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This document serves as an extended proof H; and H¢41 of Lemma 5, part (b).(i) from Capacity-
achieving Sparse Superposition Codes via Approzimate Message Passing Decoding [1]. References
to [1] and the proof of Lemma 5 within, will be made throughout this document.

Lemma 5 (b)(i) We will show that the following statement holds for 0 < t < T*, where
T = [%-‘ assumed to be less than n. Consider the following functions defined on RM x RM x

RM — R. Forx,y,z € RM and ¢ € [L], let

(bl,f(x?y? Z) = iL'*y/M,

bo.0(2,y,2) = ||n (z — 2)|*/ log M, 0<r<t, )

b3u(w,y,2) = [y (z —x) — 2" Nf(2 —y) — 2]/ log M, —1<r<s<t,

¢4’g($,y,2) = y*[nz(z_x)_z]/logMa _1§T§t7
where for r >0, n;(-) is the restriction of n" to section £, i.e., for v € RM,

exp (LVQP‘)
n.i(T) == /nby T’“' Z_—— i=1,..., M.
Z Zj]\il exp (93] 7_ng>

(Also, () == 0 for i € [M].) Then, for k € {1,2,3,4} and arbitrary constants (ag, ..., ar,
bo, - ..,bt), we have

=0, @

lim n?

L t t
1 T S
EDIHI DICURS AN B
=1 r=0 s=0

where
1 L t . t 5
Cp 1= lim Z Z_Zl E [¢k,€ (ZO arﬁ"ngy ZO bS%SZSg7 ﬂ[)] .

Here Zo, ey 7, are length-N Gaussian random vectors independent of 5, with Zu,q,z denoting the (th
section of Z,. For 0 < s <t, {Zs, }jen are i.i.d. ~ N(0,1), and for each i € [N], (Zo,, ..., Z,)
are jointly Gaussian with E[frZrﬁtZti] =72 for 0 < r < t. Both limits in exists and are finite

for each ¢y, 4 in .
In the proof, we will use Lemmas and which are stated and proved in the Appendix.

1 Step 2: Showing H;(b).(i) holds

We will show that result holds when ¢t = 0.



Proof. Consider the functions ¢y ¢(x,y,2) for k € {1,2,3,4} defined in (I)). First note that the
result of this Lemma, given in , is true for an additional group of functions defined as follows:

¢57g(.’L', Y, Z) = IE'Z {d)k,@(x + UZZ,y + UZZ? Z)} )

where k = {1,2,3,4}, random vector Z € RM is iid. ~ N(0,1) independent of z,y,z, and

limoy “ constant. We do not prove the result explicitly for these functions since it follows by

application of Jensen’s Inequality. In what follows we prove the result for generic ¢y, ¢(z,y, z) with

k€ {1,2,3,4} and we state explicitly which & we refer to when it is important to the results.
From [1, Lemma 4] it follows,

One(aohy, bohg, Bo,) 0= <Z>k ¢ (a0T0Zo, + aolA1,0]e, boToZo, + bo[A1,0]e, Bo,) -

For the first step, we show that the deviation term A; can be dropped when considering the
limit. Define

diffy k¢ := dre (a0T0Z0, + ao[A1,0]e, boToZo, + bo[A1,0]e, Bo,) — ke (a0ToZo,, boToZo,, Po,)- (3)

Considering ¢ fixed, for each function in we first show the following.

s L
. n . a.s.
lim T ;1 |diffy . ¢| = 0. (4)

To prove the above we will supply upper bounds on the difference diff; ;o defined in which
approach 0 almost surely in the limit. To do so, we consider each k separately. The following two
results are useful:

1. From [1, H;(a)], for each ¢ € [L],
max |[Aq0];] O(n~%\/logM), and max \h1| < c1y/log M, (5)

j€sec(f) jEsec(f)
where c¢; > 0 is a constant not depending on N.
2. The following is due to [1, Fact 7]. For Z1, Zs, ... i.i.d. ~ N(0,1), with probability 1 we have

m[a]\/}(] |Zj| < /2K log M for all sufficiently large M. (6)
€

k = 1. Because of the A g bounds given in , it follows from Lemma (A.1]) for each ¢ € [L],
C\/log Vieg M

’dlfflkg‘ < v ,

\ang\ max |Zo | + ]boTo\ maX \Zojl +

for some &’ > 0. Considering (6) and the above, %6 SO0 |diffy gl ag C'n®%" log M, which ap-
proaches 0 when § < ¢'.
k = 2 3 Because of the A1 bounds given in , it follows from Lemma (A.2)) for each ¢ € [L],

|diffy g g] " Clog Mn=%, for some & > 0. Now plugging this into we establish the following
upper bound:

n® a.s. nd Clog M S_s
— diff < =) ———<C log M.
I



The right-side of the above approaches 0 when § < ¢'.
k = 4. We first establish an upper bound for ¢4 (z,y, 2).

(log M)|¢k,€ (IL‘, Y, Z) - ¢4,g(£l? + sz Y+ Aya Z)’
=y (z —x) — 2] = (g + Ay) "My (z =z — Ag) — 2]

<|ytmp(z — ) —np(z — 2 = A + [AY [y (2 — 2 — Ag) — 2]| (7)
c(log M)3/?

S A A Tz — 1 — Ag) — .
< . km%!ylﬂg[%! yjl§: g, (z — ) — zil

The last line in the above follows from Lemma @L for some constant ¢ > 0. Now to prove we
use the above bound applied to diff; 5, , defined in ED

c(log M)'/? 2vnpy
diff < ————1b Z A
|diffy ol o [boTol g;ax | 0/\ log M ]gnge)|[ Lol

where we have used the fact that > —11mz,(Bo, — aoT0Zo, — ao[A1,0]e) — 501’ 2y/nPy for each
¢ € [L] and 0 < r < t. Now using the above and the results stated in and (6) we find,

a.s.
%5 EeL:1 |diffy o] < /n0 " log M + ¢'n%~% which approaches 0 when § < &'
In what follows we are justified in dropping the deviation terms A; . For the second step of the
proof, we will appeal to the Strong Law for Triangular Arrays |1, Fact 2] which will show

L
lim n’ [L ;Qﬁu ao70Zo,, boToZo,, Bo,) — I ;EZO {1 (a070Z0,, boToZ0,, Bo,)}| = 0. (8)

Let Zy be an independent copy of Zy and define for each k = {1,2,3,4},

diffy ko == P (007_'0204, bo70Zo,, 5()@) — ¢ (a0ToZo,, boToZo,, Bo,) - 9)

In order to use the Strong Law for Triangular Arrays [1, Fact 2] to get result we will prove the
following for each function in .

24K
- ]nfsdiff%g‘ < cLM?, (10)

SIS
M=
=
N

(=1

for some 0 < k < 1 and ¢ some constant. Note that the exact requirement of [1, Fact 2] follows
from by an application of Jensen’s Inequality. To prove , we consider each k separately.
The following result, which follows from @ for sufficiently large M, will be useful. Let Z € RM be
a vector of i.i.d. standard Gaussian random variables,

24K
<max|Z |> = m%|ZJ’2+H a:S (S} ( /logM’2+I€> : (11)
Jj€

JEM]

k=1. First we upper bound the difference in @ as follows:

~ 24K
120,112 = 1120, 1

- 2+ 212
|diffa e[ = |aobo7y |7 s

|a0b072|2+”< max |Zo 229 1 max | Zo, |” 2+“)>
jesec(l) j€sec(£)

(12)



From , for sufficiently large M, each maximum in the above is almost surely © (log M 2+“).
Therefore, %ZZLZI Ez. 2 ‘n‘sdiffzk’g et g (L°(log M)‘;(QJ”‘)) . We have satisfied since M =

L? for some constant b > 0.

k=2, 3. Note that ¢y ¢(z,y, o,) < 1‘;7;1}’4 for some constant ¢ when k& = 2,3. The considering

the difference in @, we find the following upper bound:

L 24K
1 3 5y 2 s(2w) (L as. o0 6(2+k)
Z — ]EZO,ZO ‘n dlfFQJg’Z‘ S 2n logiM = @(n )

Therefore we have satisfied .
k=4. We first establish an upper bound for ¢4 ¢(z,y, 2).

24K

T 7 2tk ‘bofoz& [nzl (Fo — aooZo) — fo,] c (\/nTDg) o Max;esec(t)| 20, >+
bk (a0T0Zo,, boToZo,, Bo,)|*T" = - )
7 (log M)>ts (log M)#tr

ws. O(/1og M>T)0(/log M)
- (log M)Q—l—m :
(13)

K a.s.

The last equality is true for large enough M by . Therefore, %Z£:1 Ez 2 ‘nédiffg’k,g‘2Jr
©(n°?*), and so we have satisfied (10).
We have satisfied for each function ¢y ¢(x,y, 2) for k = {1,2,3,4} and therefore result
holds. For the third and final step of the proof, we will provide the following result:
1 & 1 &

. 5 _ _ _ _ a.s.

limn® | - ;EZO {#k.¢ (a070Z0,, boT0Z0,5 Bo,) } — I ;E(ZO,B) {#r.e (a0T0Z0,,b070%0,, B¢)} | = 0.
For each function ¢y, ¢(x,y, z) with k = {1,2,3,4} and each By € Bas,1,, we prove the following for

each ¢ € [L]:
Ezy {#k.¢ (a0T0Zo,, boToZo, Bo,) } = E(zy,8) {¢k.e (a0T0Z0,, boToZo,, Be) } -

The key is that the random variables {Zoj} are i.i.d. across j € sec(f), and the position of the
non-zero entry in [y is uniformly distributed across j € [M].

k=1. The result is trivially true since ¢y, ¢(z,y, 2) doesn’t depend on z.

k=2, 3. First consider the k = 2 function

7 * 170(8 — ao70Zo)|®
92,6 (a0T0Z0,, boTZoy o) = log M ‘

Let k € sec(?) be the non-zero element of Jy,. Then for i € sec(¥)

exp ("Pg (i = /-c)) exp (—v/nPrag Zo,)

=2
70

%}) exp (*\/’rng aop Zok) + Zﬁék exp (*\/TLP( ao Zoj) ‘

n(Bo — aoToZo) = \/nP;
exp (



Therefore,
IEZO {¢/€,£ (a07_—0Z0£7 b07_—0Z0@ y BOZ)}
nPy exp (27%34) exp (—2\/77,]35 ao Zok) + Zi;ﬁk exp (—2\/nPg agp ZOZ-) (14)
B 10gM ZO ’Vng 2
(exp (?—3) exp (—vnPrag Zo,,) + >tk €XD (—v/nP; ag Zoj)>

The key observation is that the expectation on the RHS of is the same regardless of whether
the non-zero index i in By, is 1,2, ..., or M. This is because {Zo, } is i.i.d. across j € sec(¢). Hence,

M
1 .
M%ﬁﬂéu@m%&m%%ZMﬂd}=Ejﬁﬂ%ﬁﬁu@m%&m%%Zmﬁdmhmmmemwoﬂﬂwl}
i=1
The above equals . The argument for the k£ = 3 function ¢3(z,y, ) similar.
k=4. The result can be shown in a manner similar to that used for the k = 2 function ¢ ¢(z, y, 2)
shown above.
The existence of the limit of % Z@Lﬂ E(Zo,ﬂ) [1.¢(a0ToZo,, boToZo,, Be)] for k =1 follows from the
law of large numbers; for k = 2,3, 4, the limit is derived in Appendix A.4 in [1].
O

2 Step 4: Showing H;.1(b).(i) holds

We want to show that if [1, B,] and |1, Hs] hold for 0 <r < ¢ <T* and 1 < s < ¢ < T™* then ({2
holds.

Proof. Consider the functions ¢y ¢(z,y,2) for k € {1,2,3,4} defined in . First note that the
result of thsi Lemma, given in (2)), is true for an additional group of functions defined as follows:

¢5,£(x7y7 Z) = IEd:Z {(bk,@(x + UZZ7y + UZZ7 Z)}v
where k& = {1,2,3,4}, random vector Z € RM is i.i.d. ~ A(0,1) independent of x,y,z, and

limoy “ constant. We do not prove the result explicitly for these functions since it follows by
application of Jensen’s inequality. In what follows we prove the result for generic ¢y, ¢(x, y, 2) with
k€ {1,2,3,4} and we state explicitly which k& we refer to when it is important to the results.

From [1, Lemma 4] it follows,

t t
bor (z auhzﬂ,zbvhzﬂ,,eog)
u=0 v=0

T+t

t—1 t—1

d _ _

= Qre (Z a;hzﬂ + atTtJ_Ztg + ar[Asi1.tes Z b;,hzﬂ + thtJ_Ztg + b [ Ay tles /305> )
u=0 v=0

where al, = a, and b, = b, for 0 < w,v < t —2 and a},_; = a;—1 + ax(77/771) and b, _, =

t—1 t—1
diffy g = b (Z a, gt et Zey + anDvrde, Y ULRET 4 b Zyy 4 b Ara il 5()2)

t—1 t—1
— bra <Z a bt a2y, bkt + bﬁfzte,ﬁw) :
u=0 v=0

5



First, we show that the deviation term A;i1; can be dropped when considering the limit.
Considering t fixed, for each function in we first show the following.

s L
..n . a.s.
lim — > |diffy el 0. (16)
(=1
for some 6 > 0. To prove the above we will supply upper bounds on the difference diff; ;. o defined
in which approach 0 almost surely in the limit. To do so, we consider each k separately. The
following two results are useful:

1. From [1, H1(a) - Hir1(a)], for each £ € [L] and for constant ¢; > 0 not depending on N,

max |[Ap14];] O(n~%/log M), and max |hr+1| <caylogM 0<r<t (17)
j€sec() j€sec()

2. Result along with Lemma [6] implies, for each ¢ € [L] and for some constant C' > 0, that

Z ay, hqul + at?tJ‘th aSS C+/log M for all sufficiently large M. (18)

max
jE€sec(l)

k = 1. Because of the Ay, bounds given in (17)), it follows from Lemma ([A.1]) for each ¢ € [L],

s- Cylog M [ \/logM]
T | — |

TL(S ’I’Zél

Idiffy g < Z a, W+ a7 Z bt + b Zy |+

+ max
j'€sec(l

ax
Gsec

Using bound in the above, we find % 21?:1 |diffy g 0| a.SSI C'n’~" log M, which approaches 0
when § < ¢’ giving result (16).
k = 2,3. Because of the Ay1+ bounds given in , it follows from Lemma (A.2)) for each

€ [L], |d|fF1M| oY log M. Plugging this into (16)),
n5 L a.s. S—6
IZ\diffLM] < C'n’ % log M.

The right-side of the above approaches 0 when § < §’.
k = 4. Using the upper bound for ¢4 (z,y, z) provided in , for constants ¢, C' > 0,

c(l M
(log M) |diffy | < C+\/log M cllog M)™~ +2\/nP O(n~%\/log M),

where we have used results , , and Lemma ((A.2)). Now using the above in , we find

a.s. ! !
%5 25:1 |diffy ko] < ¢n?7%log M + ¢'n’~%", which approaches 0 when ¢ < &'
In what follows we are justified in dropping the deviation terms Ay 1. For the second step of
the proof, we will appeal to the Strong Law for Triangular Arrays [1, Fact 2] which will show

lim n? [ Z¢ké <Za h“+1 + a7y Ztg) Z b/ th + b Ty Zte,ﬁog)

u=0 v=0

t—1 (19)
L ZEZt {¢k€ (ZCL hu+1 + atTt Zt(uzb/ hv+1 + tht thﬁO(Z) }] a.:S. 0.
u=0 v=0



Let Z; be an independent copy of Z; and define for each k = {1,2,3,4},

t—1
diffy k0 == G (Za hett + T Zt[,Zb' hyt! + by th,m)

t—1
— Pt (Z a byt a Zy, Y U by 4 b Zt,,ﬂw) :

u=0 v=0

In order to use the Strong Law for Triangular Arrays [1, Fact 2] to get result we will prove the
following for each function in .

0 q: 2 K/2
By, [ndiffore| <L, (21)

S
M=

~
Il

1

for some 0 < k < 1 and ¢ some constant. Note that the exact requirement of [1, Fact 2] is met by
an application of Jensen’s Inequality. To prove , we consider each k separately. The following
result, which follows from @ for sufficiently large M, will be useful. Let Z € RM be a vector of
i.i.d. standard Gaussian random variables,

24K
= max
jE€sec(£)

k=1. Asin , first we upper bound the difference in as follows:

24K
e ( logMQJm) .

(22)

ZCL hu—H +aﬁtJ‘Zj Za hu+l +at7*'tJ‘Zj

max
j€sec(£)

—1 24K -1 24K
|diffa g o 2R < max Za h“Jrl + a.7; Ztl max Zb' herl + tht Zté,
jEsec(£) j'€sec(¥)
24K -1 24K
+ max Z ay, h“Jrl + aﬁ‘tLth max Z bl herl + tht Zy,
jE€sec(l) j'€sec(l)

From , for sufficiently large M, each maximum in the above is almost surely © (\/log M 2+'{).

Therefore, %25:1 Ez 2 ‘7”L‘Sdiff27kg‘2+'€ =0 (L‘S(log M)5(2+”)) . We have satisfied since M =
LY for some constant b > 0.
k=2,3. Note that ¢ ¢(z, v, Bo,) < lf)z};\f[ for some constant ¢ when k = 2,3. The considering the

difference in , we find the following upper bound:

L 2+K
! od; 2w 0(24+k CnPE a.s. 524k
D gz n ] < 207 (S0 ),

Therefore we have satisfied .



k=4. As in we first establish an upper bound for ¢4 (z,y, 2),

24K

t—1 t—1
Drs (Z a bt arZy,, Y bRy + btrfztz,ﬁw)

u=0 v=0
/ 24K
(UG URy ™+ bemi 22, ) (Bo — o b = e Z1) — fio
B (log M)2+x
24K v B 2+kK
< (2vnP)™"" maxjeec(e) ‘Zi Zobuhy T bt Z, a.s. ©(v/1og M0 (yvIog M)
= (log M )2+~ B (log M)2tr '

The last equality is true, for sufficiently large M, by . Therefore, % Zszl E; 2, ‘nédiff27k7g‘2+ﬁ <
2n5(2+n) cn Py

2+
Tog M " O(n2+R)). We have satisfied for Class 2 functions.

We have satisfied (21) for each function ¢ ¢(z,y, z) for k = {1,2,3,4} and therefore result
holds. Considering result . define new functions qu EW for k = {1,2,3,4} as

t—1 t—1
N (Z ay,hy Z bhy 502> =g, {m (Z a,hy T+ am Zyy, Y T 4 bt 2, m) } :

u=0 v=0

Using Jensen’s inequality, it can be shown that the induction hypothesis |1, H;(b)] holds for the
function qu EW whenever H;(b) holds for the function ¢y, ¢ inside the expectation. Therefore,

t—1 t—1
lim n’ [ ZEzt {m (Za W Zyy, > U+ by 7, ﬁm)}
u=0 v=0
t—1 t—1
——ZEEZt {qskg (Za Tulug + T Zryy Y VT Zu, + 0Ty, @) }] 0.

= u=0 v=0

To complete the proof we show that

t—1 t—1
EEZt{¢kZ Za TuZ +at7-t Zy, Zb TUZ + tht Zy, ﬁf)} E{¢k€ ZauTuzln Zb TUZvy ﬁ@)}
u=0 v=0 u=0 v=0

Recall @) | = a}_ | = a;—1 + a,(72/7? 1) and b,_; = by_1 + by(72/721). Then to prove the above
we will show that (ff/?t_1)Zt_1 + ftth 4 77, where %ﬁtIE[ZUTZUt] =72 for 0 <r <t—1. Note
that ((ftz/ﬁ,l)z,l + 7+ Z; ) is Gaussian with variance equal to (72/7;_1)? + (7i-)? = 77 using the

definition of 7"}. This follows since th,l and Z; are independent. Finally, for 0 <r <t -1
E {TT r ((Tt [Te1) Zo1 + 7 Zt)} = (72 /72 7i1BZ, 2] = 7.

The existence of the limit of E{¢k7g(ZZ:0 QuTu L Z’;:O byTo Lo, Be)} for k = 1 follows from the
law of large numbers; for k = 2,3, 4, the existence of the limit follows from Appendix A.4 in [1].

This completes the proof.
O



A Appendix

Lemma A.1 (k = 1 Function Bound). We consider the function ¢ ¢ : RM xRM xRM — R defined
as ¢10(z,y,2) = x*y/M. If max;enn|Ag; | and maxcpn|Ay;| are both almost surely O(n%y/Tog M)
for some & > 0, the following holds for some constant C' > 0:

a.s. C'+v/lo v/l1og M
1682, 9,2) — (@ + Agry + Ay, 2)] S EBM ] 4 ma [yy| + 05 (23)
nd JjE[M] Jj'€[M] n

Proof.

1 * *

|0n(2,y,2) = dn(a + Aayy + Ay, 2)| = 77 |27y = (24 Aa) (Y + 4y
1 * ]' *

< 57 [Tyl 57 1By + Ayl

< max]Ay ]max |zi| + max]Ar | <max]yl] + max |A,, ]> .
J€[M] ie[M] jeM €M veM]

The result follows since max;c(pg|Az;| and max;epn|Ay,| are both almost surely O(n%y/log M).
O

Lemma A.2 (k = 2,3 Function Bound). We consider the functions ¢y : RM x RM x RM 5 R
for k =2,3 defined as

n2(a,1,2) 1= [ (= — ) og M. 0<r<t, o
¢3,€($7yvz) = [772(2 - J") - Z]*[nz(z - y) - Z]/lOgM7 -1 S T S S S t)

Ifmax ey lzj| = vnPy and maxe(an|Ag, | and maxjcpg|Ay, | are both almost surely O(n=%y/Tog M)
for some 6 > 0 and each ¢ € [L], the following holds for some constant C > 0, for k = 2,3:

’qbk,f(xa Y, Z) - ¢k,€($ =+ Ax’y + Ayv Z>| S Cn_6 log M.

Furthermore for 0 < u <t,

M
S Iz — 2 - Ay) — (= — 2)] < Cn(log M)¥2, (25)

Proof. In the following assume ¢ € [L] is fixed, and therefore for i € [M] (and i € sec(?)) we let,

M
r ’UZ'\/TLPg ’U'\/TLPg
n; (v) = /nky exp{ -2 } Zexp{ J -2

j=1

-1

Define the following:

vl ¢ _ZP max A |} (26)
T jelM]

7—-2

max|A;| b —1, and F?, o :=1—exp{ —
JG[M]‘ |} GATS p{

In what follows we upper bound both functions £ = 2,3 using the above definition as follows for
some constantc C,c > 0:

a s. Cn Pg 1 1 ) )
- 10 M (F A 7-2’ Fcszzfg’ FCyAz;fy?’ FC,Ayfs?) ’ <27)

|¢k,€(x7ya Z) - d)k,f(x + Axvy + Ay7 )|



Then a Taylor expansion of e” can be used to show that each of F1 T Fc1 AL 725 Ff A 225 Ff A 2
1r=Ysls y=xy i Y=Ysls
can be upper bounded almost surely by ¢'n=%log M whenever maxje(a]|Az; | and maxep|Ay, |

are both almost surely ©(n~%y/log M). Therefore
a.s.
max(Fla, w2, Fin, z20 Fon, s Fon, 72) < C'n”log M, (28)

for constant C’ > 0, which along with the bound in provides the desired result. What remains
is to prove for k =2, 3.

Now to complete the proof we show that upper bound for both functions k£ = 2, 3.

k=2 First note,

M e\ YnP
WG —a)?  np Tikiexp{2(s—a) Y )

¢2 f(x7y7 Z) = - - .
’ log M log M vab 1\ 2
& & (Z]J‘/il exp {(Zj —xj) ;gpg })
From the above we can write
10gM Zi\il exp {2(2Z -z — Ay,) ;ZP" } exp {2Azi QQP‘}
¢2z(w y,2) = . ——
(Zj\il exp {(zj —zj — Ag;) V%P‘f} Xp {ij V%PZ })

(29)
and similarly
log M S exp {20z — mi = Ag ) Y2 bexp { =2 (maxjrepglAg ) Y27 |
nP 2,€(x7 Y, Z) > P o P 2 (30)
¢ exp{Q (max e[| Ay |) V% ‘5} (Z] | €Xp {( —zj — Ayg)) V% "})
Putting and together we see that
4\/nP ¢2g($ Y,z ) 4VTLP
— Ayl < < A 31
exp{ (s JHGH[%| ’} ¢2£($+Az7y+Ay7 z) P T2 JHGF[%\}(| & | (3D
and so we find the desired result ) for k=2:
’¢2,f($7 Y, Z) - ¢2,€($ + Aw7 Yy + Ay: Z)| S ¢2,€($ + Ara Yy + Aya Z) max (FiAmq——ngiij—g)
nP (32)

4 1 2
- log M max <F47Ax77_—72 ’ F47A3977_—72) ’

k=3 First note,
(log M) [¢37g($, Y, Z) - ¢3,€(~T + Ax; Y+ Ayv Z)]
=n'G-2)n(z-y)—n"(z-2-A)(z -y —Ay) (33)
—2 N (z—2) =0z -2 - Q)] = 2" [N°(z —y) =’ (z —y — Ay)].

We again suppress the explicit notation for the dependence on section ¢. Then to prove result
we prove the following two upper bounds.
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1. For 0 <r <t,
2" [n"(z —x) —n"(z —z — A,)]| < nPymax (F21,Az,f3’ F;szﬂg) . (34)

2. For0<r<s<t,

" (z =2)"° (2 —y) =" (z =2 = D)™ (z —y = Ay
2

1 1 2 (35)
< 2nbymax (Fy n, z2 o a2 Fo n, 720 Fo A 72 ) -

Both bounds are trivial for the r = —1 case. Using and in we get the desired result
. First consider (34)):

M
2" (z =2 = Az) =" (z = 2)]| < jnel%lzy'l ; i (z — 2 — Ag) =i (z — @)
" (36)
= VP [nf(z—x—Ay) =i (z — )]
i=1
Next consider .
" (z—2) ' (z—y) =" (z -2 = Az)"’(z —y — Ay)|
S z—a)'m(z—y) =’z -y =AY+ n"(z—2) —n"(z -2 = A)"n°(z —y — 4| (3)

M M
<SP iz —y) =0z —y — Ay)[+VnP Y _Inf(z —x) —nj(z — 2 — A,)].
=1 =1

Now considering and , to get the results given in and we demonstrate the following
for 0 < u <t,

M
S — @ — Ag) — gz — 0| < VnPrmax(FLy o, Fla. 2). (38)
=1

Note that the above leads to result using . We now prove ([38). Using a strategy similar
to that in in ,

oo {20 w8} < S HCEZD <o {28 e a1},
T2 jem] ni(z —x — Ag) TE el Y
Result follows from the above as in . O
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