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Source Coding With Feed-Forward: Rate-Distortion
Theorems and Error Exponents for a General Source
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Abstract—In this work, we consider a source coding model with
feed-forward. We analyze a system with a noiseless, feed-forward
link where the decoder has knowledge of all previous source sam-
ples while reconstructing the present sample. The rate-distortion
function for an arbitrary source with feed-forward is derived in
terms of directed information, a variant of mutual information. We
further investigate the nature of the rate-distortion function with
feed-forward for two common types of sources- discrete memory-
less sources and Gaussian sources. We then characterize the error
exponent for a general source with feed-forward. The results are
then extended to feed-forward with an arbitrary delay larger than
the block length.

Index Terms—Directed Information, random coding, real-time
reconstruction, side information, source coding with feed-forward.

I. INTRODUCTION

WITH the emergence of applications involving sensor net-
works [1], the problem of source coding with side-infor-

mation at the decoder [2] has gained special significance. Here
the source of information, say modeled as a random process

, needs to be encoded in blocks of length into a
message . is to be transmitted over a noiseless channel
of finite rate to a decoder, which has access to some side infor-
mation that is correlated to the source . The decoder
with the help of the side information and the bit stream ob-
tains an optimal estimate of samples of the source at once, and
hence, over time, a reconstruction of the process . The goal is
to minimize the reconstruction distortion for a fixed transmis-
sion rate. The optimal rate-distortion performance limit when

is a joint independent and identically distributed (i.i.d.)
process was obtained by Wyner and Ziv in [2]. The encoder and
the decoder are in time-synchrony, i.e., to reconstruct a set of

samples of , the decoder uses the corresponding set of
samples of . This is used to model the compression problem
in general sensor networks where and are the correlated
signals captured by the sensor and the destination nodes.

As one can see, the implicit assumption is that the under-
lying sample pairs are simultaneously observed at the
encoder and the decoder, respectively. So after an encoding
delay of samples, when the decoder gets the message
(say being transmitted instantaneously using electromagnetic
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Fig. 1. Time-line: Instantaneous observations.

Fig. 2. Time-line: delayed observations.

waves), it has access to the corresponding samples of , so
that the decoding can begin immediately. The time-line of the
samples of the source, the message and the side information is
depicted in Fig. 1 for . Note that in this model, for ex-
ample, at the 6th time unit, the decoder reconstructs
simultaneously as a function of and , though it
may display them as shown in Fig. 1.

Often the side-information is a noisy version of the source
which is assumed to be available simultaneously at the de-

coder. The key question that we would like to ask is: what hap-
pens if the underlying signal field is traveling slowly (com-
pared to the speed of electromagnetic wave propagation) from
the location of the encoder to that of the decoder, where it is
available as ? In other words, there is a delay between the in-
stant when th source sample is observed at the encoder and
the instant when corresponding noisy version is observed at
the decoder.

We want the reconstruction to be real-time, so we need a new
dynamic compression model. Fig. 2 shows such a model when
the signal field delay is 6 time units and block length .
In Fig. 2, for real-time reconstruction of the th source sample,
all the past samples of the side information are available.
In other words, the decoding operation consists of a sequence
of functions such that the th reconstruction is a function of
and side information samples. The encoding operation,
however, remains as in [2], i.e., a mapping from the -product
source alphabet to an index set of size where is the rate
of transmission. This general compression model takes this im-
portant physical signal delay into account in its real-time recon-
struction. We refer to this model as source coding with feed-for-
ward. Note that in this problem, the encoder is noncausal and the
decoder is causal.

0018-9448/$25.00 © 2007 IEEE
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In this work, as a first step, we consider an idealized version
of this problem where we assume that the traveling source field

is available noiselessly with an arbitrary delay at the decoder,
i.e., . We call this problem source coding with noise-
less feed-forward. This was first considered by Weissman and
Merhav in [3] and [4] in the context of competitive prediction.
From Fig. 2, it is clear that the model with is mean-
ingful only when the delay is at least , where the block
length is . However, for a general , any delay leads to a valid
problem. When the delay is , we refer to the problem
as source coding with delay feed-forward. Thus with delay
feed-forward, the decoder has available the source samples until
time as side-information to reconstruct .

The relevance of this problem extends much beyond the
sensor networks application outlined above. As an example,
consider a stock market game in which we want to predict the
share price of some company over an -day period. Let the
share price on day be . On the morning of the th day, we
have to make our guess . In the evening, we know – the
actual closing price of the share for that day. Let be a
measure of our guessing error. Note that to make our guess ,
we know , the actual share prices of the previous days.
We want to play this guessing game over an -day period.1

Further suppose that at the beginning of this period, we have
some a priori information about different possible scenarios
over the next days. For example, the scenarios could be some-
thing like the following.

• Scenario 1: Demand high in the third week, low in the fifth
week, layoffs in sixth week.

• Scenario 2: Price initially steady; company results ex-
pected to be good, declared on day , steady increase
after that.

• … Scenario .
The a priori information tells us which of the scenarios is
relevant for the –day period. The question we ask is: Over the

-day period, if we want our average prediction error to satisfy

(1)

what is the minimum a priori information needed? Note that
it makes sense for the number of possible scenarios to grow as

since we will need more information to maintain the same
level of performance as gets larger. Clearly, this problem
of “prediction with a priori information” is identical to source
coding with feed-forward.

The problem of source coding with noiseless feed-forward
was first considered by Weissman and Merhav in the context of
competitive prediction in [3], [4]. They consider sources with
feed-forward delay and a single-letter, difference distortion
measure. In [4], the optimal distortion-rate function with feed-
forward is derived for sources that can be represented auto-re-
gressively with an innovations process that is either i.i.d. or
satisfies the Shannon Lower Bound (SLB) [5] with equality.
The distortion-rate function was evaluated in [4] for a sym-
metric binary Markov source with feed-forward and a stationary

1We will use the superscript notation to denote a sequence of random vari-
ables. Thus X = [X ; . . . ; X ].

Gaussian source with feed-forward as examples of this result.
For sources with general innovations processes, [4] provides
upper and lower bounds on the distortion-rate function. The
block coding error exponent is also derived in [4] for the case
where the innovations process is i.i.d. and is shown to be the
same as Marton’s no-feed-forward error exponent [6]. It was
noted in [4] that feed-forward can only decrease the distortion-
rate function of a source; however, with single-letter difference
distortion measures, feed-forward does not reduce the optimal
distortion-rate function for i.i.d. sources and all sources that sat-
isfy SLB with equality.

Later, the model of source coding with general feed-forward
was considered in [7], [8] as a variant of the problem of source
coding with side information at the decoder, and a quantization
scheme with linear processing for i.i.d. Gaussian sources with
mean squared error distortion function and with noiseless
feed-forward was reported. It was also shown that this scheme
approaches the optimal rate-distortion function. In [9], an
elegant variable-length coding strategy to achieve the optimal
Shannon rate-distortion bound for any finite-alphabet i.i.d.
source with feed-forward was presented, along with a beautiful
illustrative example. In [8], two-channel multiple-description
source coding for i.i.d. Gaussian sources with feed-forward was
also considered and the optimal rate-distortion function, error
exponent were derived. The problem of source coding with
feed-forward is also related to source coding with a delay-de-
pendent distortion function [10], causal source coding [11] and
real-time source coding [12].

The main results of this paper can be summarized as follows.
1) The optimal rate-distortion function for a general discrete

source with a general distortion measure and with noise-
less feed-forward, , is given by the minimum of
the directed information function [13] flowing from the re-
construction to the source. From the properties of directed
information, it will follow that , where

denotes the optimal Shannon rate-distortion func-
tion for the source without feed-forward.

2) We extend the Asymptotic Equipartition Property [5] to de-
fine anew kind of typicality that wecall ’directed typicality’.
This is used to provide a simple, intuitive direct coding the-
orem for stationary, ergodic sources with feed-forward.

3) The performance of the best possible source code (with
feed-forward) of rate , distortion and block length
is characterized by an error exponent. We characterize the
error exponent for a general source with feed-forward.

4) Extension of these results to feed-forward with arbitrary
delay. We introduce a generalized form of directed infor-
mation to analyze the problem of source coding with de-
layed feed-forward.

We now briefly outline how our results differ from that of [4].
In [4], feed-forward is considered in the context of competitive
prediction. The optimal distortion-rate function of a source with
feed-forward is completely characterized in [4] only when the
source has an autoregressive representation with an innovations
process that is either i.i.d. or satisfies the SLB with equality. This
characterization of the distortion-rate function is in terms of the
innovations process. In our work, we derive the optimal rate-
distortion function with feed-forward for any general source
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Fig. 3. Source coding system with feed-forward.

with feed-forward. This is expressed in terms of directed in-
formation, a quantity involving just the source and the re-
construction . The feed-forward error exponent is derived in
[4] for sources with an autoregressive representation with i.i.d.
innovations. We characterize the error exponent for a general
source. The results in [4] are derived for single-letter, difference
distortion measures and feed-forward with delay . Our results
are derived for arbitrary (not necessarily single-letter) distortion
measures and feed-forward with arbitrary delay.

Our paper is organized as follows. In Section II, we give
a fairly formal definition of the above source coding model
and the intuition behind the proposed approach. Instead of
giving the main result for the most general sources and then
considering the special cases, we first consider the special case
when the source and the reconstruction processes are jointly
stationary and ergodic and give a direct coding theorem in
Section III which captures the essence of this problem. We
must mention here that for stationary, ergodic sources without
feed-forward with single-letter distortion measures, the optimal
rate-distortion function is attained by a jointly stationary and
ergodic process [14]. Unfortunately, a similar result
may not hold for stationary, ergodic sources with feed-forward
even with single-letter distortion measures. This is because the
information available at the decoder changes with time. Hence,
we can only obtain a direct coding theorem by restricting our
attention to stationary, ergodic joint processes.

To obtain a tight rate-distortion theorem, we have to consider
general processes. The method of information spectrum intro-
duced by Han and Verdu [15] is a powerful tool to deal with
general processes. Using this, we give the direct and converse
coding theorems for general sources in Section IV. In that sec-
tion, we also consider some special cases such as discrete mem-
oryless sources and Gaussian sources. Error exponents are con-
sidered in the general setting in Section V. We extend our results
to arbitrary delays in Section VI and finally, concluding remarks
are given in Section VII.

II. THE SOURCE CODING MODEL

A. Problem Statement

The model is shown in Fig. 3. Consider a general discrete
source with th order probability distribution , alphabet

and reconstruction alphabet . There is an associated distor-
tion measure on pairs of sequences.
It is assumed that is normalized with respect to
and is uniformly bounded in . For example may
be the average per-letter distortion, i.e., for
some .

Definition 2.1: An source code with feed-
forward of block length and rate consists of an

encoder mapping and a sequence of decoder mappings
, where

The encoder maps each -length source sequence to an index
in . The decoder receives the index transmitted by
the encoder, and to reconstruct the th sample, it has access to all
the past ( ) samples of the source. Let denote the recon-
struction of the source sequence . We want to minimize
for a given distortion constraint. We consider two types of dis-
tortion constraints in this work: 1) expected distortion constraint
and 2) probability- distortion constraint. These constraints are
formally defined in the sequel. For any , let denote
the infimum of over all encoder decoder pairs for any block
length such that the distortion is less than . It is worthwhile
noting that source coding with feed-forward can be considered
the dual problem [16]–[18] of channel coding with feedback.

B. Intuition Behind the Proposed Approach

To analyze the problem of source coding with feed-forward
we need a directional notion of information. This is given by
directed information, as defined by Massey [13]. This notion
was motivated by the work of Marko [19] and was also studied
in [20]–[22] in the context of dependence and feedback be-
tween random processes. More recently, directed information
has been used to characterize the capacity of channels with feed-
back [23], [24].

Definition 2.2: [13] The directed information flowing from a
random vector to another random vector is defined as

(2)

Note that the definition is similar to that of mutual information
except that the mutual information has instead

of in the summation on the right. The directed information
has a nice interpretation in the context of our problem. We can
write the directed information flowing from the reconstruction

to the source as

(3)

Equation (3) can be derived using the chain rule as follows [25].

(4)
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Fig. 4. Backward test channel interpretation.

We know for the standard source coding problem (without feed-
forward) that the mutual information is the number
of bits required to represent with . At time instant ,
since the decoder knows the symbols to reconstruct ,
(3) says we need not spend bits to code this
information. Hence, this rate comes for “free.” In other words,
the performance limit on this problem is given by the minimum
of the directed information.

An interesting way to understand any source compression
system is to analyze the corresponding backward test channel
[5], [26], [27]. This is a fictitious channel which connects the
source with the reconstruction, characterized by the conditional
distribution of the source given the reconstruction. The decoder
first gets the index (sent by the encoder) containing the in-
formation about the first samples of . The process of re-
construction starts with the reconstruction of the first sample

as a function of alone. In the next clock cycle,
the decoder has and . This can be interpreted as follows:

goes through a nonanticipatory fictitious channel to produce
and is fed back to the decoder. Now the decoder reconstructs

the second sample as a function of and .
In the next clock cycle, it gets . As before, we can interpret it
as going through the test channel to produce which is fed
back to the decoder and so on. So this test channel can be thought
of as having as input and as
output with a sequence of conditional distributions given by

where denotes the vector of . This se-
quence of conditional distributions is related to the source
and the encoder transformation in the following way. Note
that the source distribution and the quantizer
transformation fix the joint distribution

. This can be factored into two components
as follows:

where characterizes the decoder reconstruction function,
whereas denotes the test channel conditional distribution, and
both of them are assumed to have memory. This is illustrated
in Fig. 4.

III. STATIONARY AND ERGODIC JOINT PROCESSES

In this section, we will provide a direct coding theorem
for a general source with feed-forward assuming that the
joint random process isdiscrete, stationary, and
ergodic [28]. This assumption is not necessary to prove the
rate-distortion theorem for arbitrary sources with feed-forward
in Section IV—the purpose is to first give intuition about
how feed-forward helps in source coding. This assumption of
stationarity and ergodicity leads to a rather simple and intuitive
proof of the rate-distortion theorem along the lines of the proof
of the rate-distortion theorem for discrete memoryless sources
in [5]. We will use a new kind of typicality, tailored for our
problem of source coding with feed-forward. A word about the
notation before we state the theorem. All logarithms used in the
sequel are assumed to be with base 2, unless otherwise stated.
The source distribution, defined by a sequence of finite-dimen-
sional distributions [15] is denoted by

(5)

Similarly, a conditional distribution is denoted by

(6)

Finally, for stationary and ergodic joint processes, the directed
information rate exists and is defined by [23]

(7)

We use an expected distortion criterion here. For sim-
plicity (only for this section), we assume

, where . Let be the
maximum of . Since the distortion
measure is bounded, exists. In
fact, since the joint random process is stationary,

.

Definition 3.1: is an achievable rate at expected distor-
tion if , for all sufficiently large , there exists an

code such that

where denotes the reconstruction of .

Theorem 1: For a discrete stationary and ergodic source
characterized by a distribution , all rates such that

are achievable2 at expected distortion .

2The infimization is over all conditional distributions such that the joint
process (X; X̂) is stationary and ergodic.
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Proof: Since the AEP holds for discrete, stationary and
ergodic processes [5], we have

(8)

where

We now define two “directed” quantities, introduced in [19] and
[29], respectively. These were used in [24] in the context of
channels with feedback. These will be frequently used in the
rest of this paper.

(9)

(10)

These can be pictured in terms of the test channel from to
. Equation (9) describes the sequence of input distributions to

this test channel and (10) specifies the test channel. Recall that
the joint distribution can be split as

(11)

The basic ingredient in our proof is the following Lemma which
says that a property analogous to the AEP holds for the directed
quantities defined in (9) and (10). Let

is known as the entropy of causally condi-
tioned on [23], [25]. We will also use ,
the entropy of causally conditioned on the delayed se-
quence .

Lemma 3.1: If the process is stationary and er-
godic, we have

(12)

where

(13)

where denotes the sequence .

The proof of the lemma is similar to the Shannon–
McMillan–Breiman theorem in [5], [30] and is given in
Appendix I. We now define a new kind of joint distortion typ-
icality. Given the source , fix any conditional distribution

to get a joint distribution

Also recall that the distortion is given by

Definition 3.2: An ordered sequence pair with
and is said to be directed distortion

-typical if

We denote the set of directed distortion -typical pairs by .

Lemma 3.2: If an ordered pair is drawn from
, then

as (14)

Proof: From the AEP for stationary and ergodic processes,
the first, second and fourth conditions in Definition 3.2 are sat-
isfied with probability 1 as . From Lemma 3.1, the third
condition is satisfied with probability as , proving the
lemma.

Lemma 3.3: For all

(15)
Proof:

(16)

from which the lemma follows. The last equality in (16) can be
proved as follows:

(17)
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Fig. 5. Code function for a binary source.

where follows by writing the definition of directed infor-
mation in (2) in terms of entropies and follows from (3).
Dividing by and taking limits we get the result.

We are now ready to prove the achievability of .
Codetrees: In source coding with feed-forward, to produce

the th reconstruction symbol , the decoder knows the first
source samples . This means that we could have a

different reconstruction for each . Thus, we can have
a codebook of code-trees rather than codewords. A code tree
is constructed as follows. Let the first input symbol be . To
choose the next symbol, the encoder knows . Therefore, we
have choices for the depending on the observed. For
each value of , we have choices for and so on, thus
forming a tree. A code-tree for a system with binary source and
reconstruction alphabets is shown in Fig. 5. A rate source code
with feed-forward consists of a codebook of code-trees.
The decoder receives the index of the code-tree chosen by the
encoder, traces the path along the code-tree using the fed-for-
ward source symbols and produces the reconstruction. For in-
stance, suppose the code-tree in Fig. 5 is used and the fed-for-
ward sequence, , is the all zero sequence. The decoder
traces the uppermost path on the tree and obtains the reconstruc-
tion symbols along that path.

Random Codebook Generation: Pick a joint distribution
, such that the –marginal has the

distribution and . This joint distribution
is stationary and ergodic by assumption. Fix and the block
length . Pick the first input symbol randomly according
to the distribution . To choose the next symbol, we have

choices for the depending on the observed. Thus,
is chosen randomly and independently according to the

distribution for each possible . For each
of these , there are possible ’s (depending on the
observed) picked randomly and independently according to
the distribution . We continue picking the
input symbols in this manner and finally we pick according
to . We obtain such in-

dependent and randomly chosen code-trees in the same fashion
to form the codebook.

Encoding: We will use jointly typical encoding. The en-
coder has the sequence . It traces the path determined
by on each of the trees of the codebook. Each
of these paths corresponds to a reconstruction sequence

. The encoder chooses a that
is directed distortion -typical with and sends to the
decoder. If no such typical is found, an encoding error is
declared.

Decoding: The decoder receives the index from the en-
coder ( ). It uses the th code-tree and
obtains the reconstruction symbols along the path traced by

that are fed-forward.
Distortion: There are two types of source sequences - a)

Good sequences , that are properly encoded with distortion
b) Bad source sequences , for which the en-

coder cannot find a distortion-typical path. Let denote the
probability of the set of bad source sequences for the code. The
expected distortion for the code can be written as

(18)

We calculate the expected distortion averaged over all random
codebooks. This is given by

(19)

where is the expected probability of the set of bad
sequences, the expectation being computed over all randomly
chosen codes. We will show that when satisfies the condition
given by Theorem 1, goes to 0 as . This would prove
the existence of at least one rate- code with expected distor-
tion .

Average Probabilty of Error : is the probability that for
a random code and a random source sequence , none of the

codewords are jointly typical with . Let denote
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the set of good (properly encoded) source sequences for code .
Now

(20)

(21)

The inner summation is the probability of choosing a codebook
that does not well represent the specified in the outer sum-
mation. The probability that a single randomly chosen codeword
does not well represent is

(22)
We emphasize here that we need to use the directed probability

in (22) because this is the distribution we used to
generate the random code. Thus the probability of choosing a
codebook that does not well represent is

(23)

Substituting this in (21), we get

(24)
We can now use Lemma 3.3 to obtain

(25)

As shown in [5], the inequality

(26)

holds for and . Using this in (25), we get

(27)

The first term is the probability that a pair chosen ac-
cording to the distribution is not directed distortion
-typical. From Lemma 3.2, this vanishes as . There-

fore, as long as . Thus we
have shown that there exists a code with rate arbitrarily close to

that has expected distortion arbitrarily close to .

It is worth comparing the expression in Theorem 1 for
with the optimal rate-distortion function for a source without
feed-forward. The constraint set for the infimum is the same
in both cases, but the objective function in is less than

or equal to that in the no-feed-forward rate-distortion function
since . We now make some
observations connecting the above discussion to channel coding
with feedback. Consider a channel with input and output
with perfect feedback, i.e., to determine , the encoder knows

. The channel, characterized by a sequence of distributions
, is fixed. What the encoder can

control is the input distribution .
Note that

Under the assumption that the joint process is sta-
tionary and ergodic, we can use methods similar to those used in
this section to show that all rates less than
are achievable with feedback. Compare this with the no-feed-
back capacity of the channel, given by . It is
shown in [13] that when there is no feedback in the channel,

. Hence, the no-feedback capacity of
the channel can be written as .

Comparing the expressions for capacity with and without
feedback, we see that the objective function is
the same; but the constraint set of optimization is larger when
feedback is present since the space of is contained in the
space of . Compare this with the source coding problem
where is fixed. With or without feed-forward, the constraint
set of optimization remains the same ( subject to distor-
tion constraint). But the objective function with feed-forward-

- is smaller than in the no-feed-forward case,
. In summary, for channels, the boost in capacity due

to feedback is due to a larger constraint set of optimization. In
contrast, for sources, the decrease in the rate-distortion function
due to feed-forward is due to a smaller objective function.

IV. GENERAL SOURCES

A. Rate-Distortion Theorem

In this section, we prove the rate-distortion theorem for ar-
bitrary sources with feed-forward. We will use the method of
information spectrum introduced by Han and Verdú [15]. This a
powerful tool to deal with general processes without making any
assumptions. Information spectrum methods have been used to
derive formulas for the capacity of general channels with and
without feedback [24], [31] and the rate-distortion function of
general sources [32]. They have also been used to derive error
exponents for both lossless and lossy source coding of general
sources [34]–[37].

The apparatus we will use for proving coding theorems for
general discrete sources with feed-forward is first described. We
define a code-function, which maps the feed-forward informa-
tion to a source reconstruction symbol . These code-functions
are the same as the code-trees used in the previous section, but
we give a formal definition here. Roughly speaking, a source
code with feed-forward is a set of code-functions. The source
sequence determines the code-function to be used and the
mapping to the reconstruction symbols is done by the decoder
using the code-function and fed-forward values.
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Fig. 6. Representation of a source coding scheme with feed-forward.

Definition 4.1: A source code-function is a set of func-
tions such that maps each source
sequence to a reconstruction symbol .
Denote the space of all code-functions by

is a code function}.

Definition 4.2: A source codebook of rate and
block length is a set of code-functions. Denote them by

.

An encoder is a mapping that maps each source sequence
to a code-function in the codebook.

Note that a source code-book and an encoder together au-
tomatically define the decoder as follows. For each source se-
quence of length , the encoder sends an index to the decoder.
Using the code-function corresponding to this index, the de-
coder maps the information fed forward from the source to pro-
duce an estimate . A code-function can be represented as a tree
as in Fig. 5. In a system without feed forward, a code-function
generates the reconstruction independent of the past source sam-
ples. In this case, the code-function reduces to a codeword. In
other words, for a system without feed-forward, a source code-
word is a source code-function where for
each , the function is a constant mapping.

A source coding system with feed-forward can be thought
of as having two components. The first is a usual source
coding problem with as the reconstruction for the source
sequence . In other words, for each source sequence ,
the encoder chooses the best code-function among

and sends the index of the chosen code function.
This is the part inside the dashed box in Fig. 6. If we denote the
chosen code-function by , the second component (decoder
2 in Fig. 6) produces the reconstruction given by

(28)

In the sequel, we will use the notation as
shorthand to collectively refer to the equations described by
(28). In source coding with feed-forward, the encoder induces a
conditional distribution given by

if the code function chosen by the encoder
otherwise.

(29)

The reconstruction is uniquely determined by and .
Thus

(30)

Therefore, given a source distribution , a source code-book
and an encoder , a unique joint distribution of and

is determined:

(31)

where denotes the code-function chosen by the encoder
for a sequence .

We now give the general rate-distortion theorem—for arbi-
trary discrete sources with feed-forward without the assump-
tions of stationarity or ergodicity. For this we use the machinery
developed in [32] for the standard source coding problem, i.e.,
without feed-forward. The source distribution is a sequence of
distributions denoted by . A conditional dis-
tribution is denoted by . We consider a
sequence of distortion measures , and, as before, we
assume is normalized with respect to and is uniformly
bounded in .

We give the result for two kinds of distortion criteria. The
first is a constraint on the expected distortion. The second cri-
terion is a probability of error criterion- the restriction is on the
probability that the distortion is . The probability of error
criterion may be more useful for a general source, which may
not be ergodic or stationary.

Definition 4.3:
a) (Expected Distortion Criterion) : is an -achievable rate

at expected distortion if for all sufficiently large ,
there exists an source codebook and an asso-
ciated encoder such that

where denotes the reconstruction of .
is an achievable rate at expected distortion if it is

-achievable for every .
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b) (Probability of Error Criterion): is an -achievable rate
at probability- distortion if for all sufficiently large ,
there exists an source codebook such that

where denotes the reconstruction of .
is an achievable rate at probability- distortion if it is

-achievable for every .
We now state the definitions of a few quantities (previously

defined in [31], [24]) which we will use in our coding theorems.
A word about the notation used in the remainder of this paper.
We will use the usual notation to indicate the probability
mass function of evaluated at the point . Often, we will treat
the p.m.f. of as a function of the random variable . In such
situations, the function is also random variable and we will use
the notation and interchangeably to refer to this
random variable.

Definition 4.4: The limsup in probability of a sequence of
random variables is defined as the smallest extended real
number such that

The liminf in probability of a sequence of random variables
is defined as the largest extended real number such that

Definition 4.5: For any sequence of joint distributions
, define

(32)

(33)

(34)

(35)

(36)

(37)

where and are given by
(9) and (10), respectively.

We also note that the directed information from to
can be written as

(38)

As pointed out in [32], the entropy rate and the mutual
information rate, defined by and

respectively, may not exist for an
arbitrary random process which may neither be stationary

nor ergodic. But the sup-entropy rate and the inf-entropy rate
( and defined above) always exist, as do the
sup-information rate and the inf-information rate ( and

defined in [15]).

Lemma 4.1: [24] For any sequence of joint distributions
, we have

(39)

If

(40)

then the limit exists and all the quantities in (39) are equal.
The class of processes for which this equality holds includes
(but is not limited to) stationary and ergodic joint processes.
We are now ready to state and prove the rate distortion theorem
for an arbitrary source with feed-forward. In [31], Verdu and
Han showed that the capacity formula for arbitrary channels
without feedback is an optimization( ) of the inf-informa-
tion rate over all input distributions. Analogously, it was shown
in [32] that the rate distortion function (without feed-forward)
for an arbitrary source is given by an optimization( ) of the
sup-information rate. Tatikonda and Mitter [24] showed that for
arbitrary channels with feedback, the capacity is an optimiza-
tion of , the inf-directed information rate. Our result
is that the rate distortion function for an arbitrary source with
feed-forward is an optimization of , the sup-directed
information rate.

Theorem 2:
a) (Expected Distortion Constraint): For an arbitrary source

characterized by a distribution , the rate-distortion
function with feed-forward, the infimum of all achievable
rates at expected distortion , is given by

(41)

where

(42)

b) (Probability of Error Constraint): For an arbitrary source
characterized by a distribution , the rate-distortion

function with feed-forward, the infimum of all achievable
rates at probability- distortion , is given by

(43)

where

(44)
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Note that if the joint process satisfies (40), from
Lemma 4.1, the rate-distortion function becomes

(45)

where the infimum is evaluated according to the distortion con-
straint used. Although the rate-distortion function given by The-
orem 2 involves optimizing a multi-letter expression involving

and , in a future paper we will show that this can be evalu-
ated in closed form for several classes of sources and distortion
measures with memory [33].

The detailed proofs of the direct and converse parts of The-
orem 2 are found in Appendices II and III, respectively. The
proof of the direct part uses the machinery introduced in [24]
for proving the capacity results for channels with feedback. The
proofs for parts (a) and (b) are very similar. We only give a brief
outline here of the direct coding theorem. For the sake of intu-
ition, assume that (45) holds. We want to show the achievability
of all rates greater than in (45).

Let be the conditional distribution that
achieves the infimum (subject to the constraint). Fix the block
length . The source code with source and reconstruc-
tion does not contain feed-forward (see Fig. 6). Our goal
is to construct a joint distribution over and , say

, such that the marginal over and satisfies

(46)

We also impose certain additional constraints on
so that3

(47)

Using (46) in the above equation, we get

(48)

Using the usual techniques for source coding without feed-for-
ward, it can be shown that all rates greater than
can be achieved. From (48), it follows that all rates greater than

are achievable. The bulk of the
proof lies in constructing a suitable joint distribution .

It should be remarked here that to prove Theorem 2, we do
not use the concept of directed distortion typicality introduced
in Section III. Notions of typicality are useful only for sta-
tionary and ergodic processes. However, when the joint process

is stationary and ergodic, Theorem 2 (a) gives the
same rate-distortion function as Theorem 1. The reason for
the discussion in Section III was to give intuition about source
coding with feed-forward before going into full generality.

B. Discrete Memoryless Sources

Consider an arbitrary discrete memoryless source (DMS).
Such a source is characterized by a sequence of distributions

, where for each , is a product distribution.

3For clarity, wherever necessary, we will indicate the distribution used to cal-
culate the information quantity as a subscript of I .

We prove the following result for a DMS with expected
distortion constraint and a memoryless distortion measure

.

Theorem 3: Feed-forward does not decrease the rate-distor-
tion function of a discrete memoryless source.

Proof: See Appendix IV.
This result was shown in [4] for the sources that were iden-

tically distributed, in addition to being memoryless. It should
be noted that Theorem 3 may not hold for a general distortion
measure . In other words, even when the source
is memoryless, feed-forward could decrease the rate-distortion
function when the distortion constraint has memory. The the-
orem may also not hold when the probability of error distortion
constraint (Theorem 2 (b)) is used instead of the expected distor-
tion constraint regardless of the nature of the distortion measure

.

C. Gaussian Sources With Feed-Forward

In this section, we study the the special case of Gaussian
sources with feed-forward. A source is Gaussian if the
random process is jointly Gaussian. A Gaussian
source is continuous valued unlike the sources hitherto dis-
cussed. However, it is straightforward to extend the results
derived earlier for discrete sources to continuous sources. In
particular, feed-forward does not decrease the rate-distortion
function of a memoryless Gaussian source with expected
mean-squared error distortion criterion. Interestingly though,
feed-forward in an i.i.d. Gaussian source enables us to achieve
rates arbitrarily close to the rate-distortion function with a low
complexity coding scheme involving just linear processing and
uniform scalar quantization (without entropy coding) at all
rates [7].

An explicit characterization of the distortion-rate function for
a stationary Gaussian source with feed-forward was given in
[4] for an average mean-squared error distortion criterion. Here
we consider arbitrary Gaussian sources and prove a result on
the structure of the optimum achieving conditional distribution
for any quadratic distortion criterion. As in the case of discrete
memoryless sources, we use the expected distortion constraint.
We now show that for a Gaussian source, is achieved by
a Gaussian conditional distribution.

Proposition 4.1: Let be an arbitrary Gaussian source with
distribution . Then the optimal rate-distortion function with
feed-forward with a quadratic distortion measure is achieved by
a Gaussian conditional distribution.

Proof: Suppose the conditional distribution
achieves the optimal rate-distortion function.

Let be a Gaussian conditional distri-
bution such that for all

is a jointly Gaussian distribution that has the same second-order
properties as . Then we will show
the following:

1) ;
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2) the average distortion is the same under both distributions,
i.e.,

(49)

1) We denote the densities corresponding to and
by

Using the representation of directed information given in
(38), we have the following chain of inequalities:

where the last equality is due to the fact that and
have the same second-order properties. Dropping

the subscript from and continuing the chain, we
have

where is the joint distribution
. Then last expression is the Kullback–Leibler

distance between the distributions and and is thus
nonnegative.

2) Since and have the same second-order
properties, it follows that the expected distortion is the
same under both distributions.

Thus for Gaussian sources with a quadratic distortion mea-
sure, the optimizing conditional distribution can be taken to be
jointly Gaussian. We also have the following result from [24]
for jointly Gaussian distributions. For any jointly Gaussian dis-
tribution

(50)

This property follows from the asymptotic equipartition prop-
erty, which is valid for an arbitrary Gaussian random processes
(Theorem 5, [38]). Thus the rate-distortion function for an arbi-
trary Gaussian source with expected mean-squared error distor-
tion criterion can be written as

(51)

where

(52)

and can be taken to be Gaussian.

V. ERROR EXPONENTS

In this section we study the error exponent for source coding
with feed-forward. The error-exponent for lossy, fixed-length
source coding of a stationary memoryless source (without
feed-forward) with a single-letter distortion measure was de-
rived by Marton [6] and by Blahut [39]. Recently, Iriyama
derived the error exponent for lossy, fixed-length coding of a
general source without feed-forward with a general distortion
measure [37]. For lossless source coding, the reliability func-
tion for fixed-length coding of a general source was first studied
in [34] and then in [35], [36]. Error exponents for lossy/lossless
coding of certain classes of discrete sources were earlier studied
in [40]–[44].

The error exponent for fixed-length lossy source coding with
feed-forward is derived in [4] for sources that can be auto-re-
gressively represented with an i.i.d. innovations process and is
shown to be the same as Marton’s no-feed-forward error expo-
nent [6]. In this section, we will use the approach and framework
of [37] to obtain a formula for the error exponent for fixed-length
lossy coding of any general source with feed-forward.

For a source-code with feed-forward of block-length , let
be the probability of the distortion exceeding .

(53)

We want to determine the infimum of all achievable coding rates
such that asymptotically . This is
called the minimum -achievable rate with feed-forward
for the source and is denoted . We will derive a
formula for this in the following.
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A. Performance of “Good” Source Codes With Feed-Forward

In this section, we will determine the minimum
-achievable rate for the source with feed-forward.

Defining the problem formally, consider a sequence of
source codes with feed-forward. Each

code in this sequence is defined according to Definition 2.1.
We are interested in a sequence of codes with
feed-forward such that

and

(54)

Definition 5.1: The minimum -achievable rate for the
source with feed-forward is defined as

sequence of codes satisfying (55)

The minimum -achievable rate will be expressed in
terms of a rate-distortion function with feed-forward. This rate-
distortion function is defined according to a distortion constraint
that is different from those considered in Theorem 2. This is de-
scribed as follows. Consider a sequence of codes
with feed-forward satisfying

and

(56)

In other words, we are interested in a sequence of codes with
rate . Further, the probability of correct decoding should be
nonzero for infinitely many codes in this sequence. We will need
the rate-distortion function with feed-forward defined according
to this criterion.

Definition 5.2: The rate-distortion function for the
source with feed-forward is defined as

sequence of codes satisfying (57)

Finally, we will need a couple of divergence quantities to ex-
press the minimum -achievable rate. We have
and defined by

(58)

We can now state our result.

Theorem 4: For any

(59)

with equalities if is continuous at . Further

(60)

for any , with equalities if continuous at . In the
above, .

Proof: In Appendix V.
Let us examine the case when is continuous.

Then the minimum -achievable rate can be expressed as

(61)

This can be pictured in a manner analogous to the interpre-
tation of the error exponent for stationary memoryless sources
using the type-covering lemma [26], [45]. Loosely speaking, for
the error decay with exponent , we need the code to cover all
sequences belonging to source distributions that are at a distance
within from the ’true’ distribution . This is possible if we
build a code with rate given by (61).

We observe that the minimum achievable rate in-
creases with . As we should expect, we also see that it
approaches the feed-forward rate-distortion function of as
approaches .

From (61), it is also clear that the minimum -achiev-
able rate for a source with feed-forward is smaller than for the
same source without feed-forward. Without feed-forward, the
formula is the supremum of the no-feed-forward rate-distor-
tion function which is clearly greater than the cor-
responding feed-forward rate-distortion function .

B. Performance of “Bad” Source Codes With Feed-Forward

If the coding rate is sufficiently small, then the probability
tends to one. Similar to [37], we can study the perfor-

mance of bad feed-forward codes. In this section, we will de-
termine the minimum coding rate for which the
probability of distortion being less than or equal to goes to
zero exponentially fast with exponent . We are interested in a
sequence of codes with feed-forward such that

and

(62)

We define a minimum achievable rate with feed-forward

a sequence of codes satisfying (63)

We will express in terms of the rate-distor-
tion function defined as follows. Consider a sequence of

codes with feed-forward satisfying
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and

(64)

This condition is similar to (but not the same as) the proba-
bility- distortion constraint. For a source , we define

a sequence of codes satisfying
(65)

We are now ready to state our result in terms of .

Theorem 5: For any

(66)

Further

(67)

for , with equalities if continuous at .
The proof of this theorem is found in Appendix V along with

the proof of Theorem 4.

VI. FEED-FORWARD WITH ARBITRARY DELAY

Recall from the discussion in Section I that our problem of
source coding with noiseless feed-forward is meaningful for any
delay larger than the block length . Our results in the pre-
ceding sections assumed that the delay was , i.e., to re-
construct the th sample the decoder had perfect knowledge of
first samples.

We now extend our results for a general delay , where
is the block length. We call this delay feed-forward. The

encoder is a mapping to an index set: .
The decoder receives the index transmitted by the encoder, and
to reconstruct the th sample, it has access to all the past ( )
samples of the source. In other words, the decoder is a sequence
of mappings .

The key to understanding feed-forward with arbitrary delay is
the interpretation of directed information in Section II-B. Recall
from(3) that the directed information can be expressed as

(68)
With delay feed-forward, the decoder knows to recon-
struct . Here, we need not spend bits to
code this information, hence this rate comes for free. In other
words, the performance limit on this problem is given by the
minimum of

(69)

where is the -length sequence
.

Observing (69), we make the following comment. In any
source coding problem, the mutual information
is the fundamental quantity to characterize the rate-distortion
function. With feed-forward, we get some information for
free and the rate-distortion function is reduced by a quantity
equal to the ’free information’. characterize the capacity of
channels with feedback delay . Similar intuition can be
used to understand the rate-distortion function when there is
side-information available with some delay at both encoder and
decoder, in addition to delayed feed-forward [46].

We now state the rate-distortion theorem for feed-forward
with general delay. We omit the proof since it is similar to the
ones in the preceding sections.

Definition 6.1:

(70)

(71)

(72)

Theorem 6 (Rate-Distortion Theorem):
a) (Expected Distortion Constraint): For an arbitrary source

characterized by a distribution , the rate-distortion
function with delay feed-forward, the infimum of all
achievable rates at expected distortion , is given by

(73)

where

(74)

b) (Probability of Error Constraint) For an arbitrary source
characterized by a distribution , the rate-distortion

function with delay feed-forward, the infimum of all
achievable rates at probability- distortion , is given by

(75)

where

(76)
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We can also extend the error exponent results of Theorems 4
and 5 to feed-forward with arbitrary delay. As a final remark,
we note that when , the problem becomes source coding
without feed-forward. As we would expect, the delay feed-for-
ward rate-distortion function given by Theorem 6 then reduces
to the no-feed-forward rate distortion function as

.

VII. CONCLUSION

In this work, we have defined and analyzed a source coding
model with feed-forward. This is a source coding system in
which the decoder has knowledge of all previous source sam-
ples while reconstructing the present sample. This problem was
first considered in [4] where the distortion-rate function was
characterized for a class of sources. We have derived the op-
timal rate-distortion function for a general source with feed-for-
ward. We also characterized the error exponent for a general
source with feed-forward. Specifically, for a source to be en-
coded with distortion , we found the minimum rate at which
the probability of error decays with exponent . We then ex-
tended our results to the feed-forward model with an arbitrary
delay larger than the block length. The problem of source coding
with feed-forward can be considered the dual of channel coding
with feedback. In a forthcoming paper, we demonstrate that the
rate-distortion function with feed-forward can be evaluated in
closed-form for several classes of sources and distortion mea-
sures with memory [33]. Extensions to accommodate practical
constraints such as a noisy feed-forward path are part of future
work.

APPENDIX I
PROOF OF LEMMA 3.1 (AEP)

The proof is similar to that of the Shannon–McMillan
Breiman Theorem in [5], [30]. We first state the definitions and
three lemmas required for the proof. Recall that

We want to show that

where

(A1)

Definition 1.1: Let

Lemma 1.1:

Proof: We have

by the ergodic theorem (A2)

We also have

by the ergodic theorem (A3)

Lemma 1.2:

Proof: We know that , since the joint
process is stationary and is a nonincreasing sequence of
nonnegative numbers. So we only need to show that

. The Martingale convergence theorem says that

Since is a finite alphabet and is bounded, by the dom-
inated convergence theorem, we have the first equation shown
at the bottom of the next page. Thus .

Lemma 1.3:
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where

(A4)

Proof:

(A5)

where the last equality follows by evaluating the sum first over
, then over , then over and so on. Using the above

in Markov’s inequality, we have

(A6)

or

(A7)

Since , the Borel-Cantelli lemma says that,
with probability 1, the event

occurs only for finitely many . Thus

with probability

The second part of the lemma is proved in a similar manner.
Using conditional expectations, we can write (A8), shown at
the bottom of the page. The inner expectation can be written as
(A9) shown at the bottom of the page. In (A9), the last equality
is obtained by evaluating the sum first over , then over ,
then over and so on. Using the Borel–Cantelli lemma as
in the previous part, we obtain

We are now ready to prove the AEP.

(A8)

(A9)
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Proof: [Proof of Lemma 3.1- AEP] We will show that
the sequence of random variables is
sandwiched between the upper bound and the lower bound

for all . From Lemma 1.3, we have

(A10)

Since the limit exists (Lemma 1.1), we can
write (A10) as

(A11)

The second part of Lemma 1.3 can be written as

(A12)

Since the limit exists (Lemma 1.1),
we can rewrite (A12) as

(A13)

Combining (A11) and (A13), we have

for all (A14)

By Lemma 1.2, . Thus

(A15)

APPENDIX II
PROOF OF DIRECT PART OF THEOREM 2

The approach we will take is as follows. We build a source
code for the block in Fig. 6 (Section IV), a system
without feed-forward. Here, the code-functions themselves are
considered ’reconstructions’ of the source sequences. We will
then connect the and the systems to prove the
achievability of .

For the sake of clarity, we present the proof in two parts. The
first part establishes the background for making the connection
between the and systems. In the second part, we

will construct random codes for the system without feed-for-
ward and show the achievability of using the results of
the first part. We describe the second part in detail for the prob-
ability of error criterion. The proof for the expected distortion
case is omitted since it is similar.

Part I: Let be the sequence of
distributions that achieves the infimum in Theorem 2. In this
part, we wish to construct a joint distribution over and

, say , such that the marginal over and
satisfies

(B1)

To do this, as will be shown in the sequel, the only distribution
we can choose is the code-function distribution . We pick

such that the induced distribution has certain
desired properties and (B1) is also satisfied.

For any , the joint distribution can be split,
as in (11), as

(B2)

where the marginals, given by and , can be considered
the fictitious test-channel from to and the set of “decoder”
distributions to this test-channel, respectively.

Let be any distribution on the space of code-functions.
Given and the test channel in (B2), we now define a
joint distribution over over , im-
posing the following constraints.

1) For ,

if
otherwise.

(B3)
2)

(B4)

3) For

(B5)

A joint distribution is said to be nice with respect to and
if , the

three constraints above hold. It is important to note that in gen-
eral, for a given problem of source coding with feed-forward,
the joint distribution on induced from an arbi-
trary encoder-decoder pair does not satisfy these conditions. We
just want to construct a joint distribution over the variables
of interest satisfying the above conditions for the direct coding
theorem.

Given a code-function distribution and the test channel
, there exists a unique joint distribution
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that is nice with respect to them. This follows
from the following arguments:

(B6)

where we have used (B3) and (B4) to obtain the second equality.
Now we can use the fact that to write

(B7)

where we have used (B5) for the second equality. Thus, the
unique nice joint distribution is given by (B8) shown at the
bottom of the page. Keeping fixed, (B8) says that choosing

automatically determines a unique nice distribution. We
want to choose such that the resulting nice joint distribu-
tion satisfies

(B9)

so that (B1) is satisfied.

Definition 2.1: For a test-channel , we
call a code-function distribution “good” with respect to
a decoder distribution if the following
holds for the nice-induced distribution :

(B10)

This definition of ’good’ is equivalent to, but slightly different
from that in [24]. The next lemma says that it is possible to find
such a good . For the sake of clarity, we give the proof
although it is found in [24] in a different flavor.

Lemma 2.1: For a test-channel , there
exists a code-function distribution good with respect to a
decoder distribution .

Proof: For all and , we define two quan-
tities given by (B11) and (B12) shown at the bottom of the page.
We will show that is good with respect
to . We give the proof in two parts. In part
A, we obtain an expression for the induced decoder distribution
given and . Part B of the proof uses this expression to
show that (B12) defines a good code-function distribution. Ac-
tually, we first need to show that for all , defined
above is a valid probability distribution. This part is omitted
since it can be shown using arguments similar to those in Part B

Part A: Define

(B13)

(B14)

Given the test-channel and a code function
distribution , a unique nice distribution is de-
termined. We now show that the induced decoder distribution is
given by

(B15)

This is Lemma 5.2 in [24], but we repeat the proof here for the
sake of completeness.

Note that uniquely determines
and vice versa. Therefore

(B16)

Now uniquely determines
and vice versa. Thus we must have

(B17)

(B8)

(B11)

(B12)
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Since is nice, it satisfies (B4). Hence

(B18)

Combining (B16), (B17) and (B18), we obtain the expression in
(B15).

Part B: We now show that defined by (B12) is good
with respect to . For a pair ,
consider

(B19)

Substituting (B15) in the above equation, we get

(B20)

We can also write the LHS of (B19) as in (B21) shown at the
bottom of the page.

We evaluate the th inner summation in (B21) as shown in
(B22) at the bottom of the page. This equation is explained as
follows. In (B22), are specified by the outer

summations and “gr” has been used as shorthand for graph. (a)
in (B22) follows from (B12) and (b) follows from an observation
similar to

Now, the th inner sum in (B21) can be shown to be equal
to in a similar fashion.
Thus, we can compute the summations in (B21) sequentially
from down to . Substituting in (B21), we get

(B23)

From (B20) and (B23), we have

(B24)

completing the proof of the lemma.
To summarize, we have the following.
• The code-function distribution and the test-channel

determine a unique nice joint distri-

bution given by (B8).

• For a test-channel , we can find a code

function distribution to be good with respect to ,

(B21)

(B22)
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i.e., the set of induced “decoder” distributions of satis-
fying the relation

(B25)

for . Hence, we have

(B26)

Equation (B26) is the key to connect the source code
without feed-forward to the code with feed-forward. We
are now ready to prove Theorem 2.

Part II: (The probability of error constraint)
For any , pick -length code-functions

independently according to . Denote this
codebook by . Define the ’distortion’

. Let

(B27)

The set represents the set of ’s that are not well
represented by the chosen codebook. We will show that

, averaged over all realizations of , goes to
as as long as . Indeed

(B28)

The last sum on the right-hand side of (B28) is the probability
of choosing a codebook that does not represent the particular

with a distortion . Define the set given by (B29)
shown at the bottom of the page. In (B29), is as in

Theorem 2, and is computed with the distribution
and is therefore equal to . Also define an in-

dicator function
if
otherwise.

(B30)

We will also need the following Lemma, whose proof is given
on the following page.

Lemma 2.2:
a)

b)

as

Since achieves we have .

Hence, for any that does not represent a given with
distortion , the pair does not belong to

. The probability that a code function chosen randomly
according to does not represent a given with distortion
within is

(B31)

Thus, the probability that none of code functions, each
independently chosen according to , represent a given
with distortion is upper bounded by

Using this in (B28), we obtain (B32) shown at the top of the
next page. In (B28), the last inequality follows from part a) of
Lemma 1.5. Using the inequality

for

in (B32), we get (B33) shown at the top of the next page.When
, using part b) of Lemma 1.5, we have

(B34)

Therefore, there exists at least one sequence of codes such
that

In other words, there exists a sequence of codebooks of
code-functions for which

(B35)

The theorem follows.

(B29)
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(B32)

(B33)

Proof of Lemma 2.2:
Proof:

a) From the definition, we have

Therefore

(B36)

where the second equality follows because is used
to construct . Moreover

(B37)
Substituting the above in (B36), we get part (a) of the
lemma.

b) The code function distribution , the test-channel

determines a nice joint distribution

, given by (B8). Under these conditions
satisfies

(B38)

where, as before, .
holds because the condition is
equivalent to (B4). This is shown in [25] as a condition for a

channel not to have have feedback. follows from (B4) and
(B5). (B38) is essentially Lemma 5.1 in [24]. Thus, we have

(B39)

Define

Since is chosen to be good with respect to for the

test channel , we have from (B26)

(B40)

Using (B40) in (B39), we get

(B41)

Next, we express the probability of the set as given in
(B42) shown at the top of the next page. Since

(B43)

the first term in (B42) equals

(B44)
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or

(B42)

where we have used (B40). Since is the in

probability of

(B45)

Using (B41) and (B40), the second term in (B42) can
be written as (B46) shown at the bottom of the page.
Since is the in probability of

, we obtain the limit as in (B47),
shown at the bottom of the page. Equations (B45) and (B47)
imply

(B48)

proving part (b) of the lemma.

APPENDIX III
PROOF OF CONVERSE PART OF THEOREM 2

Let be any sequence of codes, with rate , that
achieve distortion (either expected distortion or proba-
bility- distortion depending on the criterion used). For any
given block length , there is an induced . (equal
to 1 for the code function chosen to represent and
for the other code functions). This, along with the
source distribution , determines , a -point
discrete distribution. Thus, given the source distribution and
the encoding and decoding rules, a joint distribution is induced.

, the
induced distribution is given by

(C1)

All probability distributions in the remainder of this section are
marginals drawn from the induced joint distribution in (C1). We
first show that for any such induced distribution, we have

(C2)

Equivalently, we show that for any ,

(C3)

We have

as (C4)

thereby proving (C2). Thus, we have

(C5)

where the last inequality follows from Lemma 2 in [32]. We
need the following lemma, whose proof is given subseequently.

Lemma 3.1: For any sequence of codes as defined above,
we have

(C6)

(B46)

(B47)



VENKATARAMANAN AND PRADHAN: SOURCE CODING WITH FEED-FORWARD 2175

where the above quantities are computed with joint distribution
induced by the code.

Using this lemma in (C5), we obtain

(C7)

By assumption, the sequence of codes with rate achieves dis-
tortion . This means that the induced output distribution
satisfies the distortion constraint in Theorem 2. Therefore, we
have

(C8)

Proof of Lemma 3.1: Let be the joint distri-
bution induced by the source code as in (C1). From Definition
4.5, we have

(C9)

where the distributions are those induced from the source code.
The upper-case notation we have used indicates that we want
to consider the probabilities and the information quantities as
random variables. We will first show that

(C10)

This is equivalent to proving that for any ,

(C11)
Since , we have

(C12)

Hence the quantity in (C11) can be expressed as in (C13) shown
at the bottom of the page. In the remainder of this section, we
drop the subscripts of the probabilities since the arguments make
it clear what refers to in each case.

Next, we write the series of equations (C14) shown at the
bottom of the page. In (C14), follows from the fact that

and since the term
is equal to when and zero otherwise. is
obtained by evaluating the inner summation first over , then
over and observing that all the ’s are constant in the inner
summation. Therefore (C13) becomes

(C15)

(C13)

where

(C14)
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Hence

(C16)
Thus we have proved (C10). Now, using the inequality

(C17)

in (C10), we get

(C18)

Or

(C19)

completing the proof of the lemma.

APPENDIX IV
PROOF OF THEOREM 3

The source distribution is a sequence of distributions
, where for each , is a product distribution.

The rate-distortion function for an arbitrary memoryless source
without feed-forward is

(D1)

where

(D2)

Part 1: We first show that for a memoryless distor-
tion measure with an expected distortion constraint, a
memoryless conditional distribution achieves the infimum.
Let be any conditional distribu-

tion, for which the sup-directed information is
and expected distortion is . We will show that there ex-
ists a memoryless conditional distribution such that

and the expected distortion with
is the same, i.e., . From the corresponding joint dis-

tribution , form a memoryless joint

distribution as follows. Set

(D3)

where are the marginals of .
Clearly, for any , the expected distortion with

(D4)

is the same for . We need to show

or

To prove that

(D5)

it is enough to show that . This would
imply

(D6)

We have

(D7)

We want to show that the of the expression in (D7)
is . This is equivalent to showing that for any

(D8)
Let

Then,

(D9)

where follows from the definition of and is obtained
by evaluating the sum first over , then over and so on.
The arguments in (D5) and (D6) complete the proof that the
infimum achieving distribution can be assumed to be memory-
less in source coding without feed-forward. We now show that
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feed-forward does not change the rate-distortion function of the
memoryless source.

Part 2: Let be any sequence of codes with feed-
forward, with rate , that is achievable at distortion . For any
given block length , a joint distribution described by (C1) is
induced

(D10)

All probability distributions in the remainder of this sec-
tion are marginals drawn from this induced joint distri-
bution. As in Part 1, define a memoryless distribution

. The subscript on an in-

formation quantity will imply that is the distribution
being used to compute it. As shown in Appendix III ((C2) to
(C5)), for this joint distribution we have

(D11)

It remains to show that when the source is memoryless

(D12)

As in Part 1 of this proof, it suffices to show that
or

equivalently that for all ,

(D13)

Noting that is memoryless, we have

(D14)

Hence, we can write the series of equations (D15) at the bottom
of the page, where

Since and determine the reconstruction

if and otherwise. Thus, we have (D16)
shown at the bottom of the page, where the inner summation
is computed first over , then and so on up to . Thus

as (D17)

proving (D13). We have shown that any achievable rate (with
feed-forward) satisfies

This implies that the rate-distortion function with feed-forward
is the same as that without feed-forward.

(D15)

(D16)
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APPENDIX V
PROOF OF THEOREMS 4 AND 5

We first give the proof of Theorem 4. We will use the error-
exponent result proved by Iriyama for a general source without
feed-forward. For source coding without feed-forward in [37,
Th. 1] gives the formula for the minimum achievable rate with
error exponent

(E1)
with equalities if is continuous at . In (E1), the
quantities have the same definitions as those in Section V, except
that there is no feed-forward.

Recall from Section IV-A that every source coding system
with feed-forward is equivalent to a source coding system
without feed-forward defined in terms of code-functions. For
the no-feed-forward version, the reconstruction is a code-func-
tion and the distortion is given by

Hence, (E1) holds for the source coding problem with source
and reconstruction . Clearly, any rate-distortion function

for the no-feed-forward system is the same as the rate-
distortion function for the system with feed-forward.
Thus we obtain (59).

To prove the second part of Theorem 4, we use Theorem 5
from [37]. Applying this theorem to the source coding
system (no feed-forward), we obtain

(E2)

We can use the same procedure used in Appendix II to prove the
direct part of Theorem 2 to show that

completing the proof.
Theorem 5 can be proved in a similar fashion, using code-

functions and appealing to Theorems 2 and 4 in [37].
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