximum sum rate for this channel is

1 bit/channel use, achieved by using the clean input X0 alone.

In other words, no information can be reliably transmitted

through inputs X1 and X2.

Dueck described a simple scheme to achieve a greater sum

rate using feedback. In the first channel use, transmit one bit to

each receiver i through Xi, i = 1, 2. Receiver i then receives

Yi = Xi ⊕ Z, and cannot recover Xi. The transmitter learns

Y1, Y2 through feedback and can compute Z = Y1 ⊕ X1 =
Y2⊕X2. For the next channel use, the transmitter sets X0 = Z.

Since X0 is received noiselessly by both receivers, receiver i
can now recover Xi as Yi ⊕ Z. We can repeat this idea over

several transmissions: in each channel use, transmit a fresh

pair of bits (through X1, X2) and the noise realization of the

previous channel use (through X0). This yields a sum rate of

2 bits/channel use. This is, in fact, the sum-capacity of the

channel since it equals the cut-set bound maxPX
I(X;Y1Y2).

The example suggests a natural way to exploit feedback in

a broadcast channel. If we transmit a block of information

at rates outside the no-feedback capacity region, the receivers

cannot uniquely decode their messages at the end of the block.

Each receiver now has a list of its codewords that are jointly

typical with its channel output. In the next block, we attempt

to resolve these lists at the two receivers. The key observation

is that the resolution information needed by receiver 1 is in

general correlated with the resolution information needed by
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receiver 2. The above example is an extreme case of this: the

resolution information needed by the two receivers is identical,

i.e., the correlation is perfect!

It is known that correlated information can be transmitted

over the broadcast channel at higher rates than independent

information [7]–[11]. At the heart of the proposed coding

scheme is a way to represent the resolution information of the

two receivers as a pair of correlated sources, which is then

transmitted efficiently in the next block using the techiques of

[7]. We repeat this idea over several blocks of transmission,

with each block containing independent fresh information

superimposed over correlated resolution information for the

previous block.

II. PREMILINARIES

We use uppercase letters to denote random variables, lower-

case for their realizations and calligraphic notation for their

alphabets. Bold-face notation is used for random vectors.

Unless otherwise stated, all vectors have length n. Thus

A � An � (A1, . . . , An). The typical set of a random variable

with pmf P is denoted T (P ).
Consider a two-user discrete memoryless broadcast channel

with input alphabet X and output alphabets Y1,Y2, defined

by the conditional probability mass function PY1Y2|X(.|x) for

all x ∈ X . The channel is memoryless, i.e., it satisfies

P (Y1i, Y2i|Xi, Y i−1
1 , Y i−1

2 ) = P (Y1i, Y2i|Xi), i = 1, 2, . . .

There is feedback from both receivers to the transmitter.

Definition 1: An (n, 2NR1 , 2nR2) code with block length

n and rates (R1, R2) for a broadcast channel with feedback

consists of

1) A sequence of encoder mappings:

ei : {1, . . . , 2nR1} × {1, . . . , 2nR2} × Yi−1
1 × Yi−1

2

→ X , i = 1, . . . , n

2) Decoder mappings given by

g1 : Yn
1 → {1, . . . , 2nR1},

g2 : Yn
2 → {1, . . . , 2nR2}.

Assuming the messages (W1,W2) are drawn uniformly from

the set {1, . . . 2nR1} × {1, . . . 2nR2}, the error probability is

Pe,n =

∑
k,l Pr(g1(Y1) �= k or g2(Y2) �= l|W1,W2 = k, l)

2nR1 · 2nR2

A rate pair (R1, R2) is achievable for the broadcast channel

with feedback if there exists a sequence of (n, 2nR1 , 2nR2)
codes such that Pe,n → 0 as n → ∞. The closure of all

achievable rate pairs is the capacity region with feedback.

III. MAIN RESULT

A. Overview of Coding Scheme

Consider B blocks of transmission, with a fresh pair of

messages (m1b,m2b) in each block b (1 ≤ b ≤ B). Let the

message rate pair (R1, R2) lie outside Marton’s region [1].

In each block, the message pair is encoded using Marton

coding. Random variables U and V carry the messages for

Source 1: ŨÃC̃Ỹ1

Source 2: Ṽ B̃C̃Ỹ2

Msg. 1

Msg. 2

A,B,C

U, V

CHANNEL
X

Encoder

Dec. 1

Dec. 2

Y1

Y2

Ã, C̃, Ỹ1

B̃, C̃, Ỹ2

Fig. 3. Transmitting correlated sources with side-information at the receivers
through (A,B,C), and fresh information through U, V .

receivers 1 and 2, respectively.1 U and V codebooks are

chosen according to PU and PV , and are divided into 2nR1

and 2nR2 bins, respectively. To encode message pair (m1,m2),
we choose one codeword from bin m1b of the U -codebook

and one codeword from bin m2b of the V -codebook that are

jointly typical according to PUV . This pair of jointly typical

codewords is set to be Ub,Vb. The encoding is successful if

each bin has is large enough [12].

However, the sizes of the U and V codebooks are too large

for receivers 1 and 2 to uniquely decode Ub and Vb, respec-

tively. Hence receiver 1 is left with a list of U -codewords that

are jointly typical with Y1b; receiver 2 has a similar list of

V -codewords that are jointly typical with Y2b. The transmitter

knows both these lists due to feedback, and resolves them in

the next block block as follows. If (Ub,Vb) was the actual

codeword pair transmitted, then (Y1b,Ub) and (Y2b,Vb) may

be considered realizations of a pair of correlated sources (Y1U
and Y2V ), jointly distributed according to PUV Y1Y2

. The goal

in block (b + 1) is to transmit this correlated pair over the

broadcast channel, with receiver 1 needing to decode Ub, and

receiver 2 decoding Vb.

To transmit the pair of correlated sources, we denote them

in block (b+ 1) as

Ũb+1 = Ub, Ỹ1(b+1) = Y1b, Ṽb+1 = Vb, Ỹ2(b+1) = Y2b.

We then use the ideas of Han and Costa [7], [9] to transmit

this pair of correlated sources (Ũ Ỹ1, Ṽ Ỹ2) over the broadcast

channel. A correlated triple of random variables (A,B,C) is

introduced to cover the sources. At the end of block (b+ 1),
receiver 1 determines Ũ by decoding (A,C). Since Ũb+1 =
Ub, receiver 1 has thus decoded its message for block b with

a delay of one block. Similarly, receiver 2 determines Ṽ by

decoding (B,C), thereby decoding its message for block b.
As described above, the encoder generates two sets of vari-

ables in each block: (A,B,C) to cover the correlated sources,

and (U, V ) to represent the fresh messages. It combines them

together to generate the channel input X . To get a single-

letter characterization of achievable rates, we need to ensure

that the random variables in each block follow a stationary

1A common random variable W may also be used, but the essence of the
coding strategy is the same. A longer version of this paper will present a
coding scheme that incorporates a common random variable.
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joint distribution. We now describe how to ensure that the

sequences in each block are jointly distributed according to

PABC · PUV · PX|ABCUV · PY1Y2|X (1)

for some chosen PABC , PUV and PX|ABCUV . At the end of

each block , receiver 1 decodes A and C from Y1, but cannot

decode U . These sequences, represented using ∼ notation,

become the source to be transmitted to receiver 1 in the next

block. This source is the entire tuple ÃC̃Ũ Ỹ1, which receiver

1 decodes using ÃC̃Ỹ1 as side-information. This is shown in

Figure 3. Similarly, B̃C̃Ṽ Ỹ2 is the source for receiver 2, which

decodes it using B̃C̃Ỹ2 as side-information.

Suppose that the sequences in a given block are jointly

distributed according to (1). These sequences become the

source pair (ÃC̃Ũ Ỹ1, B̃C̃Ṽ Ỹ2) in the next block. To cover the

source pair with A,B,C, we pick a conditional distribution

QABC|ÃB̃C̃ŨṼ Ỹ1Ỹ2

such that the covering sequences are distributed according to

PABC . This holds when the condition given by (3) below is

satisfied. We thereby ensure that the sequences in each block

are jointly distributed according to (1).

Our technique of exploiting the correlation induced by

feedback is similar in spirit to the coding scheme of Han for

two-way channels [13]. We now state the theorem and give a

sketch of the proof in Section IV.

Theorem 1: For the broadcast channel described by

PY1,Y2|X , fix any joint distribution of the form

PABC · PUV · PX|ABCUV · PY1Y2|X (2)

where A,B,C, U, V are random variables defined over dis-

crete alphabets. Let (Ã, B̃, C̃, Ũ , Ṽ , X̃, Ỹ1, Ỹ2) denote the cor-

responding variables for the previous block. Fix a conditional

distribution QABC|Ã,B̃,C̃,Ũ,Ṽ ,Ỹ1,Ỹ2
such that

PABC(.) =
∑

ã,b̃,c̃,ũ,ṽ,ỹ1,ỹ2

QABC|ÃB̃C̃ŨṼ Ỹ1Ỹ2
(.|ã, b̃, c̃, ũ, ṽ, ỹ1, ỹ2)

· PABCUV Y1Y2(ã, b̃, c̃, ũ, ṽ, ỹ1, ỹ2).
(3)

The joint distribution for two successive blocks is then

P � PÃB̃C̃ŨṼ X̃Ỹ1Ỹ2
·QABC|Ã,B̃,C̃,Ũ,Ṽ ,Ỹ1,Ỹ2

· PABCUVXY1Y2

(4)

where PÃB̃C̃ŨṼ X̃Ỹ1Ỹ2
and PABCUVXY1Y2

are both given by

(2). For any such joint distribution the following rate-region

is achievable.

R1 < I(U ;Y1|AC) + I(ŨAC;Y1|ÃC̃Ỹ1)− I(Ṽ B̃Ỹ2;AC|ŨÃC̃Ỹ1)

R2 < I(V ;Y2|BC) + I(Ṽ BC;Y2|B̃C̃Ỹ2)− I(ŨÃỸ ;BC|Ṽ B̃C̃Ỹ2)

R1 +R2 < min{T1, T2, T3}+ I(U ;Y1|AC) + I(ŨA;Y1|ÃC̃Ỹ1C)

− I(ŨÃỸ1;B|Ṽ B̃C̃Ỹ2C) + I(V ;Y2|BC) + I(Ṽ B;Y2|B̃C̃Ỹ2C)

− I(Ṽ B̃Ỹ2;A|ŨÃC̃Ỹ1C)− I(A;B|Ũ Ṽ ÃB̃C̃Ỹ1Ỹ2C)− I(U ;V )

where

T1 � I(C;Y1|ÃC̃Ỹ1) + I(Ṽ ;C|B̃C̃Ỹ2)− I(Ṽ B̃Ỹ2;C|ŨÃC̃Ỹ1)

T2 � I(C;Y2|B̃C̃Ỹ2) + I(Ũ ;C|ÃC̃Ỹ1)− I(ŨÃỸ1;C|Ṽ B̃C̃Ỹ2)

T3 � I(C;Y1|ÃC̃Ỹ1) + I(C;Y2|B̃C̃Ỹ2)− I(Ṽ B̃Ỹ2;C|ŨÃC̃Ỹ1)

− I(ŨÃỸ1;C|Ṽ B̃C̃Ỹ2)

The rate region is computed with the joint distribution (4).

Dueck’s feedback example: We show that Theorem 1 yields

the optimal rates for the example described in Section I. Set

PUV = PUPV , with PU (0) = PU (1) = PV (0) = PV (1) =
1

2

A = B = φ, PC(0) = PC(1) =
1

2
(5)

X : (X0 = C,X1 = U,X2 = V )

Next, we define the distribution Q that generates C for each

block from the variables of the previous block.

Q : C = Ỹ1 ⊕ Ũ = Ỹ2 ⊕ Ṽ (6)

Since Y1 ⊕ U = Y2 ⊕ V = Z, the noise variable, the above

choice satisfies (3). Finally, substituting (5) in Theorem 1, the

rate region is computed as

R1 < 0 + 1− 0 = 1

R2 < 0 + 1− 0 = 1

R1 +R2 < 0 + min{T1, T2, T3} = 2

IV. PROOF SKETCH OF THEOREM 1

Fix a joint distribution as in (2) and pick a conditional

distribution QABC|ÃB̃C̃ŨṼ Ỹ1Ỹ2
that satisfies (3). Then the joint

distribution P over two successive blocks is given by (4).

A. Random code generation

1) Coding the fresh messages: Pick 2nR
′
1 U codewords,

each uniformly at random from the typical set T (PU ).
Label these codewords u(i), i ∈ {1, . . . , 2nR′

1}. Divide

these into 2nR1 equal-sized bins. Similarly, pick a ran-

dom V codebook with 2nR
′
2 codewords, each uniformly

at random from the set T (PV ). Label these codewords

v(j), j ∈ {1, . . . , 2nR′
2}. Divide these codewords into

2nR2 equal-sized bins.

2) Covering the correlated sources: In each block,

(Ã, C̃, Ũ, Ỹ1) represents the source sequence to be

transmitted to receiver 1, and (B̃, C̃, Ṽ, Ỹ2) the source

for receiver 2. The sequences for covering the sources

are generated as follows.

• For each sequence c̃ ∈ Cn, pick 2nρ0 C code-

words independently from the conditional typical

set T (PC|C̃). Label these codewords c(k0|c̃), k0 ∈
{1, . . . , 2nρ0}.

• For each jointly typical triple (ã, c̃, ũ, ỹ1, c(k0|c̃)),
pick 2nρ1 A sequences, independently from the con-

ditionally typical set T (PA|CÃC̃ŨỸ1
). Label these

sequences a(k1|k0, ã, c̃, ũ, ỹ1), k1 ∈ {1, . . . , 2nρ1}.

• For each jointly typical triple (b̃, c̃, ṽ, ỹ2, c(k0|c̃)),
pick 2nρ2 B sequences, independently from
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the conditionally typical set T (PB|CB̃C̃Ṽ Ỹ2
). La-

bel these sequences b(k2|k0, b̃, c̃, ṽ, ỹ2), k2 ∈
{1, . . . , 2nρ2}.

3) Channel Input: For each jointly typical tuple

(a,b, c,u,v), pick one input sequence at random

x from the conditionally typical set T (PX|ABCUV ).

B. Encoding

For block 1, (ã, b̃, c̃, ũ, ṽ, ỹ1, ỹ2)1 are chosen a priori at

random from T (PABCUV Y1Y2
), and coding starts from step 2

below. For 2 ≤ b ≤ B, after receiving (y1,y2)b−1 through

feedback, the encoder generates the input xb for block b as

follows.

1) Set (ã, b̃, c̃, ũ, ṽ, ỹ1, ỹ2)b = (a,b, c,u,v,y1,y2)b−1.
2) Pick (k0, k1, k2) such that c(k0|c̃b),

a(k1|k0, (ã, c̃, ũ, ỹ1)b) and b(k2|k0, (b̃, c̃, ṽ, ỹ2)b)
are jointly typical with (ã, b̃, c̃, ũ, ṽ, ỹ1, ỹ2)b according

to the joint distribution P in (4). Using techniques

similar to [7], [12], one can show that such a triple

(k0, k1, k2) can be found if

ρ0 > I(ÃB̃Ũ Ṽ Ỹ1Ỹ2;C|C̃)

ρ0 + ρ1 > I(B̃Ṽ Ỹ2;A|ÃC̃Ũ Ỹ1C) + I(ÃB̃Ũ Ṽ Ỹ1Ỹ2;C|C̃)

ρ0 + ρ2 > I(ÃŨ Ỹ1;B|B̃C̃Ṽ Ỹ2C) + I(ÃB̃Ũ Ṽ Ỹ1Ỹ2;C|C̃)

ρ0 + ρ1 + ρ2 > I(ÃŨ Ỹ1A; B̃Ṽ Ỹ2B|C̃C)

− I(ÃŨ Ỹ1; B̃Ṽ Ỹ2|C̃C) + I(ÃB̃Ũ Ṽ Ỹ1Ỹ2;C|C̃).
(7)

Set Cb = c(k0|c̃), Ab = a(k1|k0, (ã, c̃, ũ, ỹ1)b) and

Bb = b(k2|k0, (b̃, c̃, ṽ, ỹ2)b).
3) If i ∈ {1, . . . , 2nR1} and j ∈ {1, . . . , 2nR2} are the fresh

messages to be transmitted in block b, pick a sequence

from bin i of the U−codebook and a sequence from bin

j of the V−codebook that are jointly typical according

to PUV . Set these as (u,v)b. As shown in [12], this step

is successful if

R1 < R′
1, R2 < R′

2, R1 +R2 < R′
1 +R′

2 − I(U ;V ).
(8)

4) As described in Step 3 of Section IV-A, set the channel

input Xb to be the sequence corresponding to the tuple

(a,b, c,u,v)b.

No new messages are transmitted in block B; (uB [1],vB [1])
are taken to be the codewords for this block. The reduction in

rate due to this is insignificant if B is very large.

C. Decoding

At the end of each block b (2 ≤ b ≤ B), the decoders

receive y1b and y2b, respectively. Each of them then decodes

its message corresponding to the previous block, as described

below.

• At the end of block (b − 1): Decoder 1 knows the triple

(a, c,y1)b−1, which is then denoted (ã, c̃, ỹ1). Decoder

2 knows (b, c,y2)b−1, which is then denoted (b̃, c̃, ỹ2).
• Decoder 1, at the end of block b: Upon receiving

y1b at the end of block b, decoder 1 tries to find

a triple (i, k0, k1) ∈ {1, . . . , 2nR′
1} × {1, . . . , 2nρ0} ×

{1, . . . , 2nρ1} such that 2

(u(i),a, c,y1)b−1 are jointly typical AND

c(k0|c̃),y1b,a(k1|k0,u(i), ã, c̃, ỹ1) are jointly typ.

If there is a unique such triple (i, k0, k1), the bin number

of u(i) is declared to be the message of decoder 1 for

block (b − 1). Note that decoder 1 now knows cb =
c(k0|c̃) and ab = a(k1|k0,u(i), ã, c̃, ỹ1), which are used

for decoding at the end of the next block.

• Decoder 2, at the end of block b: Upon receiving

y2b at the end of block b, decoder 2 tries to find

a triple (j, k0, k1) ∈ {1, . . . , 2nR′
2} × {1, . . . , 2nρ0} ×

{1, . . . , 2nρ2} such that

(v(j),b, c,y2)b−1 are jointly typical AND

c(k0|c̃),y2b,b(k2|k0,v(j), b̃, c̃, ỹ2) are jointly typ.

If there is a unique such triple (j, k0, k1), the bin number

of v(j) is declared to be the message of decoder 2 for

block (b − 1). Decoder 2 now knows cb = c(k0|c̃)
and bb = b(k2|k0,u(i), b̃, c̃, ỹ2), which are used for

decoding at the end of the next block.

D. Probability of Decoding Error

We can assume that the triple (i = 1, j = 1, k0 = 1, k1 =
1, k2 = 1) was transmitted. The probability of error for

decoder 1 for decoding the message of block (b − 1) can be

expressed as

P 1
(b−1) = Pr(E0) + Pr(E1|Ec

0) + Pr(E2|Ec
0) (9)

where

E0 � (u(1),a, c,y1)b−1 not jointly typical OR

c(1|c̃),a(1|1,u(1), ã, c̃, ỹ1),y1b not jointly typical

E1 � (u(i),a, c,y1)b−1 jointly typical AND

c(1|c̃),a(k1|1,u(i), ã, c̃, ỹ1),y1b jointly typical for

some (i, k1) �= (1, 1)

E2 � (u(i),a, c,y1)b−1 jointly typical AND

c(k0|c̃),a(k1|k0,u(i), ã, c̃, ỹ1),y1b jointly typical for

some (i, k0, k1) �= (1, 1, 1)

Assuming no decoding errors in the previous blocks, Pr(E0) <
ε due to the random code construction and the property of

typical sequences. Averaged over all codebooks, Pr(E1|Ec
0)

can be upper bounded as follows. Define the list

L(b−1) =
{
i : (u(i),a, c,y1)b−1 jointly typical, 1 ≤ i ≤ 2NR′

1

}

(10)

This is the list of possible messages at decoder 1 for block

(b− 1). The list is resolved at the end of block b. In terms of

2We emphasize that (a, c,y1)b−1 is the same as (ã, c̃, ỹ1)b. The two
notations distinguish the role of the same set of sequences in different blocks.
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this list, we can write

Pr(E1|Ec
0) < E

( ∑
i∈Lb−1

ρ1∑
k1=1

Pr {Y1b,C(1|c̃)

jointly typical with Ũ(i),A(k1|1, Ũ(i), ã, c̃, ỹ1)}
)

< E
∑

i∈Lb−1

ρ1∑
k1=1

2−n(I(Ũ ;C|ÃC̃Ỹ1)−ε) · 2−n(I(ŨA;Y1|CÃC̃Ỹ1)−ε)

= E

⎛
⎝ ∑

i∈Lb−1

1

⎞
⎠ 2n(ρ1−I(Ũ ;C|ÃC̃Ỹ1)−I(ŨA;Y1|CÃC̃Ỹ1)+2ε).

(11)

From the definition (10), we have

E

⎛
⎝ ∑

i∈Lb−1

1

⎞
⎠ < 2nR

′
1 · 2−n(I(U ;Y1|AC)−ε). (12)

Combining (11) and (12), we see that Pr(E1|Ec
0) is upper-

bounded by

2n(R
′
1+ρ1−I(U ;Y1|AC)−I(Ũ ;C|ÃC̃Ỹ1)−I(ŨA;Y1|CÃC̃Ỹ1)+3ε).

Hence Pr(E1|Ec
0) can be made arbitrarily small if

R′
1 < I(U ;Y1|AC)+I(Ũ ;C|ÃC̃Ỹ1)+I(ŨA;Y1|CÃC̃Ỹ1)−ρ1.

(13)

Next, we bound Pr(E2|Ec
0).

Pr(E2|Ec
0) < E

( ∑
i∈Lb−1

ρ0∑
k0=1

ρ1∑
k1=1

Pr {Y1b jointly typical

with C(k0|c̃), Ũ(i),A(k1|k0, Ũ(i), ã, c̃, ỹ1)}
)

< E
∑

i∈Lb−1

ρ0∑
k0=1

2−n(I(ÃŨỸ1;C|C̃)−ε)
ρ1∑

k1=1

2−n(I(ŨAC;Y1|ÃC̃Ỹ1)−ε)

= E

⎛
⎝ ∑

i∈Lb−1

1

⎞
⎠ 2n(ρ0+ρ1−I(ÃŨỸ1;C|C̃)−I(ŨAC;Y1|ÃC̃Ỹ1)+2ε).

(14)

Combining (14) and (12), we can upper-bound Pr(E2|Ec
0) as

2n(R
′
1+ρ0+ρ1−I(U ;Y1|AC)−I(ÃŨỸ1;C|C̃)−I(ŨAC;Y1|ÃC̃Ỹ1)+3ε).

Hence Pr(E2|Ec
0) can be made arbitrarily small if

R′
1 <I(U ;Y1|AC) + I(ÃŨ Ỹ1;C|C̃)

+ I(ŨAC;Y1|ÃC̃Ỹ1)− ρ0 − ρ1.
(15)

Thus the probability (9) of decoder 1 incorrectly decoding its

message for block (b−1) can be made arbitrarily small if (13)

and (15) are satisfied. Similarly, the probability of decoder 2
incorrectly decoding its message can be made small if

R′
2 <I(V ;Y2|BC) + I(Ṽ ;C|B̃C̃Ỹ2)

+ I(Ṽ B;Y2|CB̃C̃Ỹ2)− ρ2,
(16)

R′
2 <I(V ;Y2|BC) + I(B̃Ṽ Ỹ2;C|C̃)

+ I(Ṽ BC;Y2|B̃C̃Ỹ2)− ρ0 − ρ2.
(17)

Finally, we combine (13),(15),(16),(17) with (7) and use the

Fourier-Motzkin technique to eliminate ρ0, ρ1, ρ2. We are left

with the following inequalities in terms of R′
1 and R′

2.

R1 < I(U ;Y1|AC) + I(ŨAC;Y1|ÃC̃Ỹ1)− I(Ṽ B̃Ỹ2;AC|ŨÃC̃Ỹ1)

R2 < I(V ;Y2|BC) + I(Ṽ BC;Y2|B̃C̃Ỹ2)− I(ŨÃỸ1;BC|Ṽ B̃C̃Ỹ2)

R1 +R2 < min{T1, T2, T3}+ I(U ;Y1|AC) + I(ŨA;Y1|ÃC̃Ỹ1C)

− I(ŨÃỸ1;B|Ṽ B̃C̃Ỹ2C) + I(V ;Y2|BC) + I(Ṽ B;Y2|B̃C̃Ỹ2C)

− I(Ṽ B̃Ỹ2;A|ŨÃC̃Ỹ1C)− I(A;B|Ũ Ṽ ÃB̃C̃Ỹ1Ỹ2C).
(18)

where T1, T2 and T3 are defined in (1). Combining with (8),

we obtain the rate region of the theorem.

V. CONCLUSION

We have derived a single-letter rate region for the two-user

broadcast channel with feedback. Using the Marton coding

scheme as the starting point, our scheme uses three additional

random variables (A,B,C) to cover the correlated information

generated at the end of each block. The proposed region

can be strictly larger than the no feedback capacity region

as shown by Dueck’s feedback example. Examples to show

how Theorem 1 can be used to compute rates for other

broadcast channels (such as the AWGN broadcast channel)

will be presented in an extended version of this paper. We can

also show that Theorem 1 reduces to the no-feedback capacity

region for a physically degraded broadcast channel, consistent

with the result of [3]. Investigating if one can similarly exploit

correlated information in broadcast channels with partial or

noisy feedback is part of future work.
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