
Interactive Low-complexity Codes for
Synchronization from Deletions and Insertions

Ramji Venkataramanan
Dept. of Electrical Engineering

Yale University, USA
Email: ramji.venkataramanan@yale.edu

Hao Zhang, Kannan Ramchandran
Dept. of Electrical Engineering & Computer Sciences

University of California, Berkeley, USA
Email: {zhanghao,kannanr}@eecs.berkeley.edu

Abstract—We study the problem of synchronization of two
remotely located data sources, which are mis-synchronized due
to deletions and insertions. This is an important problem since
a small number of synchronization errors can induce a large
Hamming distance between the two sources. The goal is to effect
synchronization with the rate-efficient use of lossless bidirectional
links between the two sources. In this work, we focus on the
following model. A binary sequence X of length n is edited to
generate the sequence at the remote end, say Y, where the editing
involves random deletions and insertions, possibly in small bursts.
The problem is to synchronize Y with X with minimal exchange
of information (in terms of both the average communication rate
and the average number of interactive rounds of communication).

We focus here on the case where the number of edits is much
smaller than n, and propose an interactive algorithm which
is computationally simple and has near-optimal communication
complexity. Our algorithm works by efficiently splitting the
source sequence into pieces containing either just a single
deletion/insertion or a single burst deletion/insertion. Each of
these pieces is then synchronized using an optimal one-way
synchronization code, based on the single-deletion correcting
channel codes of Varshamov and Tenengolts (VT codes).

I. INTRODUCTION

Consider Alice and Bob observing two distributed sources
X and Y, respectively. Y is an edited version of X where
the edits consist of deletions and insertions. Under communi-
cation rate constraints, Bob would like to reconstruct Alice’s
sequence from Y using minimal communication between him
and Alice. Here is an example:{

X = . . . abraca dabradum dumdum ababab, . . .
Y = . . . abacad dabradum ababab,

(1)

In this case, Y is obtained from X by a single deletion of the
third letter ‘r’, followed by a single insertion of a ‘d’ following
the original sixth letter, and followed by a burst deletion of the
letters ‘dumdum’. Bob wants to reconstruct X̂ from Y using
minimum communication between him and Alice when neither
party knows what has been deleted or inserted or the locations
of the edits. We will refer to this problem as synchronization
from deletions and insertions.

There are many motivating scenarios where such a problem
needs to be addressed. For instance, in file backup applications,
the remotely located data sources often differ only by a small
number of deletions and/or insertions, possibly in bursts1. It is

1One can loosely construe re-ordering of data chunks as deletions followed
by insertions.

desirable to have a synchronization tool that achieves success-
ful backup by transferring minimal information. The problem
of synchronization also arises in other applications such as file
sharing and online file editing. An interesting and important
question to ask is: what is the minimal communication rate
needed to achieve synchronization? Further, can we design
practical synchronization codes with this rate?

A genie-aided lower bound on the rate required in the above
example is obtained by assuming that Alice knows Y exactly,
and hence can send Bob the positions of the deletions and
insertions.2 When there are d deletions and i insertions, this
would require a rate of at least log2

(
n
s

)
/n, where n is the

length of X and s = d + i is the total number of edits.
This lower bound is roughly s log2 n

n for s ≪ n. When Y is
unknown to Alice, the results of Levenshtein [1] and Orlitsky
et al. [2] suggest that when s is a constant, there exists a
one-way zero-error synchronization code with rate less than
2s log2 n+o(1)

n , which is only twice the lower bound. However,
such a code has to be found by exhaustive search and has to
be decoded using an maximum-likelihood decoder, which has
prohibitive computational complexity.

In this work, we adopt a slightly different philosophy in
that we insist on realizable (practical) interactive codes, but
relax the requirement of zero-error, and are willing to allow
the error to go to zero as the length of the source sequence
becomes large. In this paper, we provide error guarantees that
decrease polynomially in the problem size. Specifically, we
show that when the total number of edits is o(n

log2 n),
3 one

can achieve synchronization at near-optimal communication
rates with computationally-efficient codes by allowing a small
amount of interaction between the encoder and the decoder.
Our main contributions are listed below. (To be consistent
with the literature, we shall refer to synchronization codes
as protocols.)

• We design a bi-directional protocol to synchronize from
an arbitrary combination of deletions and insertions. The
protocol has the following properties: For s random
deletions and insertions and any constant c ≥ 1, the
average communication rate from the encoder (Alice) to

2We may also need to send the values of the edited symbols, but need not
include this to obtain a lower bound.

3Recall that a function f(n) is o(n
log2 n

) if f(n)
n/ log2 n

→ 0 as n → ∞.
Also o(n

log2 n
) is slightly weaker than o(n) and is needed for our proof.

Encoder Decoder
Rate R

X Y

X̂
(a)

Encoder Decoder
X Y

Ŵ
(b) Edit channelW

Figure 1. (a) Synchronization: reconstruct X at the decoder using the edited
version Y as side-information. (b) Channel coding: send message of rate R
through a channel that takes input X and outputs edited version Y .

the decoder (Bob) is (4c+ 1) s log2 n
n , the average rate in

the reverse direction (from Bob to Alice) is 10 s−1
n , and

the probability of error goes to zero as d log2 n
nc .

• The average number of rounds of interaction needed by
the protocol is approximately 2 log2 s. For applications
that have a hard bound on the number of rounds of
interaction, we show how the protocol can be adapted
to trade-off higher communication rate for fewer rounds
of interaction.

• The protocol has O(n), i.e. linear, computational com-
plexity and is hence practically feasible.

• The protocol can also efficiently handle deletions and
insertions that occur in bursts without having prior knowl-
edge of the burst lengths. In this paper, we consider short
bursts (o(1) length) since we are in the regime of o(n)
edits. However, our protocol can be extended to efficiently
handle larger bursts of length Θ(n) 4. This is ongoing
work and will be part of a future publication.

The rest of the paper is organized as follows. Section II
describes related work. In Section III we review Varshamov
Tenengolts (VT) codes [3] (which form a key ingredient of
our algorithm), and show how they can be used to synchronize
from a single deletion or insertion. In Section IV, we present
an interactive protocol to synchronize from multiple deletions
and insertions, and give theoretical bounds on its expected
communication rate, the number of rounds of interactions
and probability of error. In Section V, we describe how to
efficiently deal with deletions and insertions that occur in
bursts. Section VI presents experimental results for various
test cases, and Section VII concludes the paper.

In the sequel, X always denotes the sequence available at
the encoder (Alice) and has length n. Y is the sequence at
the decoder (Bob) which needs to be synchronized to X. To
keep the exposition simple, we assume both sequences are
binary valued. However, all the proposed protocols can be
easily extended to any finite alphabet. We also assume that
the lengths of X and Y are known to both the encoder and
the decoder at the outset. If not, this can be achieved by a one-
way transmission of a vanishingly small number of bits: if it
is known that the maximum possible number of edits is smax,
the decoder can convey its length by sending log2 2smax bits.

II. RELATED WORK

As shown in Figure 1, the one-way synchronization prob-
lem can be cast as a problem of source coding with side-
information at the decoder [4], [5]. It is well-known that
source coding with decoder side-information is closely related
to channel coding [6], [7]. The channel coding problem
corresponding to one-way synchronization is shown in Figure
1(b) - the goal is to reliably communicate over a channel that
takes input X and produces an edited version Y as output.

Levenshtein [1] showed that if edit channel in Figure 1(b)
is one that introduces at most s edits (insertions + deletions)
in an input block of length n, the maximal zero-error rate is
bounded in between [1 − 2s log2 n+o(1)

n , 1 − s log2 n+o(1)
n]. (In

this result, s is fixed and n grows to ∞.) In [2], an upper bound
on the minimum rate required for zero-error source coding
with decoder side-information was established in terms of the
maximal zero-error rate for the corresponding channel coding
problem. Combining these results, one can obtain an upper
bound on the minimum rate for the synchronization problem
to be 2s log2 n+o(1)

n . This rate is within a factor of two of the
fundamental limit: even if the encoder knew the positions of
the edits a priori, it would need to send s (log2 n+ o(1)) bits
to indicate these positions. This guarantees the existence of
zero-error one-way synchronization codes with near-optimal
rates for any fixed s as n → ∞. However, we still do not
know of the existence of codes having tractable encoding and
decoding complexity.

There is a large body of work dealing with capacity and
coding for deletion and insertion channels (see [8] and refer-
ences therein). In particular, concatenated codes for channels
with deletions and insertions are constructed in [9], where
a ‘watermark’ inner code detects the positions of insertions
and deletions and provides soft outputs to an outer Low-
Density-Parity-Check (LDPC) code. One idea for designing
one-way synchronization codes is to mimic the construction
in [9] by letting the encoder send an inner watermark along
with syndromes of an outer LDPC code. In this approach, one
needs to design a separate synchronization code for each block
length n. This is not desirable since we would like a scalable
synchronization protocol that works for any n. Further, the
channel codes in [9] are designed to correct a large number of
edits in short blocks, so they have low rates and relatively high
probability of error. In contrast, we consider synchronization
from o(n) edits in this work.

In [10], protocols for synchronization under more general
edit models were designed with the aim of minimizing com-
munication complexity; computational efficiency was not the
main objective. There also exist many practical synchroniza-
tion tools. For example, rsync [11] is a UNIX utility that does
bit-exact synchronization between files. Recently, Zhang, Yeo
and Ramchandran introduced VSYNC [12] that targets video
applications where synchronization needs to be performed to
within some user-defined distortion.

The main idea behind our approach is to use interaction to

4In other words, the burst lengths lie between α1n and α2n for some
0 < α1 < α2 < 1

efficiently split the source sequence into pieces containing ei-
ther: a) only a single deletion/insertion or b) only a single burst
deletion/insertion. Each of these pieces is then synchronized
using a near-optimal one-way synchronization code.

III. SYNCHRONIZING FROM ONE DELETION/INSERTION

In this section, we describe how to optimally synchronize
from a single deletion or insertion. The one-way synchroniza-
tion protocol for a single deletion is based on the single-
deletion correcting channel codes introduced by Varshamov
and Tenengolts [3] (henceforth VT codes).

Definition 1. For 0 ≤ a ≤ n, the block length n VT code
V Ta(n) consists of all binary vectors X = (x1, . . . , xn)
satisfying

n∑
i=1

ixi ≡ a mod (n+ 1). (2)

For example, the code V T0(4) with block length n = 4 is

V T0(4) = {(x1, x2, x3, x4) :
4∑

i=1

ixi mod 5 = 0}

= {0000, 1001, 0110, 1111}.
(3)

For any a ∈ {0, . . . , n}, the code V Ta(n) can be used to
communicate reliably over a channel that introduces at most
one deletion in a block of length n. Levenshtein proposed a
simple decoding algorithm [1], [13] for a VT code, which we
reproduce below. Assume the channel code V Ta(n) is used.

• Suppose a codeword X ∈ V Ta(n) is transmitted over the
channel, the bit in position p is deleted and Y is received.
Let there be L0 0’s and L1 1’s to the left of the deleted
bit, and R0 0’s and R1 1’s to the right of the deleted bit
(with p = 1 + L0 + L1).

• Compute the weight wt(Y) = L1 + R1 of Y and
the checksum

∑
i iyi. If the deleted bit is 0, the new

checksum is R1(≤ wt(Y)) less than it was before. If
the deleted bit is 1, the new checksum is p + R1 =
1 + L0 + L1 + R1 = 1 + wt(Y) + L0(> wt(Y)) less
than it was before.

• Hence, if the deficiency in the checksum, say D, is less
than or equal to wt(Y) we know that a 0 was deleted,
and we restore it just to the left of the rightmost R1 1’s.
Otherwise a 1 was deleted and we restore it just to the
right of the leftmost L0 0’s.

As an example, assume the code V T0(4) is used and X =
(1, 0, 0, 1) ∈ V T0(4) is transmitted over the channel.

1) If the second bit in X is deleted and Y = (1, 0, 1), then
the new checksum is 4, and the deficiency D = 5− 4 =
1 < wt(Y) = 2. The decoder inserts a 0 after D = 1
1’s from the right to get (1, 0, 0, 1).

2) If the fourth bit in X is deleted and Y = (1, 0, 0), then the
new checksum is 1, and the deficiency D = 5−1 = 4 <
wt(Y) = 2. The decoder inserts an 1 after D−wt−1 = 2
0’s from the left to get (1, 0, 0, 1).

The codes V T0(n) are optimal single-deletion correcting chan-
nel codes for n ≤ 9. For each n, V T0(n) has size ≥ 2n

n+1 ,
and are thus near-optimal for large n [1].

A. One-way Synchronization using VT Syndromes

As also observed in [14], VT codes can be used to syn-
chronize from a single deletion. Length-n sequence X is
available at the encoder; Y, obtained from X by deleting one
bit is available at the decoder. To synchronize a 1-bit deletion,
the encoder sends the checksum of its sequence X modulo
(n+ 1). The decoder receives this value, say a, and decodes
its sequence Y to a codeword in V Ta(n). This codeword
is equal to X since V Ta(n) is a single-deletion correcting
channel code.

Since a ∈ {0, . . . , n}, log2(n+ 1) bits of transmission are
needed. This is asymptotically optimal - even if the encoder
knew which bit was deleted, it has to send at least the
position of the deletion using log2 n bits. We essentially use
the partitioning of the {0, 1}n space by the (non-linear) codes
V Ta(n), 1 ≤ a ≤ n to synchronize. This is similar to using
cosets (partitions) of a linear code to perform Slepian-Wolf
coding. Hence we shall refer to

∑
i ixi mod (n + 1) as the

VT-syndrome of X.
If Y was obtained from X by a single insertion, one can

also use a similar algorithm to delete the inserted bit. The only
difference is that the decoder now has to use the excess in the
checksum of Y and compare it to its weight. In summary,
when the edit is either a single deletion or insertion, one
can optimally synchronize Y to X with a simple one-way
algorithm with zero error and no interactions.

IV. SYNCHRONIZING FROM MULTIPLE DELETIONS AND
INSERTIONS

In this section, we design an interactive protocol to correct
multiple insertions and deletions. We first consider the special
case of synchronizing from multiple deletions since it contains
most of the key ideas.

A. Deletions Only

The sequence Y is obtained by deleting d > 1 bits from
X where d is much smaller than n. From Section III, we
know that if the number of deletions is one, using VT codes
is sufficient to achieve synchronization with zero error. Our
protocol aims to break down the synchronization problem into
sub-problems, each containing only a single deletion. This is
achieved efficiently through a ‘divide-and-conquer’ strategy
which uses interactive communication. We now explain the
protocol using a simple example. Consider:

X = 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1
Y = 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0

where Y is obtained from X from three deletions indicated by
“ ” above. As explained before, it is assumed that the number
of deletions d = 3 is known to both the encoder and the
decoder. We propose the following protocol:

• The encoder (Alice) maintains an unresolved list LX ,
whose entries consist of the yet-to-be-synchronized sub-
strings of X, and is initialized to be LX = {X}. The
decoder (Bob) maintains a corresponding list LY .

• In each round, the encoder sends l = c log2 n bits
around the center of each substring in LX to the decoder,

who tries to align these bits near the center of the
corresponding substring in LY (c is a constant greater
than 1). In the above example, the encoder uses l = 6
center bits and sends bits 9 to 14: “1 0 1 0 1 1”.
If the decoder successfully matches the center bits, from
the position at which alignment happens, it knows the
exact number of deletions that happened in the left and
right halves of the substring. In the example case, the
decoder knows that there is a single deletion on the left
and two deletions on the right. For each of these halves:
- If the number of deletions is zero, this half has been

synchronized. (None of the substrings in the example
fall into this case.)

- If the number of deletions is one, the decoder requests
the VT syndrome of this half for synchronization. (In
the example, the decoder requests the VT syndrome of
the left half of X at the end of the first round.)

- If the number of deletions is greater than one, the
decoder puts this half in LY . The encoder puts the
corresponding half in LX .

If one or more of the center-bits are among the deletions,
the decoder may not be able to align the received bits
close to the center of its substring. In this case, the
decoder requests an adjacent set of center bits for this
substring in the next round.

• The process continues until LY (and LX) is empty.

We show the following theorem.

Theorem 1. (Deletions Only) Suppose there are d deletions,
where d ∼ o(n

log2 n).
5 The positions of the deletions are

random and l = c log2 n center-bits are used for alignment
each time they are requested. (c ≥ 1.)

(a) The probability of error , i.e., the probability that the
protocol synchronizes incorrectly is at most d log2 n

2nc .
(b) If N1→2(d) (N2→1(d)) denote the number of bits trans-

mitted from the encoder (decoder) to the decoder (encoder),

EN1→2(d) < (2c+ 1) d log2 n, EN2→1(d) < 8(d− 1).

(c) The probability that the algorithm terminates after r
rounds is at least (1− (d+ 1)2−r)d. In particular, the prob-
ability that the protocol has not terminated after k + 2 log2 d
rounds is 2−k + o(2−k). Consequently, the expected number
of rounds taken by the protocol to terminate is approximately
4 + 2 log2 d.

Proof: See Appendix.
Remark: The average communication rate is (2c+1)d log2 n

n ,
which is larger than the genie bound of d log2 n

n by a constant
factor (2c+1). The average feedback rate is proportional to the
number of deletions, and is small since d is much smaller than
n. This is useful in applications where feedback is expensive.

Experimental results described in Section VI validate that
the actual performance is close to the bounds in Theorem 1.

5Since the center-bits are used for alignment, we need the probability of
a center-bit being deleted to be negligibly small. This is achieved when the
number of deletions is o(n

log2 n
), which is slightly smaller than o(n).

B. Deletions + Insertions
Suppose now that Y is obtained from X by a combination

of d random deletions and i random insertions.
Recall that in the deletions-only case, the decoder uses

the offset of the center-bits to determine the number of
deletions in the left and right halves of each substring under
consideration, and this continues until there exists no more
than a single deletion. When there are insertions present, the
offset indicates the number of net deletions. For example,
an offset of zero can be obtained when there is an equal
number of deletions and insertions. To distinguish between
these cases, we invoke a ‘guess-and-check’ mechanism by
applying a hashing technique whenever the number of net
deletions is zero, in order to check whether the two substrings
being considered are indeed synchronized (consistent with
zero deletions and zero insertions). The overall protocol works
in a divide-and-conquer fashion as before, and is described
below:

• The encoder maintains an unresolved list LX , whose
entries consist of the yet-to-be-synchronized substrings
of X, and is initialized to be LX = {X}. The decoder
maintains a corresponding list LY .

• In each round, the encoder sends l = c log2 n bits
around the center of each substring in LX to the decoder,
who tries to align these bits near the center of the
corresponding substring in LY . (c ≥ 1) For each of these
halves:
- If the net number of deletions is zero, the decoder

checks if this half has been synchronized by requesting
hashes from the encoder. If the hashes agree, declare
synchronization; else put this half in LY (and corre-
spondingly in LX).

- If the net number of deletions or insertions is one,
the decoder requests the VT syndrome of this half
and performs VT decoding. It also requests hashes
to verify synchronization. If the hashes agree, declare
synchronization; else the decoder puts this half in LY

(and correspondingly in LX).
- If the number of deletions or insertions is greater than

one, put this half in LY (and correspondingly in LX).
• The process continues until LY (or LX) is empty.
The only difference between this protocol and the one for

the deletion-only case is the hash verification process. When
there is a net deletion (or insertion) of one, the protocol
assumes a single deletion (or insertion), decodes it using the
VT syndrome, and uses the hash to verify synchronization.
Similarly, when the lengths of two substrings being compared
are the same, the hash is used to check if they are identical.
In other words, the protocol works in a ‘guess-and-check’
fashion. The following theorem describes the performance of
the protocol when the positions of insertions and deletions are
random. Due to space constraints, the proof is omitted and
will be presented in an extended version of the paper.

Theorem 2. (Insertions + Deletions) Suppose there are d
deletions and i insertions, and let s = (d + i) ∼ o(n

log2n
).

The positions of the edits are random, and l center-bits and

L hash bits are used each time they are requested. For
l = L = c log2 n:

(a) The probability of error , i.e., the probability that the
protocol synchronizes incorrectly is at most s log2 n

nc .
(b) If N1→2(s) (N2→1(s)) denote the number of bits trans-

mitted from the encoder (decoder) to the decoder (encoder),

EN1→2(s) < (4c+ 1) s log2 n, EN2→1(s) < 10(s− 1)

(c) The probability that the algorithm terminates after r
rounds is at least (1− (s+1)2−r)s. In particular, the proba-
bility that the algorithm has not terminated after k + 2 log2 s
rounds is 2−k + o(2−k). Consequently, the expected number
of rounds taken by the protocol to terminate is approximately
4 + 2 log2 s.

Remark: To obtain the results of the theorem, we assume
a c log2 n-bit hash with collision probability 1

nc . Universal
hashing [15], for instance, has this property.

C. Synchronization Protocol

We summarize our proposed synchronization protocol by
describing the algorithms at the encoder and the decoder
respectively in Algorithm 1 and Algorithm 2.

Algorithm 1 Synchronization Protocol at the Encoder
1: The encoder keeps an unresolved list LX which it initial-

izes by setting LX = {X}.
2: while LX is non-empty do
3: Receive from the decoder the instructions Is for all

substrings s = 1, 2, . . . , |LX | in LX , and do the
following for all s ∈ LX in a single transmission:

4: for all substring s ∈ LX do
5: if Is = “Verify” then
6: Apply and send the hash of string s.
7: else if Is = “VT mode” then
8: Send both the VT syndrome and the hash of string

s.
9: else if Is = “Centering” then

10: Send bits around the center of string s.
11: else if Is = “Split” then
12: Split the original substring into two halves and put

both of them into LX ; remove the original string.
13: else if Is = “Matched” then
14: Remove string s from LX .
15: end if
16: end for
17: end while

V. EFFICIENT SYNCHRONIZATION FROM BURSTS

Burst deletions and insertions can be a major source of
mis-synchronization in practical applications (particularly in-
volving audio and video edits) and are therefore important
to address. The protocol described in the previous section

Algorithm 2 Synchronization Protocol at the Decoder
1: The decoder keeps an unresolved list LY which it initial-

izes by setting LY = {Y}.
2: while LY is non-empty do
3: Read the instructions Is, s = 1, 2, . . . , |LY | sent to X

in the previous round, and use them with the responses
from X to decide the new set of instructions for each
substring s ∈ LY as follows.

4: for all strings in LY do
5: if Is was “Verify” then
6: Compare the hash of string s with that sent by X.

If the hashes match, add instruction “Match”; else
add “Centering”.

7: else if Is was “VT mode” then
8: Use the VT syndrome sent by X to correct the

substring by deleting or inserting a single bit from
string s and compare the hashes. If the hashes
match, add “Match”; else add “Centering”.

9: else if Is was “Centering” then
10: Try to find a substring in the center of string s that

matches with that sent by X. If successful, split s
into two halves by the center, remove s from LY

and put the new two substrings into LY , and add
“Split”; else, request more centering bits by adding
the instruction “Centering”.

11: end if
12: end for
13: Send the new set of instructions to X.
14: end while

seeks to divide the original string into pieces with one in-
sertion/deletion each. This is not an efficient way of dealing
with bursts since a burst consists of multiple edits adjacent to
each other. We start with the simple case of a single burst of
deletions and present a one-way protocol for synchronization.
We then address multiple heterogenous bursts of both deletions
and insertions (i.e., the bursts may have different lengths).

A. A Single Burst of Deletions

The encoder has binary string X of length n from which
a single burst of B bits is deleted. The resulting string Y
of length n − B is available at the decoder. The following
one-way protocol synchronizes Y to X.

Encoding: The encoder divides X into B substrings, where
the kth substring Xk is:

Xk = (xk, xB+k, x2B+k, . . .), 1 ≤ k ≤ B. (4)

The length of each of substring is either
⌊
n
B

⌋
or

⌊
n
B

⌋
+ 1.

For simplicity, we assume in the sequel that the length of
every substring is n

B . The encoder computes the VT syndromes
ak , 1 ≤ k ≤ B of each substring and sends it to the decoder.
This will cost a total of Nburst = B log2

n
B + 1 bits of

transmission.
Decoding: The decoder splits Y it into B substrings Yk:

Yk = (yk, yB+k, y2B+k, . . .), 1 ≤ k ≤ B. (5)

Observe that each substring Yk is obtained by deleting exactly
one bit from Xk. Using the syndrome ak, Xk can be recovered
by decoding Yk to the unique codeword in V Tak

(n
B). The

reconstructed substrings Xk are then combined appropriately
to recover X.

A lower bound on the number of bits needed is obtained
by assuming the encoder knows the exact location of the
burst deletion. Then it has to send the decoder two pieces
of information: a) the location of the starting position of
the burst and b) the actual bits that were deleted. This will
cost log2(n−B + 1) + B bits. Hence the number of bits
transmitted by the proposed protocol is at most B times this
lower bound.

A similar one-way protocol can be designed to synchronize
from a single burst insertion (see discussion in Section III).

B. Heterogenous Bursts of Deletions and Insertions

When there are combinations of edits (deletions and inser-
tions), where some edits occur in isolation and others in bursts
of varying lengths, we need to efficiently detect the bursts
and their lengths. We use a ‘guess-and-check’ algorithm to
achieve this. In particular, when the number of net deletions
in a substring does not change after a certain number of
rounds (say Tburst), we will hypothesize that a burst deletion
(or insertion) has occurred. We request VT syndromes and
correct the substring assuming a burst and then use the hash
to verify the results of correction. If the hash succeeds, we
declare that the substring has been synchronized correctly,
else we infer that the deletions (or insertion) did not occur
in a burst, and continue to split the substring. The value of
Tburst can be adjusted to trade-off between the number of
interactions and communication rate. We omit discussions of
the protocol performance here due to space constraints, but
provide simulation results in the next section.

VI. EXPERIMENTAL RESULTS

In this section, we validate through simulations that the
bounds predicted by theory are tight in practice as well. In
all the experiments, X is an i.i.d Bernoulli(0.5) sequence.

A. Case 1: Random Deletions (No bursts)

Y is generated by deleting bits randomly from X. No
insertions are applied. We test four subcases by setting (n =
106, d = 10), (n = 106, d = 100), (n = 107, d = 100)
and (n = 107, d = 1000). The number of center-bits used is
l = 20, which is in between [log2 10

6, log2 10
7]. No hashes

are used. Table I(a) shows for each case the number of round-
trips, the number of communication bits each way, the total
number bits and the probability of error. For each case, the
results are averaged over 1000 runs of simulations, and the
number of bits are shown as a fraction of n. Table I(b) shows
the corresponding theoretical values.

As shown in the table, the simulation results match well with
theoretical analysis. Also, the total communication rate is very
close to the genie bound. Since the theoretical probability of
error is too small, we were not able to detect any errors in the
1000 runs that were tested.

B. Case 2: Random Insertions + Deletions (No bursts)

Y is generated by randomly deleting and inserting (0’s and
1’s with equal probability) the same number of bits from X in
a non-burst fashion. We apply a universal hash [15] to check
every pair of substrings that has potential matches. The number
of center-bits used is l = 20, and the number of bits for the
universal hash is also L = 20. We test four subcases similar
to those used in Case 1. Table II lists the results.

As shown in the table, both the number of interactions
and the total communication rate increased when there are
additional insertions introduced. It is worth noting that the
number of interactions increased by only a small amount
compared to the deletion only case, since it is logarithmic
in the number of edits. The protocol successfully corrected all
the deletions and insertions, and the total communication rate
is approximately five times the genie bound.

C. Case 3: Burst Deletions

In this case, X is an i.i.d Bernoulli(0.5) sequence of length
X n = 106. To generate Y, a number of burst deletions each
starting from randomly selected positions are applied to X.
The number of bursts is 10 and each burst has length of either
B = 20 or B = 100 with equal probability. We test two
subcases by setting Tburst = 2 and Tburst = ∞, where infinity
means no burst mode will be used. (Recall that if the number
of net deletions in a substring does not change after Tburst

rounds, we hypothesize a burst.) In each case, the results are
averaged over 1000 runs of simulations. Table III shows the
results.

When Tburst = 2, we are more aggressive in guessing that
the deletions occur in bursts. In this case, we end up spending
a few more bits, i.e., a total of 7.9e−3 compared to 5.8e−3

in terms of total communication rate. This is because when
false positives happen, (i.e., when we assume bursts while they
are not), we waste both VT syndrome bits and hash bits in
the verification process. However, the number of interactions
needed reduces from 16.5 to 9 on average. We will study the
tradeoffs between such aggression in hypothesizing a burst and
the communication rate in an extended version of the paper.

VII. DISCUSSION

We considered the problem of synchronization from in-
sertions and deletion edits, where the edits may occur in
isolation or in bursts. Designing tractable one-way codes for
synchronization is very difficult even when the number of edits
is small. In this work, we showed that a small amount of
interaction can help design low-complexity codes with close
to optimal communication rate.

The guiding principle was to use interaction to efficiently
isolate segments of the source containing either a single
deletion/insertion or a single burst deletion/insertion. The
segments with single deletion are then synchronized using VT
syndromes without any interaction. We can easily generalize
our protocol to work with general alphabets using non-binary
VT codes [16].

The protocol can be modified to satisfy various restrictions
on the amount of interaction that may be imposed in a practical

Table I
Y IS GENERATED BY DELETING BITS RANDOMLY FROM X (NO BURSTS). THE NUMBER OF CENTER-BITS l = 20. THE TABLE SHOWS THE NUMBER OF

ROUND-TRIPS, THE COMMUNICATION RATE IN EACH DIRECTION, THE TOTAL RATE AND THE PROBABILITY OF ERROR FROM THE SIMULATIONS AND THE
BOUNDS OF THEOREM 1. FOR EACH CASE, THE RESULTS ARE AVERAGED OVER 1000 RUNS OF SIMULATIONS.

Config. No. of rounds X → Y Y → X Total Comm. rate Prob. of error
n d Sim. Theo. Sim. Theo. Sim. Theo. Sim. Genie Sim. Theo.
106 10 7.9 10.6 4.3e−4 6.0e−4 5.6e−5 5.7e−5 4.9e−4 2.0e−4 0 9.5e−7

107 100 14.5 17.3 4.5e−4 6.3e−4 6.2e−5 6.3e−5 5.1e−4 2.3e−4 0 9.5e−7

106 100 14.4 17.3 4.2e−3 6.0e−3 6.2e−4 6.3e−4 4.8e−3 2.0e−3 0 9.6e−7

107 1000 19.3 23.9 4.3e−3 6.3e−3 6.3e−4 6.3e−4 4.9e−3 2.3e−3 0 9.6e−7

Table II
Y IS GENERATED BY FIRST DELETING BITS RANDOMLY FROM X FOLLOWED BY RANDOM INSERTIONS OF 0’S AND 1’S WITH EQUAL PROBABILITY (NO

BURSTS). THE NUMBER OF INSERTIONS i IS EQUAL TO THE NUMBER OF DELETIONS d. THE NUMBER OF CENTER-BITS l = 20, AND THE NUMBER OF
BITS FOR THE UNIVERSAL HASH L = 20.

Config. No. of rounds X → Y Y → X Total Comm. rate Prob. of error
n d = i Sim. Theo. Sim. Theo. Sim. Theo. Sim. Genie Sim. Theo.
106 10 10.1 12.6 1.9e−3 2.0e−3 1.9e−4 1.9e−4 2.1e−3 4.1e−4 0 9.5e−7

107 100 14.9 19.3 2.1e−3 2.1e−3 1.6e−4 2.0e−4 2.3e−3 4.8e−4 0 9.5e−7

106 100 16.4 19.3 1.7e−2 2.0e−2 1.6e−3 2.0e−3 1.9e−2 4.1e−3 0 9.6e−7

107 1000 21.3 25.9 2.0e−2 2.1e−2 1.6e−3 2.0e−3 2.2e−2 4.8e−3 0 9.6e−7

Table III
X IS AN IID BERNOULLI(0.5) SEQUENCE OF LENGTH n = 106 . 10 BURST DELETIONS ARE APPLIED TO GET Y, WHERE THE BURST LENGTHS ARE EITHER
B = 20 OR B = 100 WITH EQUAL PROBABILITY. IF THE NUMBER OF NET DELETIONS IN A SUBSTRING DOES NOT CHANGE AFTER Tburst ROUNDS, WE

HYPOTHESIZE A BURST. WE TEST TWO SUBCASES: Tburst = 2 AND Tburst = ∞, WHERE INFINITY MEANS NO BURST MODE WILL BE USED.

Tburst No. of rounds X → Y Y → X Comm. rate Prob. of error
Sim. Sim. Sim. Sim. Genie Sim.

∞ 16.5 5.0e−3 8.1e−4 5.8e−3 9.0e−4 0
2 9.0 7.7e−3 2.4e−4 7.9e−3 9.0e−4 0

setting. For instance, there may be a hard bound on the number
of rounds of interaction. Recall from Theorem 2 that the
average number of rounds for our protocol is roughly 2 log2 s,
where s is the number of edits. We can modify the protocol as
follows to terminate in fewer rounds at the expense of higher
communication rate.

Suppose that only one round of interaction from the decoder
to the encoder is permitted. In this case, the encoder divides
X into small intervals and sends center-bits, hashes and VT
syndromes for each of these intervals. If the intervals are suf-
ficiently small, most intervals will have at most one insertion
or deletion and can be corrected using their VT syndromes
(and checked using the hashes). The decoder then indicates
the intervals it cannot synchronize yet, and the encoder sends
these yet-to-be-synchronized intervals in full. The performance
of this one-round protocol will be presented in an extended
version of this paper.

An important synchronization model that occurs in practice
is one where the edits occur in a small number of bursts,
but the burst lengths are large (Θ(n)). It is part of ongoing
work to extend our protocol to efficiently synchronize in such
a situation. Finally, in applications where synchronization to
within a targeted Hamming distortion between X and Y is
required, we can use a distance-aware hash in the protocol,
such as the one used in VSYNC [12]. For such a hash, hash-
collision is more likely when the sequences being compared
are close to one another in Hamming distance. A distance-
aware hash is also suitable when there is an outer error-

correcting code to correct any residual errors left by the
synchronization protocol. Determining the communication rate
vs. distortion trade-off in this setting is an interesting direction
for future work.

APPENDIX

PROOF SKETCH OF THEOREM 1

Proof of (a) (Protocol Error): The only source of protocol-
error is a set of center bits being aligned in the wrong position.
(A failure to find a match for a set of center-bits will not
directly cause an error since the protocol requests an additional
set of center-bits whenever this happens.)

Each time we use l = c log2 n center-bits, there is a
probability 1

nc of mismatch. Using the union bound, the
probability of error is

Pe(d) =
Number of times center-bits are compared

nc
. (6)

At any stage of the algorithm, there are at most d
2 substrings

in the unresolved list and an upper bound for the number of
rounds is log2 n. In every round, a set of center-bits is used
for each string in the unresolved list. The probability of error
is hence at most 0.5 d log2 n

nc .
Proof of (b) (Average rate): For each piece under consider-

ation, the encoder sends l = c log2 n center-bits using which
the decoders determines the number of deletions in the left and
right half of the piece. The expected number of bits transmitted

in each direction can be calculated as
EN1→2(d) = ENc(d) + d log2 n,

EN2→1(d) = 4
ENc(d)

l

(7)

where Nc(d) is the total number of center-bits sent (from
encoder to decoder) until the protocol terminates, when the
number of deletions is d. The first term in N1→2 above
corresponds to the number of center-bits sent. The second
term corresponds to the VT syndromes. N2→1 is obtained by
recognizing that the decoder has to signal one of four options
for each half of the piece under consideration: 1) Continue
splitting, 2) Send VT syndrome, 3) Synchronized or 4) Send
additional center bits (i.e., no match found). This signaling
takes 2. log2 4 = 4 bits for each piece for which center-bits
are sent.

We now obtain a formula for expected number of center-
bits ENc(d). First note that ENc(1) = 0 since we can directly
use VT syndromes. When d = 2, we are done after one split
if the deletions are in different halves, and need to continue
splitting if they are in the same half. Hence

ENc(2) = l +
1

2
ENc(2) +

1

2
· 0 ⇒ ENc(2) = 2l. (8)

In general, we have

ENc(d) = l +

d∑
j=0

1

2d

(
d

j

)
(ENc(j) + ENc(d− j))

= l +
1

2d−1
ENc(d) +

d−1∑
i=1

1

2d

(
d

j

)
(ENc(j) + ENc(d− j)).

(9)

Thus we can calculate ENc(d) using the recursion

ENc(d) =
l +

∑d−1
i=1

1
2d

(
d
j

)
(ENc(j) + ENc(d− j))

1− 2−(d−1)
(10)

with the initial conditions ENc(1) = 0 and ENc(2) = 2l.
Note that we have not considered contribution of the extra
center-bits sent when a match is not found. This overhead is
O(d log2 n

n) which goes to zero since d is o(n
log2 n).

We now show by induction that ENc(d) < 2(d− 1)l. The
induction hypothesis holds for k = 2. Assume it is true for
ENc(k), k = 1, . . . , d− 1. Then (10) can be bounded as

ENc(d) <
l +

∑d−1
i=1

1
2d

(
d
j

)
(2(j − 1) + 2(d− j − 1))l

1− 2−(d−1)

=
l +

∑d−1
i=1

1
2d

(
d
j

)
(2d− 4)l

1− 2−(d−1)

=
l

1− 2−(d−1)
+ (2d− 4)l < 2(d− 1)l.

(11)

Substituting in (7), we obtain the bounds on the number of
bits in each direction.

Proof of (c) (Tail probability of number of rounds): After
r rounds of the algorithm, each unresolved piece is at most
2−rn bits long, where n is the original length. The algorithm

will not terminate in r rounds only if there are two deletions
spaced less than 2−rn positions apart. Since the positions of d
deletions are random, for large n, we can normalize by n and
think of the deletion positions as d points randomly picked on
the unit interval (0, 1).

Hence the protocol terminates within r rounds if each of the
d+1 segments (formed by the d random points) has length at
least 2−r. If we denote by (x1, x2, . . . , xd+1) the lengths of
the segments, the joint distribution P (x1, . . . , xd+1) is uniform
over the unit d-simplex:

{xi ≥ 0 ∀i, x1 + . . .+ xd+1 = 1}. (12)

Thus the probability that each segment is at least 2−r long is
the probability mass of the subset

{xi ≥ 2−r ∀i, x1 + . . .+ xd+1 = 1}. (13)

By similarity of the two regions in (12) and (13), the desired
probability is (1− (d+ 1)2−r)d.

Thus the probability that the protocol does not terminate
after r rounds is 1 − (1 − (d + 1)2−r)d. Substituting r =
k+2 log2 d, and using the Taylor series expansion proves the
second part of Theorem 1(c).

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4,
pp. 845–848, 1965. (in Russian), English Translation in Soviet Physics
Dokl., (No. 8, 1966), 707-710.

[2] A. Orlitsky and K. Viswanathan, “One-way communication and error-
correcting codes,” IEEE Trans. on Inf. Theory, vol. 49, no. 7, pp. 1781–
1788, 2003.

[3] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automatica i Telemekhanica, vol. 26, no. 2, pp. 288–
292, 1965. (in Russian), English Translation in Automation and Remote
Control, (26, No. 2, 1965), 286-290.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, July 1973.

[5] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans on Inf. Theory, vol. 22,
no. 1, pp. 1–10, 1976.

[6] A. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf.
Theory, vol. 20, pp. 2–10, Jan 1974.

[7] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): design and construction,” IEEE Trans. Inf. The-
ory, vol. 49, no. 3, pp. 626–643, 2003.

[8] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

[9] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, 2001.

[10] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Communi-
cation complexity of document exchange,” in Proc. ACM-SIAM Symp.
on Discrete Algorithms, pp. 197–206, 2000.

[11] A. Tridgell and P. Mackerras, “The rsync algorithm.” http://rsync.samba.
org/, Nov 1998.

[12] H. Zhang, C. Yeo, and K. Ramchandran, “VSYNC: a novel video file
synchronization protocol,” in ACM Multimedia, pp. 757–760, 2008.

[13] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs, Ohio State University (Ray-Chaudhuri Festschrift), pp. 273–
291, 2000.

[14] A. Orlitsky, “Interactive communication of balanced distributions and
of correlated files,” SIAM J. Discrete Math., vol. 6, no. 4, pp. 548–564,
1993.

[15] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Comp. and Sys. Sci., vol. 18, pp. 143–154, April 1979.

[16] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion,” IEEE Trans on Inf. Theory, vol. 30, no. 5, pp. 766–, 1984.

