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An Achievable Rate Region for the Broadcast
Channel With Feedback
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Abstract—A single-letter achievable rate region is proposed for
the two-receiver discrete memoryless broadcast channel with gen-
eralized feedback. The coding strategy involves block-Markov su-
perposition coding using Marton’s coding scheme for the broad-
cast channel without feedback as the starting point. If the mes-
sage rates in the Marton scheme are too high to be decoded at the
end of a block, each receiver is left with a list of messages compat-
ible with its output. Resolution information is sent in the following
block to enable each receiver to resolve its list. The key observa-
tion is that the resolution information of the first receiver is cor-
related with that of the second. This correlated information is ef-
ficiently transmitted via joint source-channel coding, using ideas
similar to the Han–Costa coding scheme. Using the result, we ob-
tain an achievable rate region for the stochastically degraded ad-
ditive white Gaussian noise broadcast channel with noisy feedback
from only one receiver. It is shown that this region is strictly larger
than the no-feedback capacity region.

Index Terms—Achievable rate region, broadcast channel (BC),
capacity region, feedback.

I. INTRODUCTION

T HE two-receiver discrete memoryless broadcast channel
(BC) is shown in Fig. 1(a). The channel has one trans-

mitter which generates a channel input , and two receivers
which receive and , respectively. The channel is charac-
terized by a conditional law . The transmitter wishes
to communicate information simultaneously to the receivers at
rates , where is the rate of the common mes-
sage, and are the rates of the private messages of the
two receivers. This channel has been studied extensively. The
largest known set of achievable rates for this channel without
feedback is due to Marton [1]. Marton’s rate region is equal to
the capacity region in all cases where it is known. (See [2], for
example, for a list of such channels.)
Fig. 1(b) shows a BC with generalized feedback. repre-

sents the feedback signal available at the transmitter at time
. This model includes noiseless feedback from both receivers

, partial feedback as well as noisy
feedback . El Gamal showed in [3] that feed-

Manuscript received May 11, 2011; revised October 11, 2012; accepted May
02, 2013. Date of publication June 13, 2013; date of current version September
11, 2013. This work was supported by the National Science Foundation under
Grants CCF-0915619 and CCF-1111061. This paper was presented in part at the
2010 IEEE International Symposium on Information Theory.
R. Venkataramanan is with the Department of Engineering, University of

Cambridge, Cambridge, CB2 1PZ, U.K. (e-mail: ramji.v@eng.cam.ac.uk).
S. S. Pradhan is with the Department of Electrical Engineering and Com-

puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
pradhanv@eecs.umich.edu).
Communicated by S. Diggavi, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2268532

back does not enlarge the capacity region of a physically de-
graded BC. Later, through a simple example, Dueck [4] demon-
strated that feedback can strictly improve the capacity region of
a general BC. For the stochastically degraded AWGN BC with
noiseless feedback, an achievable rate region larger than the
no-feedback capacity region was established in [5], and more
recently, in [6]. A finite-letter achievable rate region (in terms
of directed information) for the discrete memoryless BC with
feedback was obtained by Kramer [7]; using this characteriza-
tion, it was shown that rates strictly outside the no-feedback ca-
pacity region could be achieved for the binary symmetric BC
with noiseless feedback.
In this paper, we establish a single-letter achievable rate re-

gion for the memoryless BC with generalized feedback. We use
the proposed region to compute achievable rates for the stochas-
tically degraded AWGN BC with noisy feedback from one re-
ceiver, and show that rates strictly outside the no-feedback ca-
pacity region can be achieved.
Before describing our coding strategy, let us revisit the ex-

ample from [4]. Consider the BC in Fig. 2. The channel input
is a binary triple . is transmitted cleanly to
both receivers. In addition, receiver 1 receives and re-
ceiver 2 receives , where is an independent binary
Bernoulli noise variable. Here, the operation denotes the
modulo-two sum. Without feedback, the maximum sum rate for
this channel is 1 bit/channel use, achieved by using the clean
input alone. In other words, no information can be reliably
transmitted through inputs and .
Dueck described a simple scheme to achieve a greater sum

rate using feedback. In the first channel use, transmit 1 bit to
each receiver through . Receivers 1 and 2 then re-
ceive and , respectively, and cannot
recover . The transmitter learns through feedback and
can compute . For the next channel use,
the transmitter sets . Since is received noiselessly
by both receivers, receiver 1 can now recover as . Sim-
ilarly, receiver 2 reconstructs as . We can repeat this
idea over several transmissions: in each channel use, transmit a
fresh pair of bits (through ) as well as the noise realiza-
tion of the previous channel use (through ). This yields a sum
rate of 2 bits/channel use. This is, in fact, the sum-capacity of
the channel since it equals the cut-set bound .
The example suggests a natural way to exploit feedback in a

BC. If we transmit a block of information at rates outside the
no-feedback capacity region, the receivers cannot uniquely de-
code their messages at the end of the block. Each receiver now
has a list of codewords that are jointly typical with its channel
output. In the next block, we attempt to resolve these lists at
the two receivers. The key observation is that the resolution in-
formation needed by receiver 1 is in general correlated with the
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Fig. 1. Discrete memoryless BC with (a) no feedback and (b) generalized feed-
back.

Fig. 2. Channel input is a binary triple . Bernoulli is
an independent noise variable.

resolution information needed by receiver 2. The above example
is an extreme case of this: the resolution information of the two
receivers is identical, i.e., the correlation is perfect!
In general, the two receivers’ resolution information are not

perfectly correlated, but can still be transmitted over the BC
more efficiently than independent information. This is analo-
gous to transmitting correlated sources over a BC using joint
source-channel coding [8]–[12]. At the heart of the proposed
coding scheme is a way to represent the resolution information
of the two receivers as a pair of correlated sources, which is
then transmitted efficiently in the next block using joint source-
channel coding, along the lines of [8]. We repeat this idea over
several blocks of transmission, with each block containing in-
dependent fresh information superimposed over correlated res-
olution information for the previous block.
The following are the main contributions of this paper.
1) We obtain a single-letter achievable rate region for the dis-
crete memoryless BC with generalized feedback. The pro-
posed region contains three extra random variables in ad-
dition to those in Marton’s rate region.

2) Using a simpler form of the rate region with only one
extra random variable, we compute achievable rates for
the AWGN BC with noisy feedback. It is shown that rates
outside the no-feedback capacity region can be achieved
even with noisy feedback from only one receiver. This is
the first characterization of achievable rates for the AWGN
BC with noisy feedback at finite SNR, and is in contrast to

the finding in [13] that noisy feedback does not increase
the prelog of the sum-capacity as the SNR grows asymp-
totically large.

One feature of the proposed region is that it includes the case
where there a common message to be transmitted to both re-
ceivers, in addition to their private messages. The previously
known schemes for the AWGN BC with noiseless feedback [5],
[6] assume that there is no common message.
At the conference where our result was first presented [14],

another rate region for the BCwith feedback was proposed inde-
pendently by Shayevitz and Wigger [15]. Though a direct com-
parison of the two regions does not appear feasible, we show
that the rates for the examples presented in [15] and [16] can
also be obtained using the proposed region.
Notation: We use uppercase letters to denote random vari-

ables, lowercase for their realizations, and calligraphic notation
for their alphabets. Boldface notation is used for random vec-
tors. Unless otherwise stated, all vectors have length . Thus,

represents a random vector, and
a realization. The -strongly typical

set of block-length of a random variable with distribution
is denoted . is used to denote a generic positive
function of that goes to zero as . Logarithms are with
base 2, and entropy andmutual information are measured in bits.
For , . denotes modulo-two addition.
In the following, we give an intuitive description of a

two-phase coding scheme for communicating over a BC with
noiseless feedback. We will use the notation to indicate the
random variables used in the first phase. Thus, denotes
the channel output pair for the first phase, and the
output pair for the second phase. We start with Marton’s coding
strategy for the discrete memoryless BC without feedback. The
message rates of the two receivers are assumed to lie outside
Marton’s achievable rate region. Let , and denote the
auxiliary random variables used to encode the information.
carries the information meant to be decoded at both receivers.
and carry the rest of the information meant for the receivers
1 and 2, respectively. The - and -codebooks are constructed
by randomly sampling the - and -typical sets, respectively.
Let , , and denote the three random codewords chosen
by the transmitter. The channel input vector is obtained by
“fusing” the triple .
Since the rates lie outside Marton’s region, the receivers may

not be able to decode the information contained in , and
. Instead, they can only produce a list of highly likely code-

words given their respective channel output vectors. At the first
decoder, this list is formed by collecting all -codeword
pairs that are jointly typical with the channel output. A similar
list of -codeword pairs is formed at the second receiver.
Note that even with feedback, the total transmission rate of the
BC cannot exceed the capacity of the point-to-point channel
with input and outputs (since the channel is mem-
oryless). Hence, given both channel output vectors , the
posterior probability of the codewords will be concentrated on
the transmitted codeword triple.
At the end of the first phase, the feedback vector is avail-

able at the encoder. In the second phase, we treat as the
source of information to be transmitted to the first decoder, and



VENKATARAMANAN AND PRADHAN: AN ACHIEVABLE RATE REGION FOR THE BROADCAST CHANNEL WITH FEEDBACK 6177

as the source of information to be transmitted to the
second decoder. The objective in the second phase is to com-
municate these two correlated pairs over the BC, while treating
as source state information and and as side-information

available at the two receivers. This is accomplished using a joint
source-channel coding strategy. Transmission of correlated in-
formation over a BC has been addressed in [8] and [11].
In the Han–Costa framework [8], the correlated information

is modeled as a pair of memoryless sources characterized by a
fixed single-letter distribution. The pair of sources is first cov-
ered using codebooks constructed from auxiliary random vari-
ables; the covering codewords are then transmitted over the BC
using Marton coding. The current setup differs from [8] in two
ways. First, the correlated information given by and

does not exhibit a memoryless-source-like behavior.
This is because the vectors , , and come from code-
books. However, when the codewords are sufficiently long and
are chosen randomly, will be jointly typical and can
be covered using auxiliary codebooks similar to [8]. The second
difference from [8] is the presence of source state information
and side-information and available at receivers 1 and 2, re-
spectively. We handle this by extending both the covering and
channel coding steps of the Han–Costa scheme to incorporate
the side-information. Thus, at the end of the second phase, the
decoders are able to decode their respective messages.
We will superimpose the two phases using a block-Markov

strategy. The overall transmission scheme has several blocks,
with fresh information entering in each block being decoded
in the subsequent block. The fresh information gets encoded in
the first phase and is superimposed on the second phase which
corresponds to information that entered in the previous block.
It turns out that the performance of such a scheme cannot be

directly captured by single-letter information quantities. This is
because the state information, given by the channel outputs of
all the previous blocks, keeps accumulating, leading to a dif-
ferent joint distribution of the random variables in each block.
We address this issue by constraining the distributions used in
the second phase (Definition 3) so that in every block, all the
sequences follow a stationary joint distribution. This results in
a first-order stationary Markov process of the sequences across
blocks.
The rest of this paper is organized as follows. In Section II, we

define the problem formally and state the main result, an achiev-
able rate region for BC with generalized feedback. We outline
the proof of the coding theorem in Section III. In Section IV,
we use the proposed region to compute achievable rates for the
AWGN BC with noisy feedback. We also compare our region
with the one proposed by Shayevitz and Wigger. The formal
proof of the coding theorem is given in Section V. Section VI
concludes this paper.

II. PROBLEM STATEMENT AND MAIN RESULT

A two-user discrete memoryless BC with generalized feed-
back is a quintuple of input alphabet ,
two output alphabets , , feedback alphabet , and a set of
probability distributions on for every

. The channel satisfies the following conditions for all
:

(1)

for all and
. The schematic is shown in Fig. 1(b). We

note that the BC with noiseless feedback from both receivers is
a special case with , and .
Definition 1: An transmission system for a

given BC with generalized feedback consists of
• A sequence of mappings for the encoder: for

(2)

• A pair of decoder mappings:

(3)

Remark: Though we have defined the transmission system
above for feedback delay 1, all the results in this paper hold for
feedback with any finite delay .
We use to denote the common message, and

to denote the private messages of decoders 1 and 2, re-
spectively. The messages are uniformly dis-
tributed over the set

. The channel input at time is given by
. The average error probability

of the above transmission system is given by

(4)

where equals

Definition 2: A triple of nonnegative real numbers
is said to be achievable for a given BC with

feedback if , there exists an such that for
all , there exists an transmission
system satisfying the following constraints:

(5)

The closure of the set of all achievable rate pairs is the capacity
region of the channel.
We now define the structure for the joint distribution of all the

variables in our coding scheme. Due to the block-Markov nature
of the scheme, the random variables carrying the resolution in-
formation in each block depend on the variables corresponding
to the previous block. In order to obtain a single-letter rate re-
gion, we need the random variables in each block to follow the
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same joint distribution, say . Hence, after each block of trans-
mission, we generate the variables for the next block using a
Markov kernel that has invariant distribution . This will
guarantee a stationary joint distribution in each block.
Definition 3: Given a BC with feedback

, define as the set of all distri-
butions on of the form

where , , , , and are arbitrary sets. Consider two
sets of random variables and

each having the same distribution
. For brevity, we often refer to the collection as ,

to as , and to as . Hence

For a given , define as the set of conditional
distributions that satisfy the following consistency condition:

(6)

for all . Then, for any and , the
joint distribution of the two sets and

is

(7)

With the above definitions, we have the following theorem.
Theorem 1: Given a BC with generalized feedback

, for any distribution and
, the convex hull of the following region is achiev-

able:

(8)

(9)

(10)

(11)

(12)

(13)

where and

Proof: This theorem is proved in Section V.
Remarks:
1) The input mapping in the set of distri-
butions can be assumed to be deterministic, i.e.,

for some function . This is
because for a fixed , optimizing the rate re-
gion is equivalent to maximizing a convex functional
of . Hence, the optimum occurs at one of
the corner points, which corresponds to a deterministic

.
2) We can recover Marton’s achievable rate region for the BC
without feedback by setting , and with

.

III. CODING SCHEME

In this section, we give an informal outline of the proof of
Theorem 1. The formal proof is given in Section V. Let us first
consider the case when there is no common message ( ).
Let the message rate pair lie outside Marton’s achiev-
able region [1]. The coding scheme uses a block-Markov super-
position strategy, with the communication taking place over
blocks, each of length .
In each block, a fresh pair of messages is encoded using the

Marton coding strategy (for the BC without feedback). In block
, random variables and carry the fresh information for
receivers 1 and 2, respectively. At the end of this block, the re-
ceivers are not able to decode the information in com-
pletely, so we send “resolution” information in block
using random variables . The pair is meant
to be decoded by the first receiver, and the pair by the
second receiver. Thus, in each block, we obtain the channel
output by superimposing fresh information on the resolution
information for the previous block. At the end of the block,
the first receiver decodes , the second receiver decodes

, thereby resolving the uncertainty about their messages
of the previous block.
Codebooks: The , , and -codebooks are constructed

on the alphabets , , and , respectively. The exact procedure
for this construction, and the method for selecting codewords
from these codebooks will be described in the sequel. Since

is decoded first by receiver 1, conditioned on each code-
word pair corresponding to the - and -codebooks, we con-
struct a -codebook of size by generating codewords ac-
cording to . Similarly, for each codeword pair in the
and -codebooks, we construct a -codebook of size by
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generating codewords according to . Each -codebook
is divided into bins, and each -codebook into bins.
Encoding: In each block , the encoder chooses a tuple of five

codewords as follows. The resolution in-
formation for block is used to select from
the , , and -codebooks. determines the and
-codebooks to be used to encode the message pair of block .

Denoting the message pair by , the encoder chooses
a -codeword from bin of the -codebook and a -code-
word from bin of the -codebook that are jointly typical
according to . This pair of jointly typical codewords
is set to be .
By standard joint-typicality based covering arguments

(see, e.g., [17]), this step is successful if the product of
the sizes of -bin and -bin is exponentially larger than

. Therefore, we have

(14)
These five codewords are combined using the transformation

(applied componentwise) to generate the channel
input .
Decoding: After receiving the channel output of block ,

receiver 1 first decodes , and receiver 2 decodes
. However, the rates of the - and -code-

books are too large for receivers 1 and 2 to uniquely decode
and , respectively. Hence, receiver 1 is left with a list of
-codewords that are jointly typical with its channel output

and the just-decoded resolution information ; receiver
2 has a similar list of -codewords that are jointly typical
with its channel output , and the just-decoded resolution
information . The sizes of the lists are nearly equal
to and , respectively. The
transmitter receives feedback signal in block and resolves
these lists in the next block as follows.
In block , the random variables of block are repre-

sented using the notation . Thus, we have

The random variables in block are
jointly distributed via chosen
from as given in the statement of the theorem.
For block , can be consid-

ered to be a realization of a pair of correlated “sources” ( and
), jointly distributed according to along with the

transmitter side information given by , and
the common side-information . The goal in block
is to transmit this pair of correlated sources over the BC, with
1) Receiver 1 needing to decode , treating

as receiver side-information,
2) Receiver 2 needing to decode , treating

as receiver side-information.
We use the ideas of Han and Costa [8] to transmit this pair of

correlated sources over the BC (with appropriate extensions to
take into account the different side-information available at the

transmitter and the receivers). This is shown in Fig. 3. The triplet
of correlated random variables is used to cover the
sources. This triplet carries the resolution information intended
to disambiguate the lists of the two receivers. The random vari-
ables of block , given by , are related to the
random variables in block via , chosen from
given in the statement of the theorem. We now describe the

construction of the -, -, and - codebooks.
For brevity, we denote the collection of random variables

as , and as .
Covering the Sources: For each , a -codebook

of rate is constructed randomly from . For
every realization of , , and , an -code-
book of rate is constructed with codewords
picked randomly according to . For every realization
of , , and , a -codebook
of rate is constructed with codewords picked randomly
according to .1

At the beginning of block , for a given realiza-
tion , of correlated “sources,” and
side information, the encoder chooses a triplet of codewords

from the appropriate -, - and -code-
books such that the two tuples are jointly typical according to

. The channel input is generated
by fusing this with the pair of codewords

, which carry fresh information in block .
Now consider the general case when . We can use

the random variable to encode common information to be
decoded by both receivers. Hence, serves two purposes: it is
used to 1) cover the correlated sources and transmitter side-in-
formation and is thus part of the resolution information, and 2)
to carry fresh information that is decoded by both receivers. We
note that in every block, two communication tasks are being
accomplished simultaneously. The first is joint source-channel
coding of correlated sources over the BC, accomplished via

; the second is Marton coding of the fresh informa-
tion, accomplished via .2 can be made to assume
the dual role of the common random variable associated with
both these tasks.
Analysis: For this encoding to be successful, we need the fol-

lowing covering conditions. These are the same conditions that
appear in the Han–Costa scheme (see [18, Lemma 14.1]), with

and assuming the roles of the two sources being
covered3

(15)

(16)

(17)

(18)

1We can also construct the -codebook with codewords picked according
to , and the -codebook with codewords picked according to

. Interestingly, this yields the same final rate region, though the
covering and packing conditions are different.
2Recall that in Marton’s achievable region for the BC without feedback, there

is a random variable meant to be decoded by both receivers.
3Though is included in the covering, it is not required to be

explicitly decoded at either receiver.
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Fig. 3. Transmitting correlated sources with side-information at the receivers
through , and fresh information through . plays a dual role:
it is used to cover the correlated sources and to carry fresh information.

At the end of block , receiver 1 determines
by finding the pair using joint typical

decoding in the composite -, -, and -codebooks. A similar
procedure is followed at the second receiver. For decoding to be
successful, we need the following packing conditions:

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Performing Fourier–Motzkin elimination on (14), (15)–(18),
and (19)–(26), we obtain the statement of the theorem.
To get a single-letter characterization of achievable rates, we

need to ensure that the random variables in each block follow a
stationary joint distribution. We now ensure that the sequences
in each block are jointly distributed according to

(27)

for some chosen , and . Suppose
that the sequences in a given block are jointly distributed ac-
cording to(27). In the next block, these sequences become the
source pair , transmitter side-information ,
and the side information at the two receivers—
and , respectively. To cover the source pair with

, we pick a conditional distribution
such that the covering sequences are distributed according to

. This holds when the consistency condition given by
(6) is satisfied. We thereby ensure that the sequences in each
block are jointly distributed according to(27). Our technique
of exploiting the correlation induced by feedback is similar in
spirit to the coding scheme of Han for two-way channels [19].

We note that the transmitter side information
is exploited at the encoder in the covering operation implic-
itly, without using codebooks conditioned on . This is because
this side information is only partially available at the receivers,
with receiver 1 having only , and receiver 2 having only

. Hence, the coding approach does not depend on any
assumptions on the nature of the generalized feedback signal
. This is in contrast to communication over a multiple-access
channel with feedback, where there is a significant difference
between noiseless feedback and noisy feedback [20].

IV. SPECIAL CASES AND EXAMPLES

We now obtain a simpler version of the region of Theorem 1
and use it to compute achievable rates for a few examples.

A. Simpler Rate Region

Corollary 1: Given a BC with generalized feedback
, define any joint distribution of the

form

(28)

for some discrete random variables . Let
and

be two sets of variables each distributed according to and
jointly distributed as

(29)

where is a distribution such that

(30)

for all . Then, the following region is achievable:

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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where

(38)

(39)

Proof: In Theorem 1, set , and ,
with For
this choice, we have if (30) is satisfied.

B. AWGN BC With Noisy Feedback

We use Corollary 1 to compute achievable rates for the scalar
AWGN BC with noisy feedback from one receiver. The ob-
tained sum rate is compared with: 1) the maximum sum rate in
the absence of feedback, 2) the achievable region of Bhaskaran
[6] for the case of noiseless feedback from one receiver, and 3)
the Ozarow–Leung achievable region [5] for noiseless feedback
from both receivers.We note that the coding schemes in both [5]
and [6] are linear schemes based on Schalkwijk–Kailath coding
for the AWGN channel [21], and cannot be used when there is
noise in the feedback link [22]. Our rate region also includes the
possibility of a common message to both receivers. The coding
schemes of [5] and [6] are constructed only for private mes-
sages.
The channel, with , is described by

(40)

where are Gaussian noise variables (independent of the
channel input ) with zero mean and covariance matrix

where . The input sequence for each block satisfies
an average power constraint . In the absence of
feedback, the capacity region of the AWGN BC is known [23],
[24] and can be obtained from Marton’s inner bound using the
following choice of random variables:

where , and are independent random
variables. The Marton sum rate is then given by

(41)
This is essentially the “writing on dirty paper” coding strategy
[25], [26]: for the channel from to , can be considered as
channel state information known at the encoder. We note that
an alternate way of achieving the no-feedback capacity region
of the AWGN BC is through superposition coding [2].4

Using Corollary 1, we now compute an achievable region for
the channel (40) with noisy feedback from transmitter 1 alone.
The feedback signal is given by

(42)

4Theorem 1 was established for a discrete memoryless BC with feedback.
These theorems can be extended to the AWGN BC using a similar proof, rec-
ognizing that in the Gaussian case superposition is equivalent to addition.

where is additive white Gaussian noise on the feedback link
distributed as . is independent of and
. To motivate the choice of joint distribution, let us first con-

sider the case of noiseless feedback, i.e., .
Noiseless Feedback: The joint distribution

is chosen as

(43)

(44)

where are independent Gaussians with zero mean
and unit variance and , are parameters
to be optimized later.
Next, we define a conditional distribution that

satisfies (30). Let

(45)

Then, define by the relation

(46)

where is a random variable independent of
.

In words, is the normalized error in the estimate of at re-
ceiver 1. This estimation error is quantized at distortion level
and suitably scaled to obtain . Thus, in each block, repre-
sents a quantized version of the estimation error at receiver 1 in
the previous block. If we similarly denote by the error in the
estimate of at receiver 2 (replacing in (45) with ),
then is correlated with . This can be seen by expressing
the estimation errors as

(47)

(48)

We see that correlation coefficient between the estimation er-
rors in (47) and (48) depends on . As long as the correla-
tion is nonzero, simultaneously plays the role of conveying
information about to receiver 1, and about to receiver 2.
With this choice of joint distribution, the information quanti-

ties in Corollary 1 can be computed.
Noisy Feedback:When the feedback is noisy, the transmitter

does not know , and so cannot compute in
(45) which was used to generate . Instead, the transmitter can
compute an estimate of the error at receiver 1. We now define
as

(49)
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Fig. 4. Achievable sum rates for the AWGN BC with noisy feedback from
receiver 1. Noise correlation . The three solid lines show the sum rates
computed using Corollary 1 for feedback noise variance , and
. The dashed line at the bottom is the no-feedback sum rate, the dotted line

in the middle is the sum rate of the Bhaskaran scheme, and the symbols at the
top are the sum rate of the Ozarow–Leung scheme.

where

(50)

As before, is defined by (46) with given by (49), and the
input is defined by (44). With this choice of joint distribution,
the information quantities required to evaluate Corollary 1 are
computed and listed in Appendix A.
For different values of the signal-to-noise ratio , feed-

back noise variance , and correlation coefficient , we can
compute the maximum sum rate by numerically optimizing over
the parameters . For the case where the noises at
the two receivers are independent , the maximum sum
rate is plotted in Fig. 4 for and 0 ( is noise-
less feedback). The figure also shows the sum rate in the absence
of feedback, the sum rate of the Bhaskaran scheme [6] for noise-
less feedback from one receiver, and the maximum sum rate of
the Ozarow–Leung scheme with noiseless feedback from both
receivers.
We see that the obtained sum rate is higher than the no-feed-

back sum rate even with feedback noise variance , and
increases as decreases. We also observe that for
(noiseless feedback), the sum rate of the proposed rate-region is
higher than the Bhaskaran sum rate for high SNR. Concretely,
for , and 1000, our region yields sum rates
of , and 5.378, respectively; the Bhaskaran sum
rates for these SNR values are , and 5.105. The
Ozarow–Leung scheme yields higher sum rates than the pro-
posed region. It also has the advantages of being a determin-
istic scheme with probability of error decaying double exponen-
tially (with block length), but we emphasize that it uses noiseless

Fig. 5. Variation of the sum rate versus correlation coefficient of .
and there is noiseless feedback from receiver 1. The dashed line

shows the no-feedback sum rate.

feedback from both receivers. Another difference is that both
the Ozarow–Leung and Bhaskaran schemes are specific to the
AWGNBC and do not extend to other discrete memoryless BCs,
unlike the scheme in this paper.
Fig. 5 shows the effect of (the correlation coefficient of

) on the sum rate with held fixed. The sum rate
without feedback does not change with as long as the indi-
vidual noise variances remain unchanged [2]. With noiseless
feedback from receiver 1, the sum rate obtained above decreases
monotonically with the noise correlation and is equal to the
no-feedback rate at . This is consistent with the fact that
feedback does not increase the capacity of the AWGN BC with

since it is physically degraded (in fact, we effectively
have a point-to-point channel when ).

C. Comparison With the Shayevitz–Wigger (S-W) Rate Region

An achievable rate region for the BC with feedback was inde-
pendently proposed by Shayevitz andWigger [15]. Their coding
scheme can be summarized as follows. In the first block, the
encoder transmits at rates outside than the Marton region. The
receivers cannot decode, and as discussed earlier, the informa-
tion needed to resolve the ambiguity at the two receivers is cor-
related. This resolution information is transmitted in the next
block through separate source and channel coding. The corre-
lated resolution information is first quantized into three parts: a
common part, and a private part for each receiver. This quantiza-
tion is performed using a generalization of Gray–Wyner coding
[27]. The quantization indices representing the correlated infor-
mation are then transmitted together with fresh information for
the second block using Marton coding.
While the S-W scheme is also a block-Markov superposition

scheme with the Marton coding as the starting point, the S-W
scheme differs from the one proposed in this paper in two as-
pects:

1) Separate source and channel coding
2) Backward decoding
While separate source and channel coding can be considered

a special case of joint source-channel coding, the backward de-
coding technique in [15] uses the resolution information in a dif-
ferent way than our scheme. In particular, the covering random
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variables in each block are decoded first and serve as extra “out-
puts” at the receivers that augment the channel outputs. This dif-
ference in the decoding strategy makes a general comparison of
the two rate regions difficult.
In Appendix B, we show that the class of valid joint dis-

tributions for the S-W region can be obtained using our
coding scheme via a specific choice of the covering variables

. The rate region of Theorem 1 evaluated with this
class of distributions is given in (85)–(90). We observe that the
bounds on , , , and
are larger than the corresponding bounds in the S-W region.
However, our region has an additional constraint which is
not subsumed by the other constraints. Therefore, a general
statement about the inclusion of one region in the other does not
seem possible. In the following, we focus on the two examples
discussed in [15] and show that the feedback rates of the S-W
region can also be obtained using Corollary 1.
The Generalized Dueck BC: This is a generalization of the

Dueck example discussed in Section I. The input is a bi-
nary triple . The output of the two receivers 1 are

and ,
where are binary random variables with distribu-
tion such that

We evaluate the rate region of Corollary 1 for noiseless feedback
from receiver 1 with the following joint distribution:

(51)

With this choice of , is a Bernoulli random variable with
the same distribution as . With the joint distribution above,
the mutual information quantities in Corollary 1 can be com-
puted to be

The rate region is given by

(52)

The roles of in (52) can be exchanged by choosing
. Thus, the following feedback capacity region

obtained in [15] is achievable:

(53)

The Noisy Blackwell BC: This generalization of the Blackwell
channel has ternary input alphabet , binary output
alphabets , and channel law given by

where is a noise variable independent of
. With noiseless feedback from both receivers, the rate region

obtained in [15] can also be obtained using Corollary 1 with the
following joint distribution:

With denoting the binary entropy function and
, the mutual information quantities in Corol-

lary 1 are

The rate region is then given by

(54)



6184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

For , this matches the rate-region obtained in [15] for
this channel.

V. PROOF OF THEOREM 1

A. Preliminaries

We shall use the notion of typicality as defined in [18] and
[28]. Consider finite sets and any distribution on
them.
Definition 4: For any , the set of jointly -typical se-

quences with respect to is defined as

where is the number of occurrences of the
symbol pair in the sequence pair . For any
, define the set of conditionally -typical sequences as

The following are some basic properties of typical sequences
that will be used in the proof. will be used to denote a
generic positive function of that tends to zero as .
Property 0: For all , and for all sufficiently large , we

have .

Property 1: Let for some . If is gen-
erated according to the product distribution ,
then for all

Property 2: For every , the size of the conditionally
-typical set is upper bounded as

If , then for any and sufficiently large

Property 3: If , then

The definitions and properties above can be generalized in the
natural way to tuples of multiple random variables as well.

B. Random Codebook Generation

We recall that denotes the collection , and de-
notes the set .
Fix a distribution from and a conditional

distribution satisfying (6), as required by the
statement of the theorem. Fix a positive integer . There are

blocks in encoding and decoding. Fix positive real numbers
, , , , , and such that and

, where these numbers denote the rates of code-
books to be constructed as described below. Fix block length
and . Let be numbers such that

.
For , independently perform the following

random experiments.

1) For each sequence , generate sequences
, , independently where each

sequence is generated from the product distribution
.

2) For each sequence pair , generate
sequences , ,

independently where each sequence is generated from
the product distribution . Call this
the first -bin. Independently repeat this experiment

times to generate -bins, and a total of
sequences. The th sequence in the th bin is

.
3) For each sequence pair , similarly gen-
erate -bins each containing sequences
with each sequence being generated from the product dis-
tribution . The th sequence in the th
bin is .

4) For each generate in-
dependently sequences , for

, where each sequence is generated from
.

5) For each generate in-
dependently sequences , for

, where each sequence is generated from
.

6) For each
generate one sequence using

.
7) Generate independently sequences

from
the product distribution .

These sequences are known to all terminals before transmis-
sion begins.

C. Encoding Operation

Let denote the common message, and ,
the private messages for block . These are independent random
variables distributed uniformly over ,

, and , respectively. We set
.

For each block , the encoder chooses a quintuple of se-
quences from the five codebooks
generated above, according to the encoding rule described
below. The channel input and channel output sequences in
block are denoted , , and , respectively.
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Blocks : The encoder performs the fol-
lowing sequence of operations.
• Step 1: The encoder determines a triplet of indices

, , and
such that

1) ,5 and
2) The tuple is
jointly -typical with the triplet of sequences

with respect to .6

If no such index triplet is found, it declares error and sets
.

The encoder then sets

• Step 2: The encoder chooses a pair of indices
such that the triplet of sequences

is -typical with respect to , and
belongs to the -bin with index

, and belongs to the -bin with
index . If no such index pair is found, it declares
error and sets .
The encoder then sets ,

, and . It
transmits as the channel input sequence for block .

• Step 3: The BC produces .
• Step 4: After receiving via the feedback link, the
encoder sets .

D. Decoding Operation

Block 1: The objective at the end of this block is to decode
the common message at both receivers.
1) The first decoder receives , and the second decoder
receives .

2) The first decoder determines the unique
index pair such that
the tuples and

are
jointly -typical with respect to , where

. Note that is the estimate
of at the first decoder.

5This condition corresponds to the role of in carrying the message
common to both receivers.
6If there is more than one triplet satisfying the conditions, the encoder chooses

one of them at random.

If not successful in this operation, the first decoder declares
an error and sets , and

.

3) The first decoder outputs , and
sets

is the first decoder’s estimate of .
4) The second decoder determines the unique
index pair such that
the tuples and

are
jointly -typical with respect to , where

. Note that is the estimate
of , at the second decoder.
If not successful in this operation, the second decoder de-
clares an error and sets , and

.

5) The second decoder outputs ,
and sets

is the second decoder’s estimate of .
Block : The objective at the end of block

is for receiver 1 to decode and for receiver 2
to decode .
1) The first decoder receives and the second decoder re-
ceives .

2) The first decoder determines the unique index triplet
such that the tuples

are jointly -typical with respect to , where

If not successful in this operation, the first decoder de-
clares an error and sets

, and
. Note that and are

the estimates of and , respectively, at the first
decoder.

3) The first decoder then outputs ,
and as the index of -bin that contains the se-
quence . The decoder sets

is the first decoder’s estimate of .
4) The second decoder determines the unique index triplet

such that the tuples
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are jointly -typical with respect to , where

If not successful in this operation, the second decoder
declares an error and sets

, and ,
. Note that and are

the estimates of and , respectively, at the
second decoder.

5) The second decoder then outputs
, and as the index of -bin

that contains the sequence .
The decoder sets

is the second decoder’s estimate of .

E. Error Analysis

Let denote the event that is not
-typical with respect to . By Property 0, we have

for all sufficiently large .
Block 1:
The error event in Block 1 can be expressed as

, where
1) is the event that the encoder declares error in step 1
of encoding (described in Section V-C);

2) is the event that the encoder declares error in step 2
of encoding;

3) is the event that the tuples
and are not jointly -typical with
respect to ;

4) is the event that ,
and is the event that

.
Lemma 1 (Covering Lemma):
for all sufficiently large if , , and satisfy

(55)

(56)

(57)

(58)

Proof: The proof of this covering lemma is the same as
that of [18, Lemma 14.1], with and assuming
the roles of the two sources being covered.

Lemma 2: for all sufficiently large if
, and satisfy

(59)

Proof: This is very similar to a standard covering lemma
used for bounding the probability of encoding error in Marton’s
coding scheme, a proof of which can be found in [2], [17], or
[18].
From Property 1 of typical sequences, it follows that

for all sufficiently large .
Lemma 3:
, if

(60)

(61)

(62)

(63)

Proof: The proof is a special case of that of Lemma 4 given
below.
Hence, if the conditions given in

Lemmas 1–3 are satisfied. This implies that ,
, and similarly, with high

probability.
Block , : The error event in block can be

expressed as , where
1) is the event that the encoder declares error in step 1
of encoding;

2) is the event that the encoder declares error in step 2
of encoding;

3) is the event that the tuples
and are not jointly

-typical with respect to ;
4) is the event that

and is the event that

Using arguments similar to those used for Block 1, one can
show that if , , , and satisfy the conditions
given in (59) and (55)–(58) with replaced with , then
for all sufficiently large ,
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Lemma 4 (Packing Lemma):
, , if

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

Proof: See Appendix C.
Hence, . Under the event

, we have , , and
.

Overall Probability of Decoding Error: The analysis above
shows that the probability of decoding error over blocks sat-
isfies

if the conditions given in (59), (55)–(58), and (64)–(71) are
satisfied with and are replaced with , where

. This implies that the rate region given by
(14), (15)–(18), and (19)–(26) is achievable. By applying
Fourier–Motzkin elimination to these equations, we obtain
that the rate region given in the statement of the theorem is
achievable. The details of this elimination are omitted since
they are elementary, but somewhat tedious.

VI. CONCLUSION

We have derived a single-letter rate region for the two-user
BC with feedback. Using the Marton coding scheme as the
starting point, our scheme has a block-Markov structure and
uses three additional random variables to cover the
correlated information generated at the end of each block.
The proposed region was used to compute achievable rates

for the AWGN channel with noisy feedback. In particular, it
was shown that sum rates higher than the no-feedback sum ca-
pacity could be achieved even with noisy feedback to only one
receiver. In all the examples including the AWGN channel, the
improvement over the no-feedback region was obtained using
a simplified version of the rate region with the resolution in-
formation carried only by the common random variable . An
open question is whether the AWGN sum rate with noisy feed-
back can be improved by sending resolution information via
and as well. Since the resolution information used for the two
receivers are correlated Gaussians, the results of [29] and [30]
suggest that this may be possible.

The key to obtaining a single-letter characterization was to
impose a constraint on the Markov kernel connecting the dis-
tribution of the random variables across successive blocks. A
similar idea was used in [20] for multiple-access channels with
feedback. This approach to harnessing correlated information
is quite general, and it is likely that it can be used to obtain im-
proved rate regions for other multiuser channels with feedback
such as interference and relay channels.

APPENDIX A
MUTUAL INFORMATION TERMS FOR THE AWGN EXAMPLE

With the joint distribution described in Section IV-B, we first
compute the following quantities:

(72)

(73)

(74)

(75)

(76)

We next compute the conditional variances in terms of which
the mutual information quantities are expressed

(77)

(78)

(79)

(80)

(81)

(82)

where

(83)
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Finally, the mutual information terms are calculated to be

APPENDIX B
COMPARISON WITH S-W REGION

In Theorem 1, set and
consider joint distributions over two blocks of the form

(84)

If we set
,the joint distribution is identical to that of the S-W

region. With this distribution, Theorem 1 yields the following.

(The parts in bold indicate the corresponding constraints of the
S-W region.)

(85)

(86)

(87)

(88)

(89)

(90)

where

APPENDIX C
PROOF OF LEMMA 4

We show through induction that if for
, then if the conditions in the statement

of the lemma are satisfied.
For conciseness, let denote the event

. Note that is the conditioning event in the
statement of Lemma 4; hence, ,

and . Recall that given
and the indices , the

following sequences are determined:

(91)

Define the following indicator random variable:
if the tuples
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are jointly -typical with respect to and 0 other-
wise. We have

(92)

where

(93)

(94)

(95)

(96)

A. Upper Bound for

Using the union bound, we have

(97)

For brevity, we denote the tuple by
and the tuple by
. Equation (97) can then be written as

(98)

where the second equality is due to the symmetry of the
codebook construction. We note that the index is a func-
tion of the entire -codebook

and so conditioned on , the events

are dependent. This dependency can be handled using the tech-
nique developed in [31].

Let be the set ,
i.e., is the -codebook without the first codeword. Focusing
on the inner term of the summation in (98), we have

(99)

In the chain above, is true because given , we
have the Markov chain
follows from Property 3 of typical sequences, while and
are obtained from the following claim, proved along the lines of
[31, Lemmas 1 and 2].
Claim 1:

Proof: We have

(100)

where the last equality holds because each codeword of the
codebook is independently gen-
erated, conditioned only on the symbols of . We now provide
a lower bound for the denominator of (100)

(101)
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for sufficiently large . Substituting into (100) completes the
proof of the first part of the claim.
For the second part, we write

(102)

for large enough . The equality above is due to the symmetry
of the codebook construction. The claim is proved.
Substituting the bound from (99) into (98), we obtain

(103)

where follows from the upper bound on the size of the con-
ditionally typical set (Property 2).

B. Upper Bound for

Using the union bound, we have

(104)

To keep the notation manageable, in the next few equations,
we will use the shorthand for . We also redefine
as the tuple and as the tuple

. Equation (104) can then be
written as

(105)

where the second equality is due to the symmetry of the code-
book construction. We note that the index is a function
of the entire -codebook
and so conditioned on , the events and

are dependent. Define as
, i.e., the -codebook without the first codeword.

We then have

(106)

Given , is true because we have the Markov chain
. follows from

Property 3 of typical sequences, while and follow from
arguments very similar to Claim 1. Substituting the bound from
(106) into (105), we obtain

(107)

Using the upper bound for the size of the conditionally typical
set, we have

(108)

In a similar fashion, we can obtain the following bounds for
and :

(109)

(110)

Lemmas 1 and 2 together with the induction hypothesis that
for imply that ,
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which is close to 1 for . Thus, the bounds (103) and
(108)–(110) can be made arbitrarily small for sufficiently large
if the conditions of the lemma are satisfied.
Substituting back into (92), we obtain for

all sufficiently large . Similarly, one can show that
if the conditions in the lemma are satisfied.
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