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Achievable Rates for Multiple Descriptions
With Feed-Forward

Ramji Venkataramanan and S. Sandeep Pradhan, Member, IEEE

Abstract—The two-channel multiple descriptions problem
for an independent and identically distributed (i.i.d.) source,
with feed-forward to one or both side-decoders is considered. A
single-letter achievable rate-region is derived; it enlarges the best
known rate-region for multiple descriptions without feed-forward.
The proof of the result uses a block-Markov superposition source
coding strategy. In point-to-point source coding, feed-forward
does not decrease the rate-distortion function of an i.i.d. source.
In contrast, an example is provided to show that the derived
region can be strictly larger than the optimal multiple description
rate-distortion region without feed-forward.

Index Terms—Feed-forward, multiple descriptions, rate-distor-
tion region.

I. INTRODUCTION

T HE multiple descriptions problem, first posed by Gersho,
Ozarow, Witsenhausen, and others, can be understood

through the following example. Consider a communication
network in which we wish to compress a streaming source of
data into packets at one node and transmit them to another node.
Assume there is a chance that a packet might never reach its
destination. So we compress each block of data simultaneously
into two different packets and send them through different
routes. We get a good reconstruction on receiving either packet,
but would like a better reconstruction if both packets are re-
ceived. How should we compress the source into two different
descriptions?

The multiple descriptions setup is shown in Fig. 1. In the
standard problem, switches and are both open. is
a source with known distribution. The encoder encodes each
block of source samples in two different ways: decoder 1
receives bits/sample and produces reconstruction .
Similarly, decoder 2 receives bits/sample and produces .
Decoder 0 receives the full bits/sample and produces
reconstruction . Assume suitable distortion measures have
been defined for all decoders; let denote the av-
erage distortions with which decoders 1, 2, and 0 are able to
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Fig. 1. The multiple descriptions problem.

reconstruct the source. The problem is to determine the set of
all quintuples that are achievable in the
usual Shannon sense. This problem has been studied in several
notable papers, e.g., [1]–[14]. In this paper, we study multiple
descriptions source coding with feed-forward.

To explain the notion of feed-forward in simple terms, let
us first consider the point-to-point case. In the standard lossy
source coding problem, there is a source that has to be recon-
structed with some distortion . The encoder takes a block of,
say, source samples and maps it to an index in a codebook.
The decoder uses this index to reconstruct the source sam-
ples. In source coding with feed-forward, the encoder works in
a similar fashion and sends an index to the decoder. The decoder
generates the reconstructions sequentially: in order to recon-
struct each source sample, the decoder has access to the index
and some past source samples. Let denote the source
and reconstruction samples at time , respectively. If the source
samples are available with a delay after the index is sent, the
decoder has knowledge of the index plus the source samples
until time to produce . We call this setup feed-forward
with delay .

Table I shows the time-line of events for a feed-forward
system with block length five and a delay of one time unit. At
time instant 5, the source has produced samples
which the encoder compresses into an index , available
instantaneously at the decoder. At time 6, the decoder recon-
structs using , at time 7 it reconstructs using
and , and so on. In general given a block length and a
feed-forward delay , we would like to characterize the rate
versus distortion tradeoff. For a fixed , define the fundamental
limit of delay- feed-forward by taking : the minimum
achievable rate for a given distortion when the decoder has
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TABLE I
FEED-FORWARD WITH BLOCK LENGTH � � �, DELAY � � �

perfect knowledge of all but the last source samples. In other
words, the rate-distortion function with delay- feed-forward is
the optimal rate-distortion tradeoff with block length , where

can be arbitrarily large.
The notion of feed-forward is applicable to multiterminal

problems as well. Fig. 1 shows a multiple descriptions system
with feed-forward. Assume switch is closed and the source
samples are sequentially available with a delay after the
indices are sent. To generate , decoder 1 has knowledge
of the index in a codebook (of rate ) as well as the source
samples until time . In this paper, we study the achievable
quintuples when one or both of and

are closed.
Source coding with feed-forward is relevant in many dif-

ferent settings. The problem was motivated and studied from
a communications perspective in [15]–[18] as a variant of
source coding with side information. For example, consider a
field to be compressed and communicated from one node to
another in a network. This field (e.g., an acoustic field) could
propagate through the medium slowly and become available at
the destination node as side-information with some delay.

Source coding with feed-forward is also related closely to
prediction; in fact, it was first considered in the context of com-
petitive prediction [19]. Examples illustrating the connection
between feed-forward and prediction can be found in [19], [20].
The following problem is another example that motivates our
study of multiple descriptions with feed-forward. There are four
agents: Alice, Bob, Carol, and Dave. Alice has an equiprobable
binary source; Bob, Carol, and Dave are interested in recon-
structing the source sequence. Bob and Carol each want to re-
construct with the fraction of their errors being at most , while
Dave needs error-free reconstruction. Alice supplies informa-
tion at rates and to Bob and Carol, respectively; Dave gets
the information available to both Bob and Carol. Further assume
that after reconstruction of each source sample, Alice reveals to
Carol (but not to Bob and Dave) the actual value of the sample.
The minimum rates of information that Alice would have to
supply to Bob and Carol under this scenario is the multiple de-
scription rate-distortion region with feed-forward to Carol only.
This example is studied in Section III.

In [15], a simple multiple-description coding scheme (based
on scalar quantization) was presented for an independent and
identically distributed (i.i.d.). Gaussian source with feed-for-
ward to all decoders with delay . The coding scheme
was shown to achieve the optimal rate-distortion region for
the i.i.d. Gaussian source with feed-forward. In this paper, we
present an achievable rate region for a discrete memoryless

source with feed-forward to one or both side-decoders. This
rate region can be achieved with any finite feed-forward delay

. In point-to-point source coding, feed-forward does not
decrease the rate-distortion function of a discrete memoryless
source with an additive, memoryless distortion measure [17],
[19]. In contrast, for multiple descriptions, we show that the
rate-distortion region of a discrete memoryless source can be
strictly larger with feed-forward.

In Section II, we define the problem formally and state the
main result. The prediction example described earlier is dis-
cussed in Section III. Section IV contains the proof of the main
result, and Section V concludes the paper.

Notation: Upper-case letters will be used for random vari-
ables and lower-case letters for their realizations. Superscript
notation such as will be used to denote the random vector

. Entropy is measured in bits, and denotes
the binary entropy function.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider a discrete memoryless source with finite al-
phabet . We assume that the source samples
are i.i.d. according to a probability mass function . Let

denote the finite reconstruction spaces of decoder
0, 1, and 2, respectively. Each reconstruction has an associated
single-letter distortion measure

The per-letter distortion measures are assumed to have a
finite upper-bound . The distortion on -length sequences
is the average of the per-letter distortions: for

(1)

A. Feed-Forward to Only One Decoder

Without loss of generality assume is open and is closed
in Fig. 1.

Definition 1: A multiple description code
of block length and rates , with delay feed-forward
to decoder 2, consists of:

1) Encoder mappings
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2) Mappings for decoders 0 and 1:

3) A sequence of mappings for decoder 2:1

The encoder maps each -length source sequence to a pair of
indices in . The decoders re-
ceive their respective indices. Once the indices are received, re-
construction takes place sequentially, one sample at each time
instant. In addition to its index, decoder 2 has access to the
source samples until time to reconstruct the th sample.
Since decoders 1 and 0 do not receive any feed-forward, their
reconstructions are completely determined by the indices they
receive. Achievable rates are defined in the usual Shannon sense.

Definition 2: is an achievable rate pair with feed-
forward delay for distortion if for all there
exists a sequence, indexed by , of multiple
description codes with feed-forward delay , such that for suf-
ficiently large ,

The rate-distortion region is the set of
achievable rate pairs with feed-forward delay for distortion

.
We emphasize that for a fixed , the rate-distortion region is

the set of rates achievable when the block length can be arbi-
trarily large. As the delay increases, the decoder has progres-
sively less information available for decoding. Thus we have

where is the rate-distortion region for mul-
tiple descriptions without feed-forward, i.e., the delay .

Our main result is the following theorem, which specifies a
set of rates that lie in for all finite .

Theorem 1: For any finite , a quintuple
is achievable—with delay feed-for-

ward to decoder 2 alone—if there exist random variables
jointly distributed with the source such that

(2)

The proof of the theorem is given in Section IV. Notice that
the rate-region specified by the theorem does not depend on the

1We use the convention that for � � ��� is the empty set.

feed-forward delay , i.e., the region is achievable for any finite
delay . We can compare this rate region with the rates achiev-
able for multiple descriptions without feed-forward. The mul-
tiple descriptions rate-distortion region (without feed-forward)
is known only for certain special cases (see [2], [3], [5], [9],
and [21]). The best known achievable region for the general
two-channel multiple descriptions problem for an i.i.d. source is
due to Zhang and Berger [6]. This region is an extension (using
an auxiliary random variable) of the rate region obtained by El
Gamal and Cover [3]. We reproduce the Zhang-Berger rate re-
gion below in a slightly modified, but equivalent, form.

Zhang-Berger Region [6]: A quintuple
is achievable (without

feed-forward) if there exist random variables
jointly distributed with the source such that

(3)

In general, and need to be conditionally dependent given
in order to satisfy the distortion constraint at the central de-

coder. This is achieved in the coding scheme of [6] in two ways.
The source is first quantized to , which is sent to all the
decoders. This requires a rate to each decoder. The re-
constructions of decoders 0, 1, 2 are produced conditioned on
this cloud center . The additional correlation needed between

and is given by the term in the sum rate.
To see that Theorem 1 enlarges the no-feed-forward rate re-

gion (3), consider any set of random variables
jointly distributed with . Set at its minimum value, i.e.,

. From (3), the minimum achievable Zhang-
Berger rate to decoder 2 is

(4)

Let us compare this with the minimum with feed-forward
prescribed by Theorem 1. From the structure of (2), we can have
one of two situations:

a) : Since
, this happens when

or equivalently, when
. In this case, using Theorem 1 we see

that

is achievable. Comparing with (4), this represents a
savings of bits/sample over the minimum
no-feed-forward rate . In other words, feed-forward
has helped convey the cloud center to user 2 without
any additional rate.

b) : Since
, this occurs when

or equivalently,
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when . From Theorem 1, we
obtain

is achievable, a savings of bits/sample
over the no-feed-forward rate given by (4). In this case,
feed-forward to user 2 has eliminated the extra correla-
tion term of the Zhang-Berger rate region.

Hence the savings in due to feed-forward is
. We may interpret the effect

of feed-forward as reducing the rate needed to generate the
required correlation between and .

B. Feed-Forward to Both Decoders 1 and 2

Switches and in Fig. 1 are both closed. An
multiple description code with delay

feed-forward is defined in the same way as the previous sub-
section, except that now both decoder 1 and 2 are defined by a
sequence of mappings. In addition to the index, both decoders
1 and 2 have access to the source samples until time .

Achievable rates are defined as before. Clearly, the region of
Theorem 1 is achievable. The rate region obtained by switching
the roles of and in Theorem 1 is also achievable. Thus
the convex hull of the union of these two regions is a (possibly
larger) achievable rate-region.

A natural question to consider next is whether feed-forward
to the central decoder alone is useful. In this setting, we can
show that if one of the side-decoders needs to perfectly recover
a function of the source, the optimal rate region is given by the
El Gamal-Cover rate region [3]. In other words, feed-forward to
the central decoder does not improve the optimal rate-distortion
region for this special case. The proof of this fact is omitted
since it is a simple extension of the proof of [9, Theorem 1]. For
the general case, it is not clear how feed-forward to the central
decoder can be exploited to achieve lower distortions at the side-
decoders.

III. EXAMPLE

Consider an i.i.d. binary source with pmf
. The reconstruction spaces are all binary and the

Hamming distortion measure is used. Therefore

Suppose decoders 1 and 2 want to reconstruct with distortion
, while decoder 0 needs to reconstruct with average distortion

0.2 We want to characterize the minimum sum-rate

(5)

2From (1), note that average distortion � means that the expected normalized
Hamming distance between a source sequence and its reconstruction is at most
� as the block length goes to infinity, where the expectation is over all source
sequences. Thus average distortion 0 indicates that the normalized Hamming
distance should go to 0 with high probability.

A lower bound to without feed-forward was obtained
in [6, Th. 3, Sect. VIII]:3

(6)

Let us now assume only decoder 2 gets feed-forward
with delay . For , this is the prediction ex-
ample discussed in Section I. Let be a binary-valued
random variable and fix the conditional distribution

as fol-
lows.

Fix a parameter and define

(7)

is defined as

(8)

is a function of

(9)

It is easy to check that this joint distribution achieves the dis-
tortion triple . Using this in The-
orem 1, we can obtain an achievable rate-region when only de-
coder 2 receives feed-forward. The relevant information quan-
tities are calculated below, with used to denote the binary
entropy function.

(10)

Equation (10) contains all the expressions required to compute
the rate-region of Theorem 1. Thus for each , we can select the
value to yield the best rate-constraint and obtain an achiev-
able upper bound to in (5) (with feed-forward to only
one decoder). This is plotted in graph of Fig. 2 for distor-
tions . Graph is the lower bound (6) to

3There appears to be a typo in the statement of the result in [6, Th. 3]. The
correct version (given here) can be obtained from the proof of that theorem.
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Fig. 2. (a) Lower bound (6) on � ��� without FF. (b) Achievable sum-rate with FF to one side-decoder. (c) Rate-distortion lower bound on � ��� with FF.

without feed-forward. We see that for all the distortions consid-
ered, feed-forward to one side-decoder yields achievable rates
smaller than the optimal no feed-forward rate. This is in con-
trast to point-to-point source coding where feed-forward does
not decrease the rate-distortion function of an i.i.d. source with
an additive, memoryless distortion measure [17], [19]. Since de-
coders 1 and 2 produce reconstructions with distortion
and each have to be greater than the Shannon rate-distor-
tion function . This is true both with and
without feed-forward. Thus a simple lower bound to
with feed-forward is , which is plotted
in graph of Fig. 2.

Of particular interest is the situation when the sum rate
. This is the case of no excess rate to the central de-

coder [5]. For this case, it was shown in [4] that without feed-for-
ward, the minimum achievable distortion at each side-decoder is

, which is also the value given by the lower
bound (6). In comparison, with feed-forward to one side-de-
coder, we can achieve with (setting

, we obtain from The-
orem 1).

IV. PROOF OF THEOREM 1

The source sequence is divided into a large number of blocks,
say blocks, with each block containing source symbols.

, the total block length of the code is therefore equal to .

For clarity, we will present the proof with delay 1 feed-forward.
Thus source samples start being available at decoder 2 one time
unit after it receives its index at time . In other words, a sample
produced by the source at time is available to decoder 2 at time

. The extension of the proof to feed-forward with arbitrary
delay is straightforward.

To prove the theorem, we shall use the properties of strongly
-typical sequences [22]. Length- vectors are

said to be jointly typical if their joint type is approximately
. The set of all jointly -typical tuples

is denoted . The set of sequences condition-
ally -typical with is denoted . In the sequel,
bold letters shall be used to denote random vectors, with their
length understood to be . We first present an outline of the
coding scheme that explains the main ideas.

Outline: To exploit the feed-forward, we shall use a block-
Markov superposition strategy [23], [24] covering pairs of adja-
cent blocks. While encoding the length- source block

, we would also like to give the decoders a coarse
version of . This is done as follows. The codebook of user
1 is divided into cells of equal size, as shown in Fig. 3.
To encode , the encoder first quantizes to using
a -codebook of size . If is the chosen quantization
index in the -codebook, encoding for is restricted to the
th cell of the codebook 1. This is depicted in Fig. 3—the en-

coder chooses from the th cell of codebook 1 and
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TABLE II
TIME-LINE OF EVENTS AT ENCODER AND DECODER WITH FEED-FORWARD

Fig. 3. Restricted encoding for codebook 1:���� is the codeword representing
� . The block � codeword for user 1 is chosen within cell � of the �� code-
book.

from codebook 2 such that are jointly typical.
The idea of restricted decoding using a nonrandom partition
was introduced in [24] for a multiple-access channel with feed-
back. Here we use restricted encoding with partitioning to ex-
ploit feed-forward.

Table II shows the time-line of the information available
at each terminal, at time-instants corresponding to the end of
each block. The first two rows of the table show that at time

, the source has produced the first two blocks . At
this time, the encoder quantizes to and then produces

—the quantization indices corresponding to the first
block—according to the procedure described in the previous
paragraph. The encoding proceeds in this fashion until time

, when the source has produced block , and
the encoder has produced the indices and

. Instantly, the first set of indices is made
available to decoder 1, and the second set to decoder 2. Both
sets of indices are available to decoder 0.

At time , decoders 1, 2, and 0 reconstruct the first
block, producing and , respectively. At this time,
decoders 1 and 0 also know since it is determined by the cell-
index of . This is shown in the fifth row of the table. From
time onwards, decoder 2 starts receiving
source symbols through feed-forward (recall that feed-forward
delay is 1). Therefore, between times and , decoder
2 receives the block through feed-forward At time ,

it decodes using and . Thus at time , all
decoders know since it is indexed by the cell of . The
decoding proceeds in this fashion as shown in Table II: at time

, decoder 2 has received through feed-forward and
uses it to decode . Consequently, all decoders know ,
which they use to produce and .

can be thought of as a cloud center, conditioned on which
reconstructions are produced at the decoders. The coding
strategy essentially uses the feed-forward to decoder 2 to
convey parsimoniously to the decoders. The detailed proof
is given below.

Random Coding: Let and
. Choose independently according to

a uniform distribution over the set of all the -typical
-vectors . For each , choose a codebook of length-

vectors , independently according to a
uniform distribution over the set . Similarly choose
a codebook from . We par-
tition each codebook into disjoint cells, so that each
cell has elements. We have assumed for simplicity that

is an integer.
Encoding: We encode a source sequence of length

given by

where denotes the th block of length , for .
Step 0: Find such that

. Set . A rate of to each side-decoder is
necessary to convey . This is only needed for the first block,
and is a negligible fraction of the total rate when the number of
blocks is large.

Step : From the previous step, is known.
Say it is equal to . For : observe the length-
block and find a so that

. Set . If no such is found or if ,
set . Thus we have .

Encode as follows: pick
such that

and belongs to the th cell of
the codebook. If no such is found, set to a
random index in the th cell of the codebook, and to a
random index in the codebook.
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The encoding is depicted in Fig. 3. Note that we restrict
ourselves to one cell within the codebook. Restricted en-
coding enables decoder 2 to take advantage of the feed-forward.
Decoders 1 and 2 produce reconstructions and using

and , respectively. Later, decoder 2 learns precisely
through feed-forward and tries to decode using .
To facilitate this, the encoder might need to send some extra
bits to decoder 2 (in addition to ). These extra bits sent to
decoder 2 are represented as an additional index from
an appropriate codebook of rate . The total rate sent to
decoder 2 is thus .

In summary, at time , the encoding is complete
and the encoder sends to decoder 1 and

to decoder 2. The extra rate that may be
needed for central decoder 0 is discussed at the end of the proof.

Decoding: At time instant , decoder 1 re-
ceives and decoder 2 receives

. The reconstruction at the
two side-decoders, depicted in Table II, proceeds as follows.
The generation of is described at the end
of the proof.

Step 1 (Executed at Time ): is known to all decoders.
At time , the appropriate codebooks determined by are
used and reconstructions are produced using ,
respectively. In addition, decoder 1 also knows at this time,
since it is determined by the cell-index of . From time

onwards, decoder 2 starts receiving source sym-
bols through feed-forward. By time instant , decoder
2 has received the first source block through feed-forward.

Step (Executed at Time ): At
the end of the previous step, and have been
decoded by the respective decoders, and is known at all
decoders to be equal to . By time instant ,
decoder 2 has received the source block through feed-
forward. It then decodes the codeword of decoder 1 using this
information: it tries to find from the codebook such
that . If
there is more than one satisfying resolves the
list.

The cell number of determines .
Thus at time , all decoders know . At this
time, the appropriate codebooks determined by are used and
reconstructions are produced using , respec-
tively. Decoder 1 now knows since it is determined by
the cell-index of . The time-line of the decoding procedure
is shown in the last row of Table II.

Probability of Error: For our coding strategy, we will declare
an error in block if one or more of the fol-
lowing events occur.

1) Event : The source vector is not a typical sequence
with respect to .

2) : The encoder cannot find such that
is jointly typical with .

3) : Assuming , the encoder
cannot find a such that is
jointly typical and is in the th cell of its codebook.

4) : Decoder 2 is unable to decode correctly with
knowledge of and .

We bound the probability of each event for sufficiently large
as follows. Consider any . With high probability is
typical with respect to . Thus .

For , there exists a codebook
such that with high probability, at least one code-

word is jointly typical with iff . Hence
if

(11)

To compute , we first note that given
, we need to find an from the th

cell of codebook (a cell has codewords) and

an from the codebook ( codewords) such that
. Using arguments similar to

the proof of [3, Th. 1], it follows that this is possible with high
probability (i.e., ) if

(12)

Assuming there was no encoding error, i.e.,
holds, the chosen by the encoder is jointly typ-
ical with . The probability that another random

is jointly typical with a random pair
is approximately

for large . Thus, conditioned on , the number of other
codewords that are jointly typical with the pair is
approximately

(13)

Thus if has to resolve a list whose
size is given by (13). Hence we can have if the
rate of the extra index satisfies

(14)

Assume (11), (12), and (14) are satisfied. From the arguments
above and the union bound, we see that , the probability of
error in block , satisfies . The total
probability of error over blocks is

Combining (11), (12) and (14), and recognizing that
we obtain the following rate constraints:

(15)
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Finally for , conditioned on the knowledge
of central decoder 0, i.e., can be quan-
tized to . The extra rate required for this representation is

. This overhead (to be conveyed to the
central decoder) can be shared between the rates and .
Adding this overhead to the rate constraints specified in (15)
gives the region of Theorem 1.

V. CONCLUSION

In the multiple descriptions problem, the distortion constraint
of the central decoder dictates how reconstructions and
need to be correlated. Feed-forward to one of the side-decoders
can reduce the rate required to induce this correlation. The
coding scheme presented in this paper uses feed-forward to
one decoder only. It is worth exploring how one can do better
in the presence of feed-forward to both side-decoders. This is
especially interesting because it has been shown [15] that no
excess rate is needed for an i.i.d. Gaussian source with feed-for-
ward to both side-decoders, i.e., we can achieve the optimal
rate-distortion function at all three decoders simultaneously.
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