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Abstract—Let X and Y be finite alphabets and PXY a
joint distribution over them, with PX and PY representing the
marginals. For any ε > 0, the set of n-length sequences xn

and yn that are jointly typical [1] according to PXY can be
represented on a bipartite graph. We present a formal definition
of such a graph, known as a typicality graph, and study some
of its properties. These properties arise in the study of several
multiuser communication problems.

I. INTRODUCTION

The concept of typicality and typical sequences is central

to information theory. It has been used to develop computable

performance limits for several communication problems.

Consider a pair of correlated discrete memoryless infor-

mation sources1 X and Y characterized by a generic joint

distribution pXY defined on the product of two finite sets

X ×Y . An length n X-sequence xn is typical if the empirical

histogram of xn is close to pX . A pair of length n sequences

(xn, yn) ∈ Xn×Yn is said to be jointly typical if the empirical

joint histogram of (xn, yn) is close to the joint distribution

pXY . The set of all jointly typical sequence pairs is called the

typical set of pXY .

Given a sequence length n, the typical set can be represented

in terms of the following undirected, bipartite graph. The left

vertices of the graph are all the typical X-sequences, and

the right vertices are all the typical Y -sequences. From well-

known properties of typical sets, there are (approximately)

2nH(X) left vertices and 2nH(Y ) right vertices. A left vertex is

connected to a right vertex through an edge if the correspond-

ing X and Y -sequences are jointly typical. From the properties

of joint typicality, we know that the number of edges in this

graph is roughly 2nH(X,Y ). Further, every left vertex (a typical

X-sequence) has degree roughly equal to 2nH(Y |X), i.e., it is

jointly typical with 2nH(Y |X) Y -sequences. Similarly, each

right vertex has degree roughly equal to 2nH(X|Y ).

In this paper we formally characterize the typicality graph

and look at some subgraph containment problems. In particu-

lar, we answer three questions concerning the typicality graph:

• When can we find subgraphs such that the left and right

vertices of the subgraph have specified degrees, say R′
X

and R′
Y , respectively ?

1We use the following notation throughout this work. Script capitals U , X ,
Y , Z ,. . . denote finite, nonempty sets. To show the cardinality of a set X ,
we use |X |. We also use the letters P , Q,. . . for probability distributions on
finite sets, and U , X , Y ,. . . for random variables.

• What is the maximum size of subgraphs that are com-

plete, i.e., every left vertex is connected to every right

vertex? One of the main contributions of this paper is a

sharp answer to this question.

• If we create a subgraph by randomly picking a specified

number of left and right vertices, what is the probability

that this subgraph has far fewer edges than expected?

These questions arise in a variety of multiuser commu-

nication problems. Transmitting correlated information over

a multiple-access channel (MAC) [2], and communicating

over a MAC with feedback [3] are two problems where the

first question plays an important role. The techniques used

to answer the second question have been used to develop

tighter bounds on the error exponents of discrete memoryless

multiple-access channels [4], [5], [6]. The third question

arises in the context of transmitting correlated information

over a broadcast channel [7]. Moreover, the evaluation of

performance limits of a multiuser communication problem can

be thought of as characterizing certain properties of typicality

graphs of random variables associated with the problem.
The paper is organized as follows. Some definitions are

introduced in Section II. In section III, typicality graphs are

formally defined and some of their properties (regarding the

number of vertices, edges, and degrees) are stated. The main

results of the paper- four propositions concerning subgraphs of

typicality graphs- are presented in section IV. The proof of one

of these results is given in the Appendix. Due to constraints

of space, the other proofs will be presented in an extended

version of this paper.

II. PRELIMINARIES

We first review the definitions of δ-typical sets and their

properties from [1].

Definition 1. For any distribution P on X , A sequence xn ∈
Xn is called X-typical with constant δ if

1) | 1nN(a|xn) − PX(a)| ≤ δ, ∀a ∈ X
2) No a ∈ X with PX(a) = 0 occurs in xn.

The set of such sequences is denoted by Tn
δ (PX) or Tn

δ (X),
when the distribution being used is unambiguous.

Definition 2. Given a conditional distribution PY |X : X →
Y , a sequence yn ∈ Yn is conditionally PY |X -typical with
xn ∈ Xn with constant δ if

1) | 1nN(a, b|xn, yn) − 1
nN(a|xn)PY |X(b|a)| ≤ δ, ∀a ∈

X , b ∈ Y.
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2) N(a, b|xn, yn) = 0 whenever PY |X(b|a) = 0.
The set of such sequences is denoted by Tn

δ (PY |X |xn) or
Tn

δ (Y |xn), when the distribution being used is unambiguous.

We will repeatedly use the following results, which we state

below as facts:

Fact 1. [1, Lemma 2.10]: (a) If xn ∈ Tn
δ (X) and

yn ∈ Tn
δ′(Y |xn), then (xn, yn) ∈ Tn

δ+δ′(X, Y ) and yn ∈
Tn

(δ+δ′)|X |(Y ). 2

(b) If xn ∈ Tn
δ (X) and (xn, yn) ∈ Tn

ε (X, Y ), then yn ∈
Tn

δ+ε(Y |xn).

Fact 2. [1, Lemma 2.13] 3: There exists a sequence εn →
0 depending only on |X | and |Y| such that for every joint
distribution PX · PY |X on X × Y ,∣∣∣∣ 1

n
log |Tn(X)| − H(X)

∣∣∣∣ ≤ εn (1)

∣∣∣∣ 1
n

log |Tn(Y |xn)| − H(Y |X)
∣∣∣∣ ≤ εn, ∀xn ∈ Tn(X). (2)

The next fact deals with the continuity of entropy with

respect to probability distributions.

Fact 3. [1, Lemma 2.7] If P and Q are two distributions on
X such that

∑
x∈X

|P (x) − Q(x)| ≤ ε ≤ 1
2

then
|H(P ) − H(Q)| ≤ −ε log

ε

|X |
III. TYPICALITY GRAPHS

Consider any joint distribution PX · PY |X on X ×Y . Con-

sider sequences ε1n, ε2n, λn satisfying the ‘delta convention’

property [1, Convention 2.11], i.e.,

ε1n → 0,
√

n · ε1n → ∞ as n → ∞, (3)

ε2n → 0,
√

n · ε2n → ∞ as n → ∞, (4)

λn → 0,
√

n · λn → ∞ as n → ∞. (5)

The delta convention ensures that the typical sets have ‘large

probability’.

Definition 3. For every n, Gn(ε1n, ε2n, λn) is defined as a
bipartite graph, with its left vertices consisting of all xn ∈
Tn

ε1n
(X) and the right vertices consisting of all yn ∈ Tn

ε2n
(Y ).

A vertex on the left (say x̃n) is connected to a vertex on the
right (say ỹn) if and only if (x̃n, ỹn) ∈ Tn

λn
(X, Y ).

We will use the notation VX(.), VY (.) to denote the vertex

sets of any bipartite graph. From the facts mentioned in Section

II, the following properties hold:

2The typical sets are with respect to distributions PX , PY |X and PXY ,
respectively.

3The constants of the typical sets for each n, when suppressed, are
understood to be some δn with δn → 0 and

√
n·δn → ∞ (delta convention).

1) From Fact 2, we know that for any sequence of typicality

graphs {Gn(ε1n, ε2n, λn)}, the cardinality of the vertex

sets satisfies∣∣∣∣ 1
n

log |VX(Gn)| − H(X)
∣∣∣∣ ≤ εn, (6)

∣∣∣∣ 1
n

log |VY (Gn)| − H(Y )
∣∣∣∣ ≤ εn, (7)

for some sequence εn → 0.

2) The degree of each vertex xn ∈ VX(Gn) and yn ∈
VY (Gn) satisfies

degree(xn) ≤ 2n(H(Y |X)+εn), (8)

degree(yn) ≤ 2n(H(X|Y )+εn), (9)

for some εn → 0.

Property 2 gives upper bounds on the degree of each

vertex in the typicality graph. Since we have not imposed

any relationships between the typicality constants ε1n, ε2n and

λn, in general it cannot be said that the degree of every X-

vertex (resp. Y -vertex) is close to 2nH(Y |X) (resp. 2nH(X|Y )).

However, such an assertion holds for almost every vertex in

Gn. Specifically, we can show that the above degree conditions

hold for a subgraph with exponentially the same size as Gn.

Proposition 1. Every sequence of typicality graphs
Gn(ε1n, ε2n, λn) has a sequence of subgraphs
An(ε1n, ε2n, λn) satisfying the following properties for
some δn → 0.

1) The vertex set sizes |VX(An)| and |VY (An)|, denoted
θn

X and θn
Y , respectively, satisfy∣∣∣∣ 1
n

log θn
X − H(X)

∣∣∣∣ ≤ δn, ∀n

∣∣∣∣ 1
n

log θn
Y − H(Y )

∣∣∣∣ ≤ δn ∀n. (10)

2) The degree of each X-vertex xn, denoted θ
′n(xn) sat-

isfies∣∣∣∣ 1
n

log θ
′n(xn) − H(Y |X)

∣∣∣∣ ≤ δn ∀xn ∈ VX(An).

(11)

3) The degree of each Y -vertex yn, denoted θ
′n(yn), sat-

isfies∣∣∣∣ 1
n

log θ
′n(yn) − H(X|Y )

∣∣∣∣ ≤ δn ∀yn ∈ VY (An).

(12)

Proof: The proof is provided in a more complete ver-

sion [8].

IV. SUB-GRAPHS CONTAINED IN TYPICALITY GRAPHS

In this section, we study the subgraphs contained in a

sequence of typicality graphs.
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A. Subgraphs of general degree

Definition 4. A sequence of typicality graphs Gn(ε1n, ε2n, λn)
is said to contain a sequence of subgraphs Γn of rates
(RX , RY , R′

X , R′
Y ) if for each n, there exists a sequence

δn → 0 such that
1) The vertex sets of the subgraphs have sizes (denoted Δn

X

and Δn
Y ) that satisfy∣∣∣∣ 1

n
log Δn

X − RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1
n

log Δn
Y − RY

∣∣∣∣ ≤ δn, ∀n.

2) The degree of each vertex xn in VX(Γn), denoted
Δ

′n(xn) satisfies∣∣∣∣ 1
n

log Δ
′n(xn) − R′

Y

∣∣∣∣ ≤ δn, ∀xn ∈ VX(Γn), ∀n.

3) The degree of each vertex yn in the VY (Γn), denoted
Δ

′n(yn) satisfies∣∣∣∣ 1
n

log Δ
′n(yn) − R′

X

∣∣∣∣ ≤ δn, ∀yn ∈ VY (Γn), ∀n.

The following proposition gives a characterization of the

rate-tuple of a sequence of subgraphs in the sequence of

typicality graphs of PXY .

Proposition 2. Let Gn(ε1n, ε2n, λn) be a sequence of typ-
icality graphs of PXY . Let us define R as all tuples,
(RX , RY , R′

X , R′
Y ), such that Gn(ε1n, ε2n, λn) contains sub-

graphs of rates (RX , RY , R′
X , R′

Y ). Then,

R′ ⊆ R (13)

where R′ is defined as follows:

R′ �
{
(RX , RY , R′

X , R′
Y ) : RX ≤ H(X|U), RY ≤ H(Y |U),

R′
X ≤ H(X|Y U), R′

Y ≤ H(Y |XU) for some PU |XY

}
.

Proof: The proof is provided in a more complete ver-

sion [8].

B. Nearly complete subgraphs

A complete bipartite graph is one in which each vertex of

the first set is connected to every vertex on the other set.

We next consider nearly complete subgraphs of the sequence

of typicality graphs. For this class of subgraphs, we have

a converse result that fully characterizes the set of nearly

complete subgraphs present in any typicality graph.

Definition 5. A sequence of typicality graphs Gn(ε1n, ε2n, λn)
is said to contain a sequence of nearly complete subgraphs
Γn of rates (RX , RY ) if for each n, there exists a sequence
δn → 0 such that

1) The sizes of the vertex sets of the subgraphs, denoted
Δn

X and Δn
Y , satisfy∣∣∣∣ 1

n
log Δn

X − RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1
n

log Δn
Y − RY

∣∣∣∣ ≤ δn, ∀n.

2) The degree of each vertex xn in the X-set of the
subgraph, denoted Δ

′n(xn) satisfies

1
n

log Δ
′n(xn) ≥ RY − δn, ∀xn ∈ VX(Γn), ∀n.

3) The degree of each vertex yn in the Y -set of the
subgraph, denoted Δ

′n(yn) satisfies

1
n

log Δ
′n(yn) ≥ RX − δn, ∀yn ∈ VY (Γn), ∀n.

Proposition 3. Let Gn(ε1n, ε2n, λn) be a sequence of typi-
cality graphs for PXY . Again, let us define R as all tuples,
(RX , RY ), such that Gn(ε1n, ε2n, λn) contains subgraphs of
rates (RX , RY ). Then,

R′′ ⊆ R (14)

where R′′ is defined as follows:

R′′ �
{
(RX , RY ) : RX ≤ H(X|U), RY ≤ H(Y |U),

for some PU |XY such that X − U − Y
}

Moreover, For all sequences of nearly complete subgraphs of
Gn such that the sequence δn (in Definition 5) converges to
0 faster than 1/ log n (i.e.,limn→∞ δn log n = 0), the rates of
the subgraph (RX , RY ) satisfy

RX ≤ H(X|U), RY ≤ H(Y |U)

for some PU |XY such that X − U − Y . 4 In this case,

R′′ = R (15)

Proof: The proof is provided in the Appendix.

C. Nearly Empty Subgraphs

So far, we have discussed properties of subgraphs of the

typicality graph Gn(ε1n, ε2n, λn) such as the containment of

nearly complete subgraphs and subgraphs of general degree.

We characterized these subgraphs based on the degrees of

their vertices. We now turn our attention to the presence of

nearly empty subgraphs in the typicality graph. We analyze the

probability that a randomly chosen subgraph of the typicality

graph has far fewer edges than expected. In particular, we

focus attention on the case when the random subgraph has no

edges.

Consider a pair (X, Y ) of discrete memoryless stationary

correlated sources with finite alphabets X and Y respectively.

Suppose we sample 2nR1 sequences from the typical set

Tn
ε1n

(X) of X independently with replacement and similarly

sample 2nR2 sequences from the typical set Tn
ε2n

(Y ) of Y .

The underlying typicality graph Gn(ε1n, ε2n, λn) induces a

bipartite graph on these 2nR1 + 2nR2 sequences. We provide

a characterization of the probability that this graph is sparser

than expected.

With these preliminaries, we are ready to state the main

result of this section.

4We use the notation X−U −Y to indicate X, U, Y form a Markov chain
in that order.
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Proposition 4. Suppose X and Y are correlated finite al-
phabet memoryless random variables with joint distribution
p(x, y). Let ε1n, ε2n, λn satisfy the ‘delta convention’ and
R1, R2 be any positive real numbers such that R1 + R2 >
I(X; Y ). Let CX be a collection of 2nR1 sequences picked
independently and with replacement from Tn

ε1n
(X) and let CY

be defined similarly. Let U be the cardinality of the set

U � {(xn, yn) ∈ CX × CY : (xn, yn) ∈ Tn
λn

(X, Y )} (16)

Assume, without loss of generality that R1 ≥ R2. Then, for
any γ ≥ 0, we have

lim
n→∞

1
n

log log
[
P

(
E(U) − U

E(U)
≥ e−nγ

)]−1

≥
{

R1 + R2 − I(X; Y ) − γ if R1 < I(X; Y )
R2 − γ if R1 ≥ I(X; Y )

(17)

Setting γ = 0 in the above equation gives us

lim
n→∞

1
n

log log
1

P(U = 0)
≥ min (R2, R1 + R2 − I(X; Y ))

(18)

This inequality holds with equality when R2 ≤ R1 ≤ I(X; Y ).

Proof: The proof can be obtained using a version of

Suen’s inequalities [9] and the Lovasz local lemma [10]. It

is provided in a more complete version [8]

V. APPENDIX

The first part of the proposition follows directly from

Proposition 2 by choosing PU |XY such that X−U−Y form a

Markov chain. We now prove the converse under the stated as-

sumption that the sequence δn satisfies limn→∞ δn log n = 0.

Suppose that a sequence of typicality graphs

Gn(ε1n, ε2n, λn) contains nearly complete subgraphs Γn

of rates RX , RY . The total number of edges in Γn can be

lower bounded as

|Edges(Γn)| ≥ Δn
X · min degree of a vertex in VX(Γn)

≥ Δn
X · 2n(RY −δn)

≥ Δn
X · 2n(RY −δn)Δn

Y · 2−n(RY +δn)

= Δn
X · Δn

Y · 2−2nδn . (19)

Each of these edges represent a pair (xn, yn) that is jointly λn-

typical with respect to the distribution PXY . In other words,

each of these pairs (xn, yn) belongs to a joint type[1] that is

‘close’ to PXY . Since the number of joint types of a pair of

sequences of length n is at most (n + 1)|X ||Y|, the number of

edges belonging to the dominant joint type, say P̄XY satisfies

|Edges(Γn) having joint type P̄XY | ≥ Δn
X · Δn

Y 2−2nδn

(n + 1)|X ||Y| .

(20)

Define a subgraph An of Γn consisting only of the edges

having joint type P̄XY . A word about the notation used

in the sequel: We will use i, j to index the vertices in

VX(Γn), VY (Γn), respectively. Thus i ∈ {1, . . . ,Δn
X} and

j ∈ {1, . . . ,Δn
Y }. The actual sequences corresponding to these

vertices will be denoted xn(i), yn(j) etc. Using this notation,

An � {(i, j) : i ∈ VX(Γn), j ∈ VY (Γn)
s.t. (xn(i), yn(j)) has joint type P̄XY } (21)

From (20),

|An| ≥ Δn
X · Δn

Y 2−2nδn

(n + 1)|X ||Y| (22)

We will prove the converse result using a series of lemmas

concerning An. Some of the lemmas are similar to those

required to prove in [4, Theorem 1]. We only sketch the proofs

of such lemmas, referring the reader to [4] for details.

Define random variables X ′n, Y ′n with pmf

Pr((X ′n, Y ′n) = (xn(i), yn(j)) =
1

|An| , if (i, j) ∈ An.

(23)

Lemma 1. I(X ′n; Y ′n) ≤ 2nδn + |X ||Y| log(n + 1).

Proof: Follow steps similar to the proof of [4, Lemma 1],

using (22) to lower bound the size of An.

The next lemma is Ahlswede’s version of the ‘wringing’

technique. Roughly speaking, if it is known that the mutual

information between two random sequences is small, then

the lemma gives an upper bound on the per-letter mutual

information terms (conditioned on some values).

Lemma 2. [11] Let An, Bn be RV’s with values in An, Bn

resp. and assume that

I(An; Bn) ≤ σ

Then, for any 0 < δ < σ there exist t1, t2, ..., tk ∈
{1, ..., n} where 0 ≤ k < 2σ

δ such that for some
āt1 , b̄t1 , āt2 , b̄t2 , ..., ātk

, b̄tk

I(At; Bt|At1 = āt1 , Bt1 = b̄t1 , ..., Atk
= ātk

, Btk
= b̄tk

) ≤ δ

for t = 1, 2, ..., n, (24)

and

Pr(At1 = āt1 , Bt1 = b̄t1 , ..., Atk
= ātk

, Btk
= b̄tk

)

≥ (
δ

|A||B|(2σ − δ)
)k. (25)

In our case, we will apply Lemma 2 to random variables

X ′n and Y ′n. Lemma 1 indicates σ = 2nδn + |X ||Y| log(n+
1), and δ shall be specified later. Hence we have that for some

k ≤ 2σ

δ
=

2(nδn + |X ||Y| log(n + 1))
δ

,

there exist x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk
, ȳtk

such that for all t =
1, 2, ..., n

I(X ′
t; Y

′
t |X ′

t1 = x̄t1 , Y
′
t1 = ȳt1 , ..., X

′
tk

= x̄tk
, Y ′

tk
= ȳtk

) ≤ δ.

(26)

We now define a subgraph of An consisting of all edges

(X ′n, Y ′n) that have

X ′
t1 = x̄t1 , Y

′
t1 = ȳt1 , ..., X

′
tk

= x̄tk
, Y ′

tk
= ȳtk
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The subgraph denoted as Ān is given by: 5

Ān � {(i, j) ∈ An : (27)

X ′
t1(i) = x̄t1 , Y

′
t1(j) = ȳt1 , ..., X

′
tk

(i) = x̄tk
, Y ′

tk
(j) = ȳtk

}.
On the same lines as [4, Lemma 3], we have

|Ān| ≥ (
δ

|X ||Y|(2σ − δ)
)k|An|. (28)

Define random variables X̄n, Ȳ n on Xn resp. Yn by

Pr((X̄n, Ȳ n) = (xn(i), yn(j)) =
1

|Ān| if (i, j) ∈ Ān. (29)

If we denote X̄n = (X̄1, ..., X̄n), Ȳ n = (Ȳ1, ..., Ȳn), the Fano-

distribution of the graph Ān induces a distribution PX̄t,Ȳt

on the random variables X̄t, Ȳt, t = 1, . . . , n. One can show

that [4] for all t = 1, 2, ..., n

P (X̄t = x, Ȳt = y) =

P
(
X ′

t = x, Ȳ ′
t = y|X ′

t1(i) = x̄t1 , ..., X
′
tk

(i) = x̄tk

Y ′
t1(j) = ȳt1 , ..., Y

′
tk

(j) = ȳtk

)
. (30)

Using (30) in Lemma 2, we get the bound I(X̄t; Ȳt) < δ.

By applying Pinsker’s inequality for I-divergences [12], we

conclude that for all t = 1, 2, ..., n,∑
x,y

|Pr(X̄t = x, Ȳt = y) − Pr(X̄t = x)Pr(Ȳt = y)| ≤ 2δ1/2.

(31)

We are now ready to present the final lemma required to

complete the proof of the converse.

Lemma 3.

RX ≤ 1
n

n∑
t=1

H(X̄t|Ȳt) + δ1n

RY ≤ 1
n

n∑
t=1

H(Ȳt|X̄t) + δ2n

RX + RY ≤ 1
n

n∑
t=1

H(X̄tȲt) + +δ3n

for some δ1n, δ2n, δ3n → 0 and the distributions of the RV’s
are determined by the Fano-distribution on the codewords
{(xn(i), yn(j)) : (i, j) ∈ Ān}.

Proof: The proof is provided in a more complete ver-

sion [8].

We can rewrite Lemma 3 using new variables X̄, Ȳ , Q,

where Q = t ∈ {1, 2, ..., n} with probability 1
n and

PX̄Ȳ |Q=t = PX̄tȲt
. So we now have (for all sufficiently large

n),

RX ≤ H(X̄|Ȳ Q) + δ1n (32)

RY ≤ H(Ȳ |X̄Q) + δ2n (33)

RX + RY ≤ H(X̄Ȳ |Q) + δ3n, (34)

5The heirarchy of subgraphs is Gn ⊃ Γn ⊃ An ⊃ Ān

for some δ1n, δ2n, δ3n → 0.

Finally, by using (31), we conclude that for all t, X̄t and

Ȳt are almost independent for large n. Consequently, using

the continuity of mutual information with respect to the joint

distribution, Lemma 3 holds with for any joint distribution

PQPX̄|QPȲ |Q such that the marginal on (X̄, Ȳ ) is PX̄Ȳ .

Recall that PX̄Ȳ is the dominant joint type that is λn-close

to PX,Y . Using suitable continuity arguments [4], we can

now argue that Lemma 3 holds with for any joint distribution

PQPX|QPY |Q such that the marginal on (X, Y ) is PXY ,

completing the proof of the converse.

REFERENCES

[1] I. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic Press,, 1981.

[2] S. S. Pradhan, S. Choi, and K. Ramchandran, “A graph-based framework
for transmission of correlated sources over multiple-access channels,”
IEEE Trans Inf Theory, vol. 53, no. 12, pp. 4583–4604, 2007.

[3] R. Venkataramanan and S. S. Pradhan, “A new achievable rate region
for the discrete memoryless multiple-access channel with feedback,” in
Proc. IEEE Int. Symp. on Inf. Theory, June 2009.

[4] A. Nazari, S. S. Pradhan, and A. Anastasopoulous, “A new sphere-
packing bound for maximal error exponent for multiple-access chan-
nels,” in Proc. IEEE Int. Symp. Inf. Theory, July 2008. Online:
http://arxiv.org/abs/0803.3645.

[5] A. Nazari, S. S. Pradhan, and A. Anastasopoulous, “New bounds on the
maximal error exponent for multiple-access channels,” in Proc. IEEE
Int. Symp. Inf. Theory, July 2009.

[6] A. Nazari, S. S. Pradhan, and A. Anastasopoulous, “A new upper bound
for the average error exponent for discrete memoryless multiple-access
channels,” in Online: http://arxiv.org, Dec 2009.

[7] S. Choi and S. S. Pradhan, “A graph-based framework for transmission
of correlated sources over broadcast channels,” IEEE Transactions on
Information Theory, vol. 54, no. 7, pp. 2841–2856, 2008.

[8] A. Nazari, R. Venkataramanan, D. Krithivasan, S. S. Pradhan, and
A. Anastasopoulos, “Typicality graphs and their properties,” in Online:
http://arxiv.org/, 2010.

[9] S. Janson, “New versions of Suen’s correlation inequality,” Random
Structures Algorithms, vol. 13, pp. 467–483, 1998.

[10] N. Alon and J. Spencer, The Probabilistic Method. John Wiley and
Sons, Inc., 1992.

[11] R. Ahlswede, “An elementary proof of the strong converse theorem for
the multiple-access channel,” 1982.

[12] A. A. Fedotov, F. Topsoe, and P. Harremoes, “Refinements of pinsker’s
inequality,” IEEE Trans. Inf. Theory, vol. 49, pp. 1491–1498, June 2003.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

524


