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Abstract—The problem of computing the capacity-cost func-
tion of channels with feedback and the rate-distortion function
of sources with feed-forward is considered. Sufficient conditions
are derived on : a) the structure of the cost function for a chosen
joint distribution to achieve the optimal feedback capacity-
cost function, b) the structure of the distortion function for a
chosen joint distribution to achieve the optimal feed-forward
rate-distortion function. These structural results are useful since
it is infeasible in general to directly compute the optimizations.
Examples are provided to show how the results can help compute
the performance limits with feedback and feed-forward.

Index Terms—Feed-forward, feedback, computation.

I. INTRODUCTION

FEEDBACK is widely used to improve the reliability
of transmission over noisy channels. Though Shannon

showed that feedback cannot increase the capacity of a mem-
oryless point-to-point channel [1], feedback can increase the
capacity of a channel with memory. Marko was one of the first
to develop tools to study feedback in his effort to develop a
bidirectional theory of communication[2]. Inspired by Marko’s
work, Massey [3] introduced the concept of directed informa-
tion and used it to upper bound the feedback capacity of a
point-to-point channel. Tatikonda later established the capacity
of a general point-to-point channel with feedback in terms of
the directed information flowing from the input to the output
[4], [5]. The literature on feedback capacity is vast and we
shall not review it here. An incomplete list includes [6]–[9].

Source coding with feed-forward, the dual problem of chan-
nel coding with feedback, has been studied recently in [10]–
[13]. The notion of feed-forward can be explained in simple
terms as follows. Consider a source 𝑋 to be compressed as
�̂� , within some distortion 𝐷. The encoder takes a block
of, say, 𝑁 source samples and maps it to an index in a
codebook. The decoder uses this index and reconstructs the
𝑁 source samples sequentially: in order to reconstruct each
source sample, the decoder has access to the index and some
past source samples. More precisely, let 𝑋𝑛, �̂�𝑛 denote the
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source and reconstruction samples at time 𝑛, respectively. To
produce �̂�𝑛, the decoder has knowledge of the index plus the
source samples until time (𝑛 − 𝑘). We call this set-up feed-
forward with delay 𝑘.

Source coding with feed-forward was first considered in the
context of competitive prediction in [10], and later studied in
[11]–[13] as a variant of source coding with side information.
Later, we shall present an example of feed-forward related
to predicting transitions in a Markov chain. The problems
of feed-forward and feedback are closely related. In each
of these problems, there is a dynamic aspect to either the
encoder (feedback) or the decoder (feed-forward). Directed
information, which captures the causal flow of information
between random sequences, is the information quantity that
characterizes the performance limit of both these problems
[4], [13].

In this letter, we consider the problem of computing the
feedback capacity obtained in [5], and the feed-forward rate-
distortion function obtained in [13]. Perhaps the most ap-
pealing feature of Shannon’s formulas (for channel capac-
ity and source rate-distortion function) is the simplicity of
the optimizations involved. The capacity-cost function of a
memoryless channel and the rate-distortion function of a
memoryless source have ‘single-letter’ formulas, i.e., we need
to optimize over probability distributions of a finite number
of random variables. These single-letter optimizations can be
computed efficiently using techniques such as the Blahut-
Arimoto algorithm [14].

In contrast, to achieve the feedback capacity, we need to
optimize over the space of all input policies. In other words,
for each time 𝑛, we need to pick a function 𝑓𝑛 that generates
the 𝑛th channel input using the message and the past channel
outputs. Similarly, to achieve the feed-forward rate-distortion
functions, we need to optimize over all reconstruction policies.
The space of all input/reconstruction policies is extremely
large. The contribution of [5] and [13] was to show that the
feedback capacity and feed-forward rate-distortion function
can be expressed as optimizations of multi-letter information-
theoretic quantities (directed information) over the space of
valid distributions. While these formulas are considerably
simpler than optimizing over all policies, they are not op-
timizations over finite-dimensional spaces, and are difficult
to compute. There are two reasons we cannot obtain simple,
single-letter expressions for these problems:

1) With feedback and feed-forward, the channels and
sources of interest are those with memory.
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2) Due to the dynamics introduced by feed-forward and
feedback, one cannot guarantee the optimal joint dis-
tributions to be stationary and ergodic in general. Thus
the optimization is over all joint processes, not just the
stationary and ergodic ones.

Consequently, we cannot expect to have a simple algorithm
to compute the performance limit of a general problem with
feedback/feed-forward. The main contribution of this letter is
a pair of structural results which help compute the feedback
capacity and the feed-forward rate-distortion function. In par-
ticular, we obtain sufficient conditions on:

∙ The structure of the cost function for a given joint dis-
tribution to achieve the feedback capacity-cost function,

∙ The structure of the distortion function for a given joint
distribution to achieve the optimum feed-forward rate-
distortion function.

Related Work: Csiszár and Körner [15, p. 147, Problems
2,3] characterized the cost/distortion function in terms of
the optimal joint distribution for discrete memoryless chan-
nels/sources without feedback/feed-forward. Our structural
results may be viewed as extensions of those in [15] to
problems with delayed feedback and feed-forward. We also
note that the results of [15] are applied directly in [16] to
study the optimality of uncoded transmission of sources over
channels, and in [17] to study duality between source and
channel coding.

In Section II, we review the capacity result for feedback
channels and then present the structural result for the feed-
back capacity-cost function. In Section III, we review source
coding with feed-forward and state the structural result for the
optimal rate-distortion function. In Section IV, we give two
examples to show how our results can be used to compute the
performance limit.

Notation: Upper-case notation will be used for random
variables, lower-case for their realizations and bold-face to
denote a random process. Thus A shall denote the process
{𝐴𝑛}∞𝑛=1, where 𝐴𝑛 represents the 𝑛th sample. 𝐴𝑛 will
denote the random vector (𝐴1, . . . , 𝐴𝑛). The pmf of a random
variable 𝐴𝑛 is denoted 𝑃𝐴𝑛 , or 𝑃 (𝐴𝑛), when there is no
possibility of confusion.

II. CHANNEL CODING WITH DELAYED FEEDBACK

Consider a channel with input alphabet 𝒳 and output
alphabet 𝒴 . Let 𝑋𝑛, 𝑌𝑛 denote the channel input and output at
time 𝑛, respectively. The channel is defined by the sequence
of conditional distributions P𝑐ℎ

Y∣X ≜ {𝑃 𝑐ℎ
𝑌𝑛∣𝑋𝑛,𝑌 𝑛−1}∞𝑛=1. As

shown in Figure 1, the channel has noiseless feedback with
delay 𝑘 (𝑘 ≥ 1). At time 𝑛 > 𝑘, the encoder has perfect
knowledge of the channel outputs until time (𝑛−𝑘) to produce
the channel input 𝑋𝑛.

Definition 1: (a) An (𝑁, 2𝑁𝑅) channel code (block length
𝑁 , rate R) for a channel with feedback delay 𝑘 consists of
a sequence of encoder mappings 𝑒𝑛, 𝑛 = 1, . . . , 𝑁 and a
decoder 𝑔, where

𝑒𝑛 : {1, . . . , 2𝑁𝑅} × 𝒴𝑛−𝑘 → 𝒳 , 𝑛 = 1, . . . , 𝑁

𝑔 : 𝒴𝑁 → {1, . . . , 2𝑁𝑅}.

DecoderEncoder P (Yn|Xn, Y n−1)
Xn Yn

delay

Yn−k

ŴW

Fig. 1. Channel with delay-𝑘 feedback.

In the above and in the sequel, it is understood that 𝒴𝑛−𝑘 = 𝜙,
for 𝑛 ≤ 𝑘. An input distribution for a channel P𝑐ℎ

Y∣X with
𝑘−delay feedback is a sequence of distributions of the form

P𝑘
X∣Y = {𝑃𝑋𝑛∣𝑋𝑛−1,𝑌 𝑛−𝑘}∞𝑛=1. (1)

Consider a time-line of how input symbols are produced at
the encoder for a message 𝑊 :

𝑋1(𝑊 ) . . . 𝑋𝑘(𝑊 ) 𝑋𝑘+1(𝑊,𝑌 1) 𝑋𝑘+2(𝑊,𝑌 2) . . .

Thus any channel code corresponds to a
unique input distribution. The input distribu-
tion of the system until time 𝑁 specified by{
𝑃𝑋1 , . . . , 𝑃𝑋𝑘∣𝑋𝑘−1 , 𝑃𝑋(𝑘+1)∣𝑋𝑘,𝑌 1 , . . . , 𝑃𝑋𝑁 ∣𝑋𝑁−1,𝑌 𝑁−𝑘

}
,

coupled with the channel distribution, specifies the joint
distribution of the input and output at time 𝑁 as

𝑃𝑋𝑁 ,𝑌 𝑁 = 𝑃𝑋1 ⋅ 𝑃 𝑐ℎ
𝑌1∣𝑋1

. . . 𝑃𝑋𝑘+1∣𝑋𝑘,𝑌 1 ⋅ 𝑃 𝑐ℎ
𝑌𝑘+1∣𝑋𝑘+1,𝑌 𝑘 . . .

= 𝑃 𝑘
𝑋𝑁 ∣𝑌 𝑁 ⋅ 𝑃 𝑐ℎ

𝑌 𝑁 ∣𝑋𝑁 ,

(2)

where

𝑃 𝑘
𝑋𝑁 ∣𝑌 𝑁 =

𝑁∏
𝑛=1

𝑃𝑋𝑛∣𝑋𝑛−1,𝑌 𝑛−𝑘 ,

𝑃 𝑐ℎ
𝑌 𝑁 ∣𝑋𝑁 =

𝑁∏
𝑛=1

𝑃 𝑐ℎ
𝑌𝑛∣𝑋𝑛,𝑌 𝑛−1 .

(3)

Let 𝑐𝑁 (𝑋𝑁 , 𝑌 𝑁 ) be the cost associated with 𝑁 uses of the
channel. Notice that we allow the cost function at time 𝑁
to depend on the inputs and the outputs until time 𝑁 : using
feedback, the encoder learns the outputs (with some delay)
and can potentially use this information to choose future input
symbols so that the cost constraint is satisfied. If 𝑊 is the
message that was transmitted, the probability of error is

𝑃𝑒 = Pr(𝑔(𝑌 𝑁 ) ∕= 𝑊 ).

Definition 2: 𝑅 is an (𝜖, 𝛿)-achievable rate at cost 𝑃 with
𝑘-delay feedback if for all sufficiently large 𝑁 , there ex-
ists an (𝑁, 2𝑁𝑅) channel code such that 𝑃𝑒 < 𝜖 and
𝑃𝑟(𝑐𝑁 (𝑋𝑁 , 𝑌 𝑁 ) > 𝑃 ) < 𝛿.
𝑅 is an achievable rate at cost 𝑃 with 𝑘-delay feedback if

it is (𝜖, 𝛿)-achievable for every 𝜖, 𝛿 > 0.
The feedback capacity, the supremum of all achievable

rates, was characterized in [4], [5] for a general channel.
Recall that the channels we consider have memory and the
information available at the encoder changes with time due
to feedback. As a result, we cannot assume in general that
the optimal joint distribution is stationary and ergodic. A
tight capacity result requires the use of information spectrum
methods [18]. We briefly state the required definitions below,
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along with some intuition on why these are relevant for general
channels with feedback.

Definition 3: (a) The limsup in probability of a sequence of
random variables {𝐴𝑛}, denoted 𝐴, is defined as the infimum
of all real numbers 𝛼 such that lim𝑛→∞ 𝑃𝑟[𝐴𝑛 > 𝛼] = 0.

(b) The liminf in probability of a sequence of random
variables {𝐴𝑛}, denoted 𝐴, is defined as the supremum of
all real numbers 𝛽 such that lim𝑛→∞ 𝑃𝑟[𝐴𝑛 < 𝛽] = 0.

For any sequence {𝑃𝑋𝑁 ,𝑌 𝑁 }∞𝑁=1 of joint distributions
on the input and output (with 𝑃𝑋𝑁 ,𝑌 𝑁 as in (2)), define
∀(𝑥𝑁 , 𝑦𝑁) ∈ 𝒳𝑁 × 𝒴𝑁 :

�⃗�(𝑥𝑁 ; 𝑦𝑁) ≜ 1

𝑁
log

𝑃𝑋𝑁 ,𝑌 𝑁 (𝑥𝑁 , 𝑦𝑁 )

𝑃 𝑘
𝑋𝑁 ∣𝑌 𝑁 (𝑥𝑁 ∣𝑦𝑁)𝑃𝑌 𝑁 (𝑦𝑁 )

(4)

=
1

𝑁
log

𝑃 𝑐ℎ
𝑌 𝑁 ∣𝑋𝑁 (𝑦

𝑁 ∣𝑥𝑁 )

𝑃𝑌 𝑁 (𝑦𝑁 )
,

𝐼(𝑋 → 𝑌 ) ≜ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏

�⃗�(𝑋𝑁 ;𝑌 𝑁 ) (5)

where 𝑃 𝑘
𝑋𝑁 ∣𝑌 𝑁 , 𝑃

𝑐ℎ
𝑌 𝑁 ∣𝑋𝑁 are defined by (3), and 𝑃𝑌 𝑁 is the

marginal from (2).
We may interpret the above definitions as follows. The

directed information flowing from 𝑋𝑁 to 𝑌 𝑁 was defined
by Massey [3] as

𝐼(𝑋𝑁 → 𝑌 𝑁 ) =

𝑁∑
𝑛=1

𝐼(𝑋𝑛;𝑌𝑛∣𝑌 𝑛−1) (6)

who also showed that it upper bounds the feedback capacity
of the channel from 𝑋 to 𝑌 for a given valid joint distribution
on (𝑋𝑁 , 𝑌 𝑁 ). It can be verified that the expected value of
the directed information density �⃗�(𝑋𝑁 ;𝑌 𝑁 ) in (4) is exactly
1
𝑁 𝐼(𝑋𝑁 → 𝑌 𝑁 ). The intuition is that for a general joint
process characterized by PXY, the asymptotic behavior of
�⃗�(𝑥𝑁 ; 𝑦𝑁 ) determines the maximum rate that can be trans-
mitted over the feedback channel. For an arbitrary joint dis-
tribution PXY, the directed information density �⃗�(𝑋𝑁 ;𝑌 𝑁 )
may not converge as 𝑁 → ∞. In general, it is a random
quantity asymptotically bounded between its lim inf𝑖𝑛𝑝𝑟𝑜𝑏 and
the lim sup𝑖𝑛 𝑝𝑟𝑜𝑏. Since the feedback capacity represents
the maximum rate of transmission we can guarantee, it is
characterized by the lim inf𝑖𝑛 𝑝𝑟𝑜𝑏 of the directed information
density, given by (5). In the case where the joint process
PXY is stationary and ergodic, one can show that the quantity
�⃗�(𝑋𝑁 ;𝑌 𝑁 ) converges to its expected value as 𝑁 → ∞. In

other words, �⃗�(𝑋𝑁 ;𝑌 𝑁 )
1
𝑁 𝐼(𝑋𝑁→𝑌 𝑁 )

→ 1 as 𝑁 → ∞ and Massey’s
upper bound can be achieved.

The feedback capacity theorem of [4], [5] is given without
a cost-function, but it can be easily extended to include a cost
constraint as follows.

Fact 1: [4] For an arbitrary channel P𝑐ℎ
Y∣X , the capacity

with 𝑘-delay feedback at cost 𝑃 is

𝐶𝑘
𝑓𝑏(𝑃 ) = sup

P𝑘
X∣Y :𝜌(𝑃𝑘

X∣Y)≤𝑃

𝐼(𝑋 → 𝑌 ), (7)

where

𝜌(P𝑘
X∣Y) ≜ lim sup

𝑖𝑛 𝑝𝑟𝑜𝑏
𝑐𝑛(𝑋

𝑛, 𝑌 𝑛)

= inf
{
ℎ : lim

𝑛→∞𝑃𝑋𝑛𝑌 𝑛

(
(𝑥𝑛, 𝑦𝑛) : 𝑐𝑛(𝑥

𝑛, 𝑦𝑛) > ℎ
)
= 0
}
.

A. Computing the Capacity-Cost Function

The above formula for the capacity-cost function involves
optimizing the function

𝐼(𝑋 → 𝑌 ) ≜ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏

1

𝑁
log

𝑃 𝑐ℎ
𝑌 𝑁 ∣𝑋𝑁

𝑃𝑌 𝑁

over an infinite-dimensional space of input distributions
P𝑘

X∣Y . Since computing the optimization directly is difficult,
we can pose the following question: given a channel P𝑐ℎ

Y∣X
and an input distribution P𝑘

X∣Y , for what sequence of cost
measures does P𝑘

X∣Y achieve the supremum in the capacity
formula ?

Our first result is a sufficient condition for a specified joint
process to achieve the optimum in the feedback capacity for-
mula. The joint process is assumed to satisfy two conditions.
The first is that it is directed information stable in the sense
defined below. Information stability of random processes is
discussed in detail in [19]. In [5], the concept is extended to
directed information stability.

Definition 4: A joint process PXY is directed information
stable if

lim
𝑁→∞

𝑃

(∣∣∣∣∣ �⃗�(𝑋𝑁 → 𝑌 𝑁 )

𝐼(𝑋𝑁 → 𝑌 𝑁 )
− 1

∣∣∣∣∣ > 𝜖

)
= 0 ∀𝜖 > 0,

where �⃗�(𝑋𝑁 → 𝑌 𝑁 ) and 𝐼(𝑋𝑁 → 𝑌 𝑁 ) are defined in (4)
and (6), respectively.
Recall that 𝐼 and 𝐼 denote the lim sup𝑖𝑛 𝑝𝑟𝑜𝑏 and lim inf𝑖𝑛 𝑝𝑟𝑜𝑏

of �⃗�(), respectively. If a joint process PXY is directed infor-
mation stable, it can be shown (cf. [5]) that

𝐼(�̂� → 𝑌 ) = lim inf
𝑁→∞

1

𝑁
𝐼(𝑋𝑁 → 𝑌 𝑁 )

≤ lim sup
𝑁→∞

1

𝑁
𝐼(𝑋𝑁 → 𝑌 𝑁 ) = 𝐼(𝑋 → 𝑌 ).

(8)

Jointly stationary and ergodic processes are examples of
processes that are directed information stable which further
satisfy (8) with equality.

Theorem 1: For a channel P𝑐ℎ
Y∣X with 𝑘−delay feedback,

let P𝑘
X∣Y be an input distribution such that the joint process

PXY = {𝑃𝑋𝑛,𝑌 𝑛}∞𝑛=1 (given by (2)) is directed information
stable and further, equality holds in (8) . Then the input
distribution P𝑘

X∣Y achieves the 𝑘-delay feedback capacity of
the channel at cost level 𝑃 if for all sufficiently large 𝑛, the
cost measure satisfies

𝑐𝑛(𝑥
𝑛, 𝑦𝑛) = 𝜆 ⋅ 1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛(𝑦𝑛∣𝑥𝑛)
𝑃𝑌 𝑛(𝑦𝑛)

+ 𝑑0, (9)

where 𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛 is defined in (3), 𝜆 is any positive number, 𝑑0

is an arbitrary constant and 𝑃 = lim sup𝑛→∞𝐸[𝑐𝑛(𝑋
𝑛, 𝑌 𝑛)].

The proof of the theorem is given in Appendix A. Though
the theorem requires the chosen input distribution to be such
that it makes the induced joint distribution PXY information
stable, we emphasize that for the cost function given by the
theorem, the optimality of this distribution is among all valid
input distributions for the given channel, not just among the
ones that make the joint distribution information stable.
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EncoderXN Decoder
Rate R

Delay
N + k

Xn−k

X̂n

Fig. 2. Source coding with delay-𝑘 feed-forward.

III. SOURCE CODING WITH DELAYED FEED-FORWARD

Consider a general discrete source 𝑋 with alphabet 𝒳 ,
distribution PX = {𝑃𝑋𝑁}∞𝑁=1 and reconstruction alphabet
𝒳 1. The feed-forward model with delay 𝑘 is shown in Figure
2. The reconstruction at the decoder is sequential: for 𝑛 > 𝑘
the decoder has access to source samples 𝑋𝑛−𝑘 to produce
reconstruction symbol �̂�𝑛 (for 𝑛 ≤ 𝑘, �̂�𝑛 is produced using
the index alone).

Definition 5: An (𝑁, 2𝑁𝑅) source code with 𝑘-delay feed-
forward with block length 𝑁 , and rate 𝑅 consists of an
encoder mapping 𝑒 and a sequence of decoder mappings
𝑔𝑛, 𝑛 = 1, . . . , 𝑁 , where

𝑒 : 𝒳𝑁 → {1, . . . , 2𝑁𝑅}
𝑔𝑛 : {1, . . . , 2𝑁𝑅} × 𝒳𝑛−𝑘 → 𝒳 , 𝑛 = 1, . . . , 𝑁.

There is a distortion measure 𝑑𝑁 : 𝒳𝑁 ×𝒳𝑁 → ℝ
+ on pairs

of sequences of length 𝑁 . We assume that 𝑑𝑁 (𝑥𝑁 , �̂�𝑁 ) is
normalized with respect to 𝑁 and is uniformly bounded in
𝑁 .

Definition 6: 𝑅 is an 𝜖-achievable rate at distortion 𝐷 with
𝑘-delay feed-forward if for all sufficiently large 𝑁 , there exists
an (𝑁, 2𝑁𝑅) source code such that

𝑃𝑋𝑁

(
𝑥𝑁 : 𝑑𝑁 (𝑥𝑁 , 𝑥𝑁 ) > 𝐷

)
< 𝜖,

where 𝑥𝑁 denotes the reconstruction of 𝑥𝑁 . 𝑅 is an achievable
rate at distortion 𝐷 with 𝑘-delay feed-forward if it is 𝜖-
achievable for every 𝜖 > 0.

The rate-distortion function, 𝑅𝑘
𝑓𝑓 (𝐷), is the infimum of all

achievable rates at distortion 𝐷 with 𝑘-delay feed-forward.
This was characterized for general sources and distortion
measures in [13]. With feed-forward, the information at the
decoder changes with time. Hence one needs to consider
general joint processes (X, X̂), and information spectrum
methods are needed to obtain a tight rate-distortion theorem.
For any sequence of joint distributions {𝑃𝑋𝑁 ,�̂�𝑁 }∞𝑁=1, define

∀(𝑥𝑁 , �̂�𝑁 ) ∈ 𝒳𝑁 ×𝒳𝑁 :

�⃗�𝑘(�̂�
𝑁 ;𝑥𝑁 ) ≜

1

𝑁
log

𝑃𝑋𝑁 ,�̂�𝑁 (𝑥𝑁 , �̂�𝑁 )

𝑃𝑋𝑁 (𝑥𝑁 )
∏𝑁

𝑛=1 𝑃�̂�𝑛∣�̂�𝑛−1,𝑋𝑛−𝑘(�̂�𝑛∣�̂�𝑛−1, 𝑥𝑛−𝑘)
,

(10)

𝐼𝑘(�̂� → 𝑋) ≜ lim sup
𝑖𝑛𝑝𝑟𝑜𝑏

�⃗�𝑘(�̂�
𝑁 ;𝑋𝑁 ). (11)

In (10), 𝑃�̂�𝑛∣�̂�𝑛−1,𝑋𝑛−𝑘 = 𝑃�̂�𝑛∣�̂�𝑛−1 for 𝑛 < 𝑘. It is
interesting to compare the 𝑘-directed information density in

1In Section II, 𝑋 denoted the channel input. With some abuse of notation, in
this section we shall use 𝑋 to represent the source, and �̂� the reconstruction.

(10) with the directed information density defined in (4). In
channel coding, recall that the feedback delay 𝑘 restricts the
input distribution to be of the form in (1) and hence the joint
distribution is restricted to be as in (2). As a consequence
of this, the directed information density in (4) has the same
formula for every 𝑘. It is important to note that though the
formula in (4) does not change with feedback delay 𝑘, the
directed information density does depend on 𝑘 since 𝑃𝑌 𝑁 is
derived from the joint distribution, which varies with 𝑘. In
source coding, there is no restriction on the joint distributions
{𝑃𝑋𝑁 ,�̂�𝑁 } that can be chosen regardless of the feed-forward
delay 𝑘. Hence (10) represents a different formula for each
𝑘, which we call the 𝑘-directed information density. The
asymptotic behavior of �⃗�𝑘(�̂�𝑁 ;𝑥𝑁 ) determines the minimum
achievable rate with feed-forward delay 𝑘.

Fact 2 ([13]): For an arbitrary source 𝑋 characterized by
a distribution PX, the rate-distortion function with 𝑘-delay
feed-forward is given by

𝑅𝑘
𝑓𝑓 (𝐷) = inf

PX̂∣X:𝜌(PX̂∣X)≤𝐷
𝐼𝑘(�̂� → 𝑋), (12)

where PX̂∣X = {𝑃�̂�𝑛∣𝑋𝑛}∞𝑛=1 and

𝜌(PX̂∣X) ≜ lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏

𝑑𝑛(𝑥
𝑛, 𝑥𝑛)

= inf{ℎ : lim
𝑛→∞𝑃𝑋𝑛,�̂�𝑛 ((𝑥𝑛, 𝑥𝑛) : 𝑑𝑛(𝑥

𝑛, �̂�𝑛) > ℎ) = 0}
(13)

A. Computing the feed-forward rate-distortion function

Since the optimization in Theorem 2 is intractable in
general, we can pose the following question: given a source
distribution PX and a conditional distribution PX̂∣X, for
what sequence of distortion measures does PX̂∣X achieve the
infimum in the rate-distortion formula ?

The following theorem gives a sufficient condition for
a given joint process to achieve the optimum in the rate-
distortion formula, provided it satisfies two conditions. We
first need a generalization of Definition 4 to accomodate for
the fact that in source coding with feed-forward, the objective
function in Theorem 2 changes with 𝑘.

Definition 7: A joint process PXX̂ is 𝑘-directed informa-
tion stable if

lim
𝑁→∞

𝑃

(∣∣∣∣∣ �⃗�𝑘(�̂�
𝑁 → 𝑋𝑁 )

𝐸 [⃗𝑖𝑘(�̂�𝑁 → 𝑋𝑁 )]
− 1

∣∣∣∣∣ > 𝜖

)
= 0 ∀𝜖 > 0.

If a joint process PX̂X is 𝑘-directed information stable, it can
be shown (cf. [5]) that

𝐼𝑘(�̂� → 𝑋) = lim inf
𝑁→∞

1

𝑁
𝐼𝑘(�̂�

𝑁 → 𝑋𝑁)

≤ lim sup
𝑁→∞

1

𝑁
𝐼𝑘(�̂�

𝑁 → 𝑋𝑁) = 𝐼𝑘(�̂� → 𝑋).

(14)

Theorem 2: Let 𝑋 be a source characterized by PX =
{𝑃𝑋𝑛}∞𝑛=1 and feed-forward delay 𝑘. Let PX̂∣X =
{𝑃�̂�𝑛∣𝑋𝑛}∞𝑛=1 be a conditional distribution such that the joint
process is 𝑘-directed information stable and equality holds in
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Fig. 3. Markov chain representing the source.

(14). Then PX̂∣X achieves the rate-distortion function with 𝑘-
delay feed-forward at distortion level 𝐷 if for all sufficiently
large 𝑛, the distortion measure satisfies

𝑑𝑛(𝑥
𝑛, �̂�𝑛) = −𝑐 ⋅ 1

𝑛
log

𝑃𝑋𝑛,�̂�𝑛(𝑥𝑛, �̂�𝑛)

𝑃 𝑘
�̂�𝑛∣𝑋𝑛

(�̂�𝑛∣𝑥𝑛) + 𝑑0(𝑥
𝑛), (15)

where

𝑃 𝑘
�̂�𝑛∣𝑋𝑛(�̂�

𝑛∣𝑥𝑛) =
𝑛∏

𝑖=1

𝑃�̂�𝑖∣𝑋𝑖−𝑘,�̂�𝑖−1(�̂�𝑖∣𝑥𝑖−𝑘, �̂�𝑖−1),

𝑐 is any positive number, 𝑑0(.) is an arbitrary function, and
𝐷 = lim sup𝑛→∞𝐸𝑑𝑛(𝑋

𝑛, �̂�𝑛).
The proof is along the lines as that of Theorem 1, with a few
differences. It is omitted due to space constraints and can be
found in [20].

IV. EXAMPLES

In this section, we present two examples where Theorems
1 and 2 are used to compute the capacity-cost function and
the feed-forward rate-distortion function, respectively.

A. Source Coding Example

Consider a source X = {𝑋𝑛}, where 𝑋𝑛 evolves according
to the Markov chain shown in Figure 3. The source can take
values in the set {0, 1, . . . , 𝑘}. If 𝑋𝑛 = 𝑖 (state 𝑖), 𝑋𝑛+1 is
equal to 𝑖+1 with probability 𝑝𝑖, or 𝑖−1 with probability 𝑞𝑖, or
𝑖 with probability 1−𝑝𝑖−𝑞𝑖. If 𝑋𝑛 denotes the price of a stock
at the end of day 𝑛, this is a reasonable model for how the
value of the stock varies over time. Suppose we are interested
in predicting drops in the stock price over a period of 𝑁
days. Our reconstruction �̂�𝑛 is binary: we predict �̂�𝑛 = 1 if
we expect the price to drop from day 𝑛 − 1 to 𝑛, otherwise
�̂�𝑛 = 0. The distortion is modeled using a Hamming criterion
as follows.

𝑑𝑛(𝑥
𝑛, �̂�𝑛) =

1

𝑛

𝑛∑
𝑖=1

𝑑(�̂�𝑖, 𝑥𝑖−1, 𝑥𝑖), (16)

where 𝑑(., ., .) is the per-letter distortion specified as follows.
𝑑(�̂�𝑖, 𝑥𝑖−1, 𝑥𝑖) = 1 if either we fail to predict a drop: �̂�𝑖 = 0
and 𝑥𝑖 < 𝑥𝑖−1, or we falsely predict a drop: �̂�𝑖 = 1 and
𝑥𝑖 ≥ 𝑥𝑖−1. In all other cases, 𝑑(�̂�𝑖, 𝑥𝑖−1, 𝑥𝑖) = 0.

Now assume there is an insider who has a priori information
about the behavior of the stock over the 𝑁 days. If he
is willing to share this information, what is the minimum
information we need from him in order to predict drops with
distortion 𝐷? Note that before making the decision �̂�𝑛, we
know the values of the stock on all previous days, i.e., 𝑋𝑛−1.
Thus feed-forward is built into this problem, and the minimum

rate of information (in bits/sample) we need to predict drops
in value with distortion 𝐷 is 𝑅1

𝑓𝑓 (𝐷).
Proposition 1: For the problem described above,

𝑅1
𝑓𝑓 (𝐷) =

𝑘−1∑
𝑖=1

𝜋𝑖 (ℎ(𝑝𝑖, 𝑞𝑖, 1− 𝑝𝑖 − 𝑞𝑖)− ℎ(𝜖, 1− 𝜖))

+ 𝜋𝑘 (ℎ(𝑞𝑘, 1− 𝑞𝑘)− ℎ(𝜖, 1− 𝜖)) ,

where ℎ(⋅) is the entropy function, [𝜋0, 𝜋1, ⋅ ⋅ ⋅ , 𝜋𝑘] is the
stationary distribution of the Markov chain and 𝜖 = 𝐷

1−𝜋0
.

Proof: The source is characterized by the Markov chain
transition probabilities 𝑃𝑋𝑖∣𝑋𝑖−1

, ∀𝑖. We shall show that
the optimal rate-distortion function is achieved by a joint
distribution of the form 𝑃𝑋𝑛,�̂�𝑛 =

∏𝑛
𝑖=1 𝑃𝑋𝑖,�̂�𝑖∣𝑋𝑖−1

∀𝑛. For
this to hold, the structure of the cost function from Theorem
2 is

𝑑𝑛(𝑥
𝑛, �̂�𝑛) =

1

𝑛

𝑛∑
𝑖=1

(
−𝑐 log2 𝑃 (𝑥𝑖∣�̂�𝑖, 𝑥𝑖−1)+𝑑0(𝑥𝑖−1, 𝑥𝑖)

)
.

(17)
Equivalently, using (16), the above condition holds when

𝑑(�̂�𝑖, 𝑥𝑖−1, 𝑥𝑖) = −𝑐 log2 𝑃 (𝑥𝑖∣�̂�𝑖, 𝑥𝑖−1) + 𝑑0(𝑥𝑖−1, 𝑥𝑖).
(18)

Guided by the structure of the distortion function 𝑑(⋅),
we choose the structure of 𝑃 (𝑥𝑖∣�̂�𝑖, 𝑥𝑖−1) as follows. When
𝑋𝑖−1 = 0, the decoder can always declare �̂�𝑖 = 0, there
is no error irrespective of the value of 𝑋𝑖. So we assign
𝑃 (�̂�𝑖 = 0∣𝑥𝑖−1 = 0, 𝑥𝑖 = 0) = 1, which using Bayes’
rule yields 𝑃 (𝑋𝑖 = 0∣𝑥𝑖−1 = 0, �̂�𝑖 = 0) = 1 − 𝑝. The
event (𝑋𝑖−1 = 0, �̂�𝑖 = 1) has zero probability. Thus we
obtain the first two columns of Table I. When (𝑋𝑖−1 =
𝑗, �̂�𝑖 = 0), 1 ≤ 𝑗 ≤ 𝑘, an error occurs when 𝑋𝑖 = 𝑗 − 1.
This is assigned a probability 𝜖. The remaining probability
(1 − 𝜖) is split between 𝑃 (𝑋𝑖 = 𝑗∣𝑥𝑖−1 = 𝑗, 𝑥𝑖 = 0) and
𝑃 (𝑋𝑖 = 𝑗 + 1∣𝑥𝑖−1 = 𝑗, �̂�𝑖 = 0) according to their transition
probabilities. In a similar fashion, we obtain all the columns
in Table I.

Substituting the values from Table I in the relation
𝑃 (𝑥2∣𝑥1, �̂�2) = 𝑃 (𝑥2∣𝑥1)𝑃 (�̂�2∣𝑥2,𝑥1)∑

𝑥2
𝑃 (𝑥2∣𝑥1)𝑃 (�̂�2∣𝑥2,𝑥1)

, we obtain the condi-

tional distribution 𝑃 (�̂�2∣𝑥1, 𝑥2) shown in Table II. To show
that the conditional distribution in Table II is optimal, we need
to check that the resulting joint distribution can be made to
satisfy (18). This can be done by using the values from Table
I in (18) to determine 𝑐 and 𝑑0(., .).

Since the process {X, X̂} is jointly stationary and ergodic,
when (𝑥𝑛, �̂�𝑛) ∼ 𝑃𝑋𝑛,�̂�𝑛 , the distortion 𝑑𝑛(𝑥

𝑛, �̂�𝑛) →
𝐸[𝑑(�̂�2, 𝑥1, 𝑥1)] as 𝑛 → ∞ 𝑤.𝑝.1. Hence the distortion
constraint is equivalent to 𝐸[𝑑(�̂�2, 𝑥1, 𝑥2)] ≤ 𝐷. Using Table
II and the stationary distribution of the source [𝜋0, . . . , 𝜋𝑘],
the expected distortion can be calculated as

𝐸[𝑑(�̂�2, 𝑥1, 𝑥2)] =
∑

𝑥1,𝑥2,�̂�2

𝑃 (𝑥1, 𝑥2)𝑃 (�̂�2∣𝑥1, 𝑥2) ⋅ 𝑑(�̂�2, 𝑥1, 𝑥2)

= (1− 𝜋0)𝜖 ≤ 𝐷.
(19)

We can now calculate the rate distortion function as

Authorized licensed use limited to: Stanford University. Downloaded on July 16,2010 at 04:44:49 UTC from IEEE Xplore.  Restrictions apply. 



1894 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 7, JULY 2010

TABLE I
THE DISTRIBUTION 𝑃 (𝑋𝑖∣𝑥𝑖−1, �̂�𝑖)

(𝑥𝑖−1, �̂�𝑖)
00 01 ⋅ ⋅ ⋅ 𝑗0 𝑗1 ⋅ ⋅ ⋅ 𝑘0 𝑘1

𝑥𝑖 = 0 1 − 𝑝 − ⋅ ⋅ ⋅ − − − − −
𝑥𝑖 = 1 𝑝 − ⋅ ⋅ ⋅ − − − − −

𝑥𝑖 = 𝑗 − 1 − − − 𝜖 1 − 𝜖 − − −
𝑥𝑖 = 𝑗 − − − (1−𝜖)(1−𝑝𝑗−𝑞𝑗 )

1−𝑞𝑗

𝜖(1−𝑝𝑗−𝑞𝑗)

1−𝑞𝑗
− − −

𝑥𝑖 = 𝑗 + 1 − − − (1−𝜖)𝑝𝑗
1−𝑞𝑗

𝜖𝑝𝑗
1−𝑞𝑗

− − −
𝑥𝑖 = 𝑘 − 1 − − ⋅ ⋅ ⋅ − − − 𝜖 1 − 𝜖

𝑥𝑖 = 𝑘 − − ⋅ ⋅ ⋅ − − − 1 − 𝜖 𝜖

TABLE II
THE CONDITIONAL DISTRIBUTION 𝑃 (�̂�𝑖∣𝑥𝑖−1, 𝑥𝑖)

(𝑥𝑖−1, 𝑥𝑖)
0, 0 0, 1 𝑗, 𝑗 − 1 𝑗, 𝑗 𝑗, 𝑗 + 1 𝑘, 𝑘 − 1 𝑘, 𝑘

�̂�𝑖 = 0 1 1
𝜖(1−𝑞𝑗−𝜖)

𝑞𝑗(1−2𝜖)

(1−𝜖)(1−𝑞𝑗−𝜖)

(1−𝑞𝑗 )(1−2𝜖)

(1−𝜖)(1−𝑞𝑗−𝜖)

(1−𝑞𝑗 )(1−2𝜖)

𝜖(1−𝑞𝑗−𝜖)

𝑞𝑗 (1−2𝜖)

(1−𝜖)(1−𝑞𝑗−𝜖)

(1−𝑞𝑗)(1−2𝜖)

�̂�𝑖 = 1 0 0
(1−𝜖)(𝑞𝑗−𝜖)

𝑞𝑗(1−2𝜖)

𝜖(𝑞𝑗−𝜖)

(1−𝑞𝑗 )(1−2𝜖)

𝜖(𝑞𝑗−𝜖)

(1−𝑞𝑗 )(1−2𝜖)

(1−𝜖)(𝑞𝑗−𝜖)

𝑞𝑗 (1−2𝜖)

𝜖(𝑞𝑗−𝜖)

(1−𝑞𝑗)(1−2𝜖)

𝑅𝑓𝑓 (𝐷) = lim
𝑁→∞

1

𝑁

∑
𝑥𝑁 ,�̂�𝑁

𝑃 (𝑥𝑁 , �̂�𝑁) log2

𝑁∏
𝑛=1

𝑃 (𝑥𝑛∣�̂�𝑛, 𝑥𝑛−1)

𝑃 (𝑥𝑛∣𝑥𝑛−1)

=
∑

𝑥1,𝑥2,�̂�2

𝑃 (𝑥1, 𝑥2, �̂�2) log2
𝑃 (𝑥2∣𝑥1, �̂�2)

𝑃 (𝑥2∣𝑥1)

= 𝐻(𝑋2∣𝑋1)−𝐻(𝑋2∣�̂�2, 𝑋1)
(20)

to obtain the expression in Proposition 1.
In [10], the distortion-rate function for a symmetric binary

Markov source with feed-forward and a stationary Gaussian
source with feed-forward were evaluated using a result that
applies to sources that can be described by an i.i.d innovations
process. We note that it is also possible to compute these
using Theorem 2. We also remark that the example presented
above cannot be computed using the result in [10] since the
innovations process of the Markov chain is not i.i.d.

B. Channel Coding Example

Consider a binary Markov channel with feedback delay 1
defined as follows for all time instants 𝑖: 𝑃 𝑐ℎ(𝑌𝑖∣𝑋 𝑖, 𝑌 𝑖−1) =
𝑃 𝑐ℎ(𝑌𝑖∣𝑋𝑖, 𝑌𝑖−1) with 𝑋𝑖, 𝑌𝑖 ∈ {0, 1}

𝑃 𝑐ℎ(𝑌𝑖∣𝑋𝑖, 𝑌𝑖−1 = 1) = 𝛿(𝑌𝑖=𝑋𝑖),

𝑃 𝑐ℎ(𝑌𝑖∣𝑋𝑖, 𝑌𝑖−1 = 0) = 0.5.
(21)

In other words, if the channel output at time 𝑖 − 1 is 1, we
have a noiseless channel at time 𝑖. If the channel output at
time 𝑖− 1 is 0, at time 𝑖 we have a binary symmetric channel
with crossover probability 0.5. Suppose we wish to impose a
cost function defined as follows.

1) At time 𝑖, if the channel is in the ‘good’ state (𝑌𝑖−1 = 1),

𝑐(𝑋𝑖, 𝑌𝑖−1 = 1) =

{
𝛼0 if 𝑋𝑖 = 0
𝛼1 if 𝑋𝑖 = 1

, 𝛼0, 𝛼1 ∈ ℝ.

(22)
2) If the channel is in the bad state, we impose a constant

cost: 𝑐(𝑋𝑖, 𝑌𝑖−1 = 0) = 𝛼, 𝑋𝑖 ∈ {0, 1}.

The cost for 𝑛 uses of the channel is 𝑐𝑛(𝑥
𝑛, 𝑦𝑛) =

1
𝑛

∑𝑛
𝑖=1 𝑐(𝑥𝑖, 𝑦𝑖−1). We ask: given a cost constraint 𝑃 , does

a stationary, first-order Markov input distribution of the form
{𝑃𝑋𝑖∣𝑌𝑖−1

}∞𝑖=1 achieve the feedback capacity 𝐶1
𝑓𝑏(𝑃 )? Let the

input distribution be specified as

𝑃 (𝑋𝑖 = 0∣𝑌𝑖−1 = 0) = 𝑞0, 𝑃 (𝑋𝑖 = 0∣𝑌𝑖−1 = 1) = 𝑞1 ∀𝑖,
(23)

where 𝑞0, 𝑞1 have to be determined. The joint distribution is
then

𝑃 (𝑋𝑛, 𝑌 𝑛) =
𝑛∏

𝑖=1

𝑃 (𝑋𝑖, 𝑌𝑖∣𝑌𝑖−1)

=

𝑛∏
𝑖=1

𝑃 (𝑋𝑖∣𝑌𝑖−1) ⋅ 𝑃 𝑐ℎ(𝑌𝑖∣𝑋𝑖, 𝑌𝑖−1),

(24)

with 𝑃 (𝑋𝑖∣𝑌𝑖−1) and 𝑃 𝑐ℎ(𝑌𝑖∣𝑋𝑖, 𝑌𝑖−1) given by and (23) and
(21), respectively. Using Theorem 1 it follows that this joint
distribution is optimal if the cost function satisfies

𝑐𝑛(𝑥
𝑛, 𝑦𝑛) = 𝜆 ⋅ 1

𝑛

𝑛∑
𝑖=1

log
𝑃 𝑐ℎ
𝑌𝑖∣𝑋𝑖,𝑌𝑖−1

(𝑦𝑖∣𝑥𝑖, 𝑦𝑖−1)

𝑃𝑌𝑖∣𝑌𝑖−1
(𝑦𝑖∣𝑦𝑖−1)

+ 𝑑0.

(25)
Substituting all the possible values for (𝑌𝑖−1, 𝑋𝑖, 𝑌𝑖) in (25),
we see that the conditions are:

𝑑0 = 𝛼, 𝜆 log2
1

𝑞1
+ 𝑑0 = 𝛼0, 𝜆 log2

1

1− 𝑞1
+ 𝑑0 = 𝛼1

(26)

Further, the parameter 𝑞1 has to be chosen to satisfy the
cost constraint. Since the joint process {𝑃𝑋𝑛,𝑌 𝑛}∞𝑛=1 (with
𝑃𝑋𝑛,𝑌 𝑛 as in (24)) is jointly stationary and ergodic, the cost
constraint reduces to 𝐸[𝑐(𝑋𝑖, 𝑌𝑖−1)] ≤ 𝑃 . In terms of our
joint distribution, this can be written as∑

𝑥𝑖

𝑃 (𝑌𝑖−1 = 0)𝑃 (𝑥𝑖∣𝑌𝑖−1 = 0)𝑐(𝑥𝑖, 0)

+ 𝑃 (𝑌𝑖−1 = 1)𝑃 (𝑥𝑖∣𝑌𝑖−1 = 1)𝑐(𝑥𝑖, 1)

(𝑎)
= 𝑃 (𝑌𝑖−1 = 0)𝛼+ 𝑃 (𝑌𝑖−1 = 1)[𝑞1𝛼0 + (1 − 𝑞1)𝛼1] = 𝑃,

(27)
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where we have used (21) and (23) and the cost function
to obtain (𝑎). [𝑃 (𝑌𝑖−1 = 0), 𝑃 (𝑌𝑖−1 = 1)] is just the
stationary distribution of the Markov chain {𝑌𝑖}, whose tran-
sition probabilities are given by [𝑃 (𝑌𝑖 = 0∣𝑌𝑖−1 = 0) =
0.5 𝑃 (𝑌𝑖 = 0∣𝑌𝑖−1 = 1) = 𝑞1]. This can be computed to be
[𝑃 (𝑌𝑖−1 = 0) = 2𝑞1

1+2𝑞1
, 𝑃 (𝑌𝑖−1 = 1) = 1

1+2𝑞1
]. Using this in

(27) and rearranging terms, we obtain

𝑞1𝛼0 + (1 − 𝑞1)𝛼1 + 2𝑞1𝛼 = 𝑃 (1 + 2𝑞1). (28)

If we fix the cost parameters 𝛼0, 𝛼1, 𝛼 and the cost constraint
𝑃 , there are four conditions (given by (26) and (28)) to be
satisfied. Since there are three variables (𝜆, 𝑑0, 𝑞1), one can
assert that a first-order Markov input distribution of the form
of (23) achieves the optimum for this problem only when the
system of four equations in three unknowns ((26) and (28))
has a solution. Of course, if we specify only three among
the four parameters 𝛼0, 𝛼1, 𝛼, 𝑃 , a solution always exists and
the fourth parameter gets automatically determined. When
there exist 𝜆, 𝑑0, 𝑞1 such that (26) and (28) are satisfied, the
feedback capacity-cost function can be evaluated as

𝐶1
𝑓𝑏(𝑃 ) = 𝐼(𝑋 → 𝑌 ) = lim

𝑁→∞
1

𝑁
𝐼(𝑋𝑁 → 𝑌 𝑁)

= lim
𝑁→∞

1

𝑁

∑
𝑥𝑁 ,𝑦𝑁

𝑃 (𝑥𝑁 , 𝑦𝑁) log2

∏𝑁
𝑛=1 𝑃 (𝑦𝑛∣𝑥𝑛, 𝑦𝑛−1)∏𝑁

𝑛=1 𝑃 (𝑦𝑛∣𝑦𝑛−1)

=
∑

𝑦1,𝑥2,𝑦2

𝑃 (𝑦1, 𝑥2, 𝑦2) log2
𝑃 (𝑦2∣𝑥2, 𝑦1)

𝑃 (𝑦2∣𝑦1)

=
1

1 + 2𝑞1

[
𝑞1 log2

1

𝑞1
+ (1− 𝑞1) log2

1

1− 𝑞1

]
+

2𝑞1
1 + 2𝑞1

⋅ 0

=
1

1 + 2𝑞1
ℎ(𝑞1)

where ℎ() is the binary entropy function.
Example: If we set 𝛼 = 0, 𝛼1 = 2𝛼0 for any 𝛼0 > 0 -

when the channel is ‘bad’, the associated cost is 0; when the
channel is ‘good’, there is a positive cost and the cost is higher
to keep the channel in the good state. For these parameters,
we obtain from (26) 𝑑0 = 0 and 𝑞1 = 0.6180. If we set the
cost constraint 𝑃 to satisfy (28), we obtain 𝑃 = 1.382𝛼0 and
from (IV-B), 𝐶𝑓𝑏(1.382𝛼0) = 0.4291 bits/channel use.

V. CONCLUSION

The problem of computing the feedback capacity-cost func-
tion of channels and the feed-forward rate-distortion function
of sources was studied. Due to the memory and dynamics
inherent in these problems, computing these functions involves
optimizing a multi-letter expression over all valid processes
(not necessarily stationary or ergodic). Since it is infeasible
to compute the optimizations directly, a structural approach to
the problem can be useful. We derived sufficient conditions
on the structure of the distortion (cost) function in order
for a chosen joint distribution to achieve the optimal rate-
distortion (capacity-cost) function. While the structural results
do not yield the feedback capacity for every channel and cost
function, the examples show that one can compute perfor-
mance limits for interesting problems which may otherwise
be intractable. Whether the structural conditions on the dis-
tortion/cost function are also necessary for a joint distribution
to achieve the optimum is an open question.

APPENDIX A
PROOF OF THEOREM 1

Let P′𝑘
X∣Y denote any other input distribution that achieves

lower cost than P𝑘
X∣Y over the channel. The symbol ′ will

denote that the joint distribution 𝑃 ′
𝑋𝑌 ≜ 𝑃 ′𝑘

𝑋∣𝑌 ⋅𝑃 𝑐ℎ
𝑌 ∣𝑋 is being

used. We will also use the notation 𝑃𝑋𝑌 ≜ 𝑃 𝑘
𝑋∣𝑌 ⋅𝑃 𝑐ℎ

𝑌 ∣𝑋 . We
note that while the joint distribution 𝑃𝑋𝑌 is information stable
(by the assumptions of the theorem), 𝑃 ′

𝑋𝑌 need not be since
P′𝑘

X∣Y is an arbitrary input distribution.
We have

lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

𝑐𝑛(𝑋
𝑛, 𝑌 𝑛) < lim sup

𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃𝑋𝑌

𝑐𝑛(𝑋
𝑛, 𝑌 𝑛). (29)

We will show that if (29) is satisfied, then

𝐼𝑃𝑋𝑌
(𝑋 → 𝑌 ) > 𝐼𝑃 ′

𝑋𝑌
(𝑋 → 𝑌 ) (30)

under the conditions of the theorem, thus proving the optimal-
ity of P𝑘

X∣Y .
Step 1: We will first show that

𝐼𝑃 ′
𝑋𝑌

(𝑋 → 𝑌 ) ≜ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃 ′
𝑌 𝑛

≤ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

.

(31)

Due to the inequality [18]

lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏

𝑎𝑛 − lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏

𝑏𝑛 ≥ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏

(𝑎𝑛 − 𝑏𝑛),

to prove (31), it is enough to show that
lim inf𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

1
𝑛 log

𝑃 ′
𝑌 𝑛

𝑃𝑌 𝑛
≥ 0, which is true from

Theorem 8(𝑎) in [21].
Step 2: Here we use Step 1 to prove (30). We have

𝐼𝑃𝑋𝑌
(𝑋 → 𝑌 )− 𝐼𝑃 ′

𝑋𝑌
(𝑋 → 𝑌 )

(𝑎)

≥ lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

− lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

(𝑏)
> lim inf

𝑖𝑛 𝑝𝑟𝑜𝑏𝑃𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

− lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

+ lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

[𝛽 ⋅ 𝑐𝑛(𝑋𝑛, 𝑌 𝑛) + 𝑏0]

− lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃𝑋𝑌

[𝛽 ⋅ 𝑐𝑛(𝑋𝑛, 𝑌 𝑛) + 𝑏0]

(32)

where 𝛽 > 0 and (𝑎) follows from (31) in Step 1, (𝑏) is from
(29). Now set

𝛽𝑐𝑛(𝑋
𝑛, 𝑌 𝑛) + 𝑏0 =

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛(𝑦𝑛∣𝑥𝑛)
𝑃𝑌 𝑛(𝑦𝑛)

. (33)

Since PXY is directed information stable, we have from (8)

𝐼𝑃𝑋𝑌
(𝑋 → 𝑌 ) ≜ lim inf

𝑖𝑛 𝑝𝑟𝑜𝑏𝑃𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

= lim inf
𝑁→∞

𝐼𝑃𝑋𝑌 (𝑋
𝑁 → 𝑌 𝑁 ).

(34)

Further, as a consequence of equality in (8),

𝐼𝑃𝑋𝑌 (𝑋 → 𝑌 ) = lim sup
𝑁→∞

𝐼𝑃𝑋𝑌 (𝑋
𝑁 → 𝑌 𝑁 )

= lim inf
𝑁→∞

𝐼𝑃𝑋𝑌 (𝑋
𝑁 → 𝑌 𝑁 ) = 𝐼𝑃𝑋𝑌

(𝑋 → 𝑌 )
(35)
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and so

lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

= lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

Hence (32) becomes

𝐼𝑃𝑋𝑌
(𝑋 → 𝑌 )− 𝐼𝑃 ′

𝑋𝑌
(𝑋 → 𝑌 )

> lim sup
𝑖𝑛 𝑝𝑟𝑜𝑏𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

− lim inf
𝑖𝑛 𝑝𝑟𝑜𝑏 𝑃 ′

𝑋𝑌

1

𝑛
log

𝑃 𝑐ℎ
𝑌 𝑛∣𝑋𝑛

𝑃𝑌 𝑛

≥ 0

(36)

because the lim sup𝑖𝑛 𝑝𝑟𝑜𝑏 is always greater than or equal to
the lim inf𝑖𝑛 𝑝𝑟𝑜𝑏. Rearranging (33), we get the result.
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