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Summary

Due to the dramatic increase in the number of users and their demand for

more advanced services, the need for fast and accurate filtering techniques

in digital communications, capable of coping with challenging transmission

conditions, is becoming more and more prevalent. This research investigates

the application of a relatively new and very promising approach - Sequential

Monte Carlo methods - to the problems associated with the transmission

over a digital link.

In this thesis, a general framework for addressing a number of digital

communications applications is proposed, and several specific tasks are con-

sidered as an illustration of this general approach. First, the problem of

demodulation of M-ary modulated signals under conditions of flat Rayleigh

fading channels in the presence of non-Gaussian additive noise is addressed.

The particle filtering receiver is then extended to include joint symbol decod-

ing and demodulation, space diversity combining and multiuser transmission.

Joint symbol detection and propagation delay estimation in direct sequence

spread spectrum systems in multipath environment is treated at the end of

the thesis.

We develop an efficient simulation-based algorithm, based on particle fil-

tering, which combines sequential importance sampling, a selection scheme

and several variance reduction techniques. Computer simulations show a

good performance of the proposed method for a number of applications. For

the class of problems involving the discrete unknown parameters only, sev-

eral other deterministic and randomized techniques applicable in this scenario

are reviewed and tested. To the best of our knowledge, such comparison has

never been made before. The conclusion is in favour of the simplest determin-

istic algorithm, which, unfortunately, cannot be applied straightforwardly to

the problems with both discrete and continuous-valued parameters being un-

known. A new particle filtering receiver incorporating both deterministic and

stochastic schemes to consider this more complicated scenario is derived at

the end. An extensive simulation study is carried out throughout the thesis.
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NOTATION

a Scalar

a Column vector

ai ith element of a

ak,i:j Sequence ak,i:j , (ak,i, ak,i+1, ..., ak,j)
T if i < j,

ak,i:j , (ak,i, ak,i−1, ..., ak,j)
T otherwise

ak,i:j Sequence ak,i:j , (ak,i, ak,i+1, ..., ak,j)
T if i < j,

ak,i:j , (ak,i, ak,i−1, ..., ak,j)
T otherwise

a(i:j) Sequence a(i:j) ,
(
a(i), a(i+1), ..., a(j)

)
T

if i < j,

a(i:j) ,
(
a(i), a(i−1), ..., a(j)

)
T

otherwise

In Identity matrix of dimension n × n

A Matrix

AT Transpose of matrix A

A−1 Inverse of matrix A

|A| Determinant of matrix A

a ∼p (a) a is distributed according to distribution p (a)

a|y ∼p (a) The conditional distribution of a given y is p (a)

N (m,Σ) Gaussian distribution with mean m and covariance Σ

Nc (m, Σ) Complex Gaussian distribution

bac Highest integer strictly less than a

{a} {a} , a − bac

E(a) Expectation of the random variable a

var(a) Variance of the random variable a

δ(t) Dirac delta function

arg max
a

The argument a that maximizes the operand



OTHER NOTATION

k denotes kth information source, k = 1, . . . , K

l denotes lth antenna (subchannels), l = 1, . . . , L

h denotes hth chip, h = 1, . . . , H

g denotes gth channel path, g = 0, . . . , G − 1

m denotes one of possible κ-bit symbols, M = 2κ, m = 1, . . . , M

ξ(l) denotes ξ(l)th component of Gaussian mixture, ξ(l) = 1, . . . , Z

i denotes ith particle, i = 1, . . . , N

Other symbols used throughout the thesis

dk,n nth information κ-bit symbol from the kth information source

rk,q qth κ-bit coded symbol from the kth information source

sk,q(·) Mapping function (digital symbols → analogue waveforms)

ck,1:H Spreading code sequence

f
(g,l)
k,t Channel coefficients for the kth user, lth subchannel,

gth path at instant t

θk,t Propagation delay for the kth user at instant t

ε
(l)
t Additive noise at lth subchannel (mixture of zero-mean Gaussians)

ε
(l)
t = σ

(l)
zt ε

(l)
t , ε

(l)
t

i.i.d.
∼ Nc (0, 1)

z
(l)
t Allocation variable for the lth subchannel

(identifies component in the Gaussian mixture)

y
(l)
t Output of the lth subchannel at instant t

Tn Symbol transmitted interval

Tq Coded symbol transmitted interval

Tch Chip interval

Ts Nyquist sampling rate

1/R Code ratio

w(·) Importance weight

π ( ·| ·) Importance distribution



ABBREVIATIONS

AGC Automatic gain controller

APF Auxiliary particle filter

APP a posteriori probability

AR Auto-regressive

ARMA Auto-regressive moving average

BDPSK Binary differential phase shift keyed

BER Bit-error-rate

CDMA Code division multiple access

DDE Discounted detection estimation

DEA Detection-Estimation Algorithm

DFE Decision feedback estimator

DML Deterministic most likely

DPSK Differential phase shift keyed

DS Direct sequence

DSR Deterministic stratified resampling

EKF Extended Kalman filter

EM Expectation-maximization

FEC Forward error correcting

GPB Generalised Pseudo-Bayes

HMM Hidden Markov model

ISI Intersymbol interference

IMM Interacting multiple model

JMLS Jump Markov linear system

LPI Low probability of being intercepted

MA Moving average

MAP Maximum a posteriori probability

MC Monte Carlo

MCMC Markov chain Monte Carlo

MF Matched filter



viii

MAI Multiple-access interference

MMAP Marginal maximum a posteriori

MMSE Minimum mean square estimate

MSE Mean-square error

OFDM Orthogonal frequency division multiplexing

PFO Particle filter with optimal importance distribution

PFP Particle filter with prior importance distribution

PFS Particle filter with suboptimal importance distribution

PLL Phase locked loop

PN Pseudo-noise

PSAM Pilot symbol-aided schemes

PSK Phase shift keyed

QAM Quadrature amplitude modulated

RLW Resampling particles with low weights

RSA Random Sampling Algorithm

SIR Sequential importance resampling

SMC Sequential Monte Carlo

WSS Wide-sense stationary
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1 Introduction

Modern communication systems have undergone a remarkable develop-

ment over the past decades, with digital communication techniques dominat-

ing analogue methods. Mobile phones and the internet have become such a

great part of our lives that we simply cannot imagine what would we do with-

out them. Speed, safety and reliability are now matters of primary concern,

and the need for an advanced technology to meet these often challenging

requirements is ever growing. The Sequential Monte Carlo methods show

great potential in providing such a powerful mathematical technique, and

their applications in the field of digital communications are the subject of

this thesis.

1.1 Motivation, Scope and Contributions

Filtering in one form or another has been with us for centuries. In the

past man tried to remove the impurities in his water to obtain a pure drink.

Similarly, in the modern age, we seek to remove the unwanted, usually ran-

dom, noise corrupting the signals. The most obvious situation where this
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is required is in communication systems, where the transmitted signal is

corrupted in a random manner by a variety of possible mechanisms, such

as thermal noise or interferences of different kinds. Recovering the original

message from the observations in this case is a complicated (filtering) prob-

lem, which, except for several special cases, still presents a major challenge

to researchers.

The task has proved to be especially difficult under conditions of fad-

ing communication channels. With rapid advances in modern technologies

and increasing access to, and use of, digital communications, the demand

for fast and accurate filtering techniques capable of coping with such condi-

tions is becoming more and more prevalent. However, physical limitations

and impairments of the transmission channels such as multiple-access and

co-channel interferences, time-variation and frequency selectivity, amplitude

fading and phase distortion, multiplied by the potential user mobility and

the random nature of the system in general, make the situation extremely

problematic. The task can be greatly facilitated by the use of an efficient sig-

nal processing technique, and the Sequential Monte Carlo (SMC) (or particle

filtering) approach, recently emerged in the field of statistics and engineering,

is believed to be such a key leading technology.

The Sequential Monte Carlo methods are a set of powerful and versatile

simulation-based algorithms to perform optimal state estimation in nonlinear

non-Gaussian state space models. The approach has recently received a lot

of interest since it allows a large number of challenging non-linear estimation

tasks to be addressed in an efficient on-line manner; see [Doucet et al., 2001a]

for a survey. The idea is to approximate the posterior distribution of interest

by swarms of weighted points in the sample space, called particles, which

evolve randomly in time according to a simulation-based rule, and either

give birth to offspring particles or die according to their ability to represent

the different zones of interest of the state space.

Since many problems arising in digital communications can be consid-

ered as optimal filtering problems, the SMC seems to be a sensible choice,

and this research investigates the application of these promising techniques

to a variety of problems associated with digital communications. In order
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to develop a general framework for addressing a number of applications, we

formulate the model in a general form, including such essential concepts as

channel coding, modulation, spread spectrum techniques, space diversity and

multiuser transmission, and represent each individual task as a particular

case of this general system. The transmission in fading environment is con-

sidered throughout the thesis, and we begin our treatment with demodulation

of symbols in flat fading conditions with a possibly non-Gaussian additive

channel noise. We then show how to extend the proposed approach for the

detection of coded sequences, space diversity and multiuser demodulation.

Joint symbol detection and propagation delay estimation in direct sequence

(DS) spread spectrum systems is considered later in the thesis. The advan-

tage of the proposed approach is the fact that many other applications could

be addressed in the same framework, such as channel and code delay estima-

tion, for instance. Moreover, further extensions including more complicated

scenarios (asynchronous code division multiple access (CDMA) is one of the

examples) could be obtained straightforwardly using the developed methods.

During our research, we identified two classes of problems typical for

digital communications. In the first one, the unknown state of the model

- usually the transmitted symbol(s) - takes its values in a finite set; this

includes, for example, demodulation in fading channels (Chapter 4 and 6),

orthogonal frequency division multiplexing (OFDM) systems and multiuser

detection in synchronous CDMA (Chapter 5). In the second class, one faces

a more challenging problem where the unknown state of interest consists not

only of the symbol(s) but also some continuous-valued parameters such as

code delays as in DS spread-spectrum system analyses (Chapter 7).

For the first class, we begin with an efficient particle filtering algorithm,

which is designed to make use of the structure of the model, and incorporates

efficient variance reduction strategies based on Kalman filtering techniques

and the use of importance distribution proven to be optimal in this framework

(Chapter 4). The detection problem in this case can be reformulated as

an optimal filtering problem for jump Markov linear systems; i.e. linear

Gaussian state space models switching according to an unobserved finite state

space Markov chain. Several other deterministic and stochastic approaches
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are applicable in this scenario, and we review and compare them in this thesis

(Chapter 6). Such comparison has never been done before, and one might

find the obtained results surprising.

Unfortunately, these detection schemes cannot be applied straightfor-

wardly to solve the problems of the second class. However, taking these

results into account, we develop and test several algorithms based on these

approaches, to obtain an efficient SMC receiver for the applications involv-

ing both discrete and continuous-valued unknown parameters. An extensive

simulation study is presented for all examples considered in the thesis.

To summarize, this thesis proposes:

• a general framework for addressing a variety of digital communication

applications using Sequential Monte Carlo methods;

• an efficient particle filtering receiver for demodulation of symbols in

flat fading conditions, incorporating variance reduction technique and

optimal importance distribution;

• its straightforward extensions to the non-Gaussian additive noise sce-

nario, joint symbol decoding and demodulation, space diversity and

multiuser detection among others;

• a general review and comparison of deterministic and randomized ap-

proaches for the problems involving jump Markov linear systems;

• an efficient SMC algorithm based on a combination of deterministic

and stochastic schemes for the problems involving both discrete and

continuous-valued parameters;

• an efficient technique for joint symbol/code delay estimation in DS

spread spectrum systems in a multipath environment with potential

extension to asynchronous CDMA;

• an extensive simulation study of all the algorithms developed.
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1.2 Thesis Outline and Reading Directions

As a guide to reading this thesis, we now briefly summarize its structure.

The thesis consists of eight chapters, presenting introductory and review ma-

terial (Chapters 1, 2 and 3), our analysis and novel contributions (Chapters 4,

5, 6 and 7), and some conclusions and directions for future research (Chapter

8).

Mainly, the work might be of interest to two groups of people with a back-

ground in communications and in simulation-based methods, and is organised

with that in mind. Although we hope everyone finds the overview of a digital

communication system (Chapter 2) and non-linear and non-Gaussian filters,

including particle filters, (Chapter 3) useful, these chapters could be skipped

if necessary. Chapters 4, 6 and 7, describing the algorithms developed in this

thesis, are self-contained and can be read independently. For each chapter, at

the beginning, we briefly recall the model for the digital communications ap-

plication under consideration, then describe the proposed algorithm(s), and,

finally, present corresponding computer simulations followed by a discussion.

It is, however, preferable to read Chapter 5 in conjunction with the preceding

chapter, since it is based on the material presented there. In general, those

readers, whose main research activities lie in the area of Sequential Monte

Carlo Methods might be interested in the results obtained in Chapters 6 and

7. The receivers developed in Chapters 4, 5, 6 and 7, hopefully, will be of

some benefit to the readers with communications background.

Chapter 1: Introduction

This chapter has begun the thesis with an exposition of the topic, providing

the motivation and perspective of the work as well as highlighting its main

contributions. The chapter also summarizes the structure of the thesis, sug-

gests some reading directions and concludes with a list of publications based

on the described work.

Chapter 2: A Digital Communication System
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The basics of a modern digital communication system employing channel

coding, modulation, spread spectrum techniques, space diversity and mul-

tiuser transmission are described in this chapter. A general mathematical

model representing typical characteristics of these main components as well

as the multipath fading transmission channel with possibly non-Gaussian

additive noise is then presented. The estimation objectives for this general

set-up, and several particular digital communication problems, are stated in

the following section, which also serves as a road map to the rest of the thesis.

Two classes of problems typical for digital communications are discussed at

the end.

Chapter 3: Bayesian Filtering

The chapter introduces the Bayesian approach to filtering, with several non-

linear and non-Gaussian filters previously proposed in the literature being

reviewed. The mathematical formulation of the general state-space model

studied in this dissertation is presented. A particular emphasis is placed on

the relatively novel Sequential Monte Carlo approach, and the basic ideas of

particle filtering techniques and some strategies for their efficient implemen-

tation are discussed.

Chapter 4: Particle Filtering for Demodulation in Flat Channels

The problem of demodulation of M-ary modulated signals in flat Rayleigh

fading channels in the presence of non-Gaussian additive noise is addressed

here. An efficient simulation-based algorithm based on SMC methods and

combining sequential importance sampling, a selection scheme, and several

variance reduction techniques is developed. An application of the algorithm

to uncoded and coded M-ary phase shift keyed (PSK), differential phase

shift keyed (DPSK) and quadrature amplitude modulated (QAM) signals is

presented and an extensive simulation study is carried out.

Chapter 5: Extended particle filtering receiver

The chapter extends the proposed particle filtering demodulator to perform

joint demodulation and decoding, optimal (space) diversity combining, and
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multiuser detection. The results obtained by means of computer simulations

are discussed at the end of the chapter.

Chapter 6: Detection Estimation Algorithm for Demodulation

The particle filtering algorithm developed in the previous chapters is reviewed

and compared with alternative deterministic and stochastic algorithms pre-

viously presented in the literature for this class of problems. We discuss

and test these approaches for demodulation and CDMA detection in flat

fading channels, and demonstrate their performance by means of computer

simulations.

Chapter 7: Joint Symbol/Delay Estimation in Spread Spectrum

Systems

Finally, we develop a new receiver for joint symbol, channel characteristics

and code delay estimation for DS spread spectrum systems under conditions

of multipath fading. The proposed algorithms are based on the results ob-

tained in the previous chapter and combine sequential importance sampling,

deterministic scheme and selection. An extensive simulation study is carried

out and demonstrates the performance of the suggested approaches.

Chapter 8: Conclusion

This final chapter closes the thesis by summarizing and discussing the results

obtained during this research, and considering some possible future directions

arising from this work.

1.3 Publications

Some of the material in this thesis has been, or will be, published else-

where. Technical reports and non-reviewed material are not included. In

some cases, the conference papers contain material overlapping with the jour-

nal publications.
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2 A Digital Communication System

In a digital communication system, the information generated by a source

or a number of sources, whether analog or discrete, is processed in a digital

form, i.e. as a sequence of binary digits obtained after source encoding. A

communication channel providing a link between the transmitting and re-

ceiving ends of the system is an important consideration in the system con-

struction. Its characteristics generally affect the design of the basic elements

of the system, a detailed description of which is given in this section.

The overview below incorporates such essential concepts as channel cod-

ing, modulation, spread spectrum techniques, space diversity and multiuser

transmission. A specified mathematical model represents typical character-

istics of these main components and the transmission channel.

We consider here a rather general, modern system responsible for the

transmission of information generated by several information sources to one

or more destinations. The basic elements of such a system are illustrated

in Figure 2.1, and we start with the treatment of these main components.

We then define the estimation objectives and the digital communications

problems associated with them, and, finally, discuss two classes of problems

identified in this thesis.
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Figure 2.1: Digital communication system.
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Figure 2.2: Channel Encoding.

2.1 Digital communication system model
Hereafter, we denote for any sequence αn, αi:j , (αi, αi+1, . . . , αj)

T, and

for any sequence αk,n, αk,i:j , (αk,i, αk,i+1, . . . , αk,j)
T.

2.1.1 Channel encoding

In a well-designed digital system, each information sequence is first passed

to a channel encoder which introduces, in a controlled manner, some carefully

designed structure to a data word in order to protect it from transmission

errors [Lin & Costello, 1983]. This added redundancy enables a receiving

system to detect and possibly correct errors caused by corruption from the

channel, and, thus, improve the accuracy and reliability of the system in the

presence of noise and interferences. This process is also known as forward

error correcting (FEC), and can be employed as follows.

The encoder takes κ information bits at a time from the original data

stream, and maps them in a certain known way into a unique Ncode -bit

sequence called a code word (see Figure 2.2 for an example of channel encod-

ing). For clarity of presentation, we assume that Ncode = κR, thus resulting

in R output 2κ-ary symbols per input data word and a code ratio of 1/R.

Let dk,n be an indicator variable associated with one of M = 2κ possible

κ-bit symbols for the nth input to the encoder from the kth information
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Figure 2.3: Convolutional encoder.

source:

dk,n ∈ M = {1, 2, . . . , M}, n = 1, 2, . . . ,

and rk,1+(n−1)R:nR be the corresponding output, which in the general case of

the code with memory depends on several preceding data words:

rk,1+(n−1)R:nR = Φ (dk,n−Λ+1:n) , (2.1)

where Φ(•) is a known mapping function, and Λ is, for example, the constraint

length for the convolutional code in κ-bit bytes; rk,q indicates one of M = 2κ

possible symbols (see Figure 2.3):

rk,q ∈ M = {1, 2, . . . , M}, q = 1, 2, ...,

Thus, q = 1 + (n − 1) R, . . . , nR output 2κ-ary symbols correspond to the

original input symbol dk,n:

dk,n ↔ rk,1+(n−1)R:nR n = 1, 2, . . .
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2.1.2 Interleaving

Although usually transmitted data are interleaved as well as coded in

order to avoid the burst errors exhibited by different classes of channels, no

interleaving is assumed for the system described in this thesis for reasons

specified in Chapter 5.

2.1.3 Modulation

The non-binary code described above is particularly matched to a M -

ary modulation technique, for which the κ-bit symbols are mapped into

M = 2κ deterministic, finite energy analogue waveforms {s(m)
trans, k(τ ), m =

1, 2, . . . , M} so that the information could be transmitted over the commu-

nication channel. The signal waveform for the kth user corresponding to the

qth symbol may be represented as

strans, k(τ) = Re[sk,q(rk,1:q)uk(τ ) exp(j2πfcarτ )], (q − 1)Tq ≤ τ ≤ qTq,

(2.2)

where fcar is a carrier frequency, sk,q(·) performs the mapping from the digital

sequence to waveforms and, in a general case of a modulator with memory (for

example, when differential encoding is employed, see Chapter 4), it depends

on one or more previously transmitted symbols rk,1:q, and Tq is the symbol

duration (the duration of the coded word r(n−1)R+1:nR is then TqR). The form

of the waveform uk(τ) is discussed in the next subsection.

In this thesis we assume that a linear modulation scheme such as phase

shift keying (PSK) or quadrature amplitude modulation is employed. Differ-

entially encoded symbols are also considered in Chapter 4. The corresponding

forms of the function sk,q(·) are presented in Chapter 4.

2.1.4 DS Spread-Spectrum techniques

In order to enable the transmission of several distinctive information-

bearing signals through the same channel, direct sequence (DS) spectrum

spreading is used in the system.

Originally, this technique was developed for military purposes for low-
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Figure 2.4: Generation of DS spread spectrum signal.
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detectability signal transmission. By using an auxiliary pseudo-noise (PN)

process that “looks” random to an “outsider”, a weak low-powered message

is hidden in the background noise. The message could be recovered by the

intended receiver, however, anyone else who has no knowledge of the PN code

sequence is unable to detect its presence in the signal. Hence, the signal has

a low probability of being intercepted (LPI) and is called correspondingly.

It is not only the recovery of the message by an unauthorized receiver

that could be prevented, the resulting signal is inherently robust to many

channel impairments due to its antijamming capability. Indeed, as the name

suggests, the spectrum of the original narrowband signal is spread over a

much greater frequency range, thus resulting in a significantly wider band

(wideband signal). In a DS spectrum spreading system, this is due to the use

of the shorter symbols called “chips” in PN waveform u(τ):

u(τ) =
H∑

h=1

chη(τ − hTch).

Here c1:H is a spreading code sequence consisting of H chips (with values

{±1}) per symbol, η(τ − hTch) is a rectangular pulse of unit height and du-

ration Tch transmitted at (h − 1)Tch < τ ≤ hTch and Tch is the chip interval

satisfying the relation Tch = Tq/H (see Figure 2.4). The original narrowband

message is multiplied by u(τ), resulting in a much faster transmitted signal

with larger frequency components and a wider spectrum. However, multi-

plication by the same u(τ) is performed at the receiver end again, while the

information-bearing signal is de-spreading (as illustrated in Figure 2.5). This,

in turn, spreads the spectrum of any interference, hence, lowering its power

density, and, therefore, allowing the design of the system to be more robust

to channel impairments.

The same idea allows several (in our case K) simultaneous users to share

the same channel bandwidth in a code division multiple access (CDMA)

system [Verdu, 1998]. This is performed by providing each user with its own

unique signature sequence (spreading code) ck,1:H , resulting in a spreading
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Figure 2.5: Antijamming capability of the spread spectrum signals.
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Figure 2.6: Multipath environment.

waveform for the kth user:

uk(τ ) =
∑H

h=1 ck,hη(τ − hTch) k = 1, . . . , K.

In order to ensure low level of interference between the users and efficient

separation of the signals, the sequences should have good cross-correlation

properties (see [Viterbi, 1995] for the choice and generation of PN sequences).

If no spectrum spreading is employed in the system it is assumed that

u(τ) = η(τ − Tq),

with Tq = Tch and H = 1. This is not a practical choice for a pulse shaping

filter but the following derivations could be extended to other pulse shapes.

2.1.5 Communication channel

The signal is passed from the transmitter to the receiver through a com-

munication channel, which can be any physical medium used for the trans-

mission of information, from a pair of wires that carry an electrical signal
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Figure 2.7: A tapped-delay-line model for multipath channel.

to free space over which the information is radiated by antennas. Many of

them, of course, are not purpose-built for communications, and, therefore,

are characterized by different kinds of amplitude and phase distortion as well

as additive (or thermal) noise.

Furthermore, in some scenarios, several transmission paths from the trans-

mitter to the receiver may be distinguishable due to various signal reflections

(multipath), which, in turn, can add constructively or destructively result-

ing in signal fading (Figure 2.6). In addition, the different time delays of

the individual component waves can cause interference between transmitted

symbols (intersymbol interference).

From the modelling point of view, the channel is a description of this

impact of the communication medium on the transmitted signal.

2.1.5.1 Channel response

This impact can be characterized by the impulse response of the channel

which, due to the nature of multipath, is complex (causing both phase and

amplitude distortions) and time-variant.

A tapped-delay-line (Figure 2.7) can be used for channel representation

since it explicitly shows that the received signal is a superposition of the

delayed and attenuated versions of the input signal. The taps are spaced Ts
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seconds apart, and the tap weights indicate the contributions of the signal

reflections arriving with different time delays. The equivalent discrete-time

impulse response of the lth subchannel of the kth user can then be represented

as follows:

h
(l)
channel k,t =

∑G−1
g=0 f

(g,l)
k,t δ(t − g),

where t is a discrete time index, G is the number of paths of the channel, f
(g,l)
k,t

are the complex-valued time-varying multipath coefficients for the kth user

and lth antenna arranged into vector f
(l)
k,t, and δ(t− g) stands for Dirac func-

tion. The channel length G is considered to be the same for all subchannels

l = 1, . . . , L.

In general, it is impossible to provide a generic description of the channel

characteristics in a real-life scenario – all kinds of unpredictable changes

constantly alter the signal propagation conditions and, as a result, multipath

coefficients (see Figure 2.8 for an example of the response of the multipath

channel to a very narrow pulse, θi,j denotes the delay of the jth path at time

ti). The transmission channel, therefore, has to be described statistically.

2.1.5.2 A statistical description of the transmission channel

Over the years, considerable research has been carried out into the mod-

elling and classification of communication channels which is reflected by the

large number of publications in the area (a detailed overview on the subject

is given in [Biglieri et al., 1998]). Due to the rapid evolution of mobile sys-

tems, a significant amount of this research was directed into characterization

of multipath channels typical for wireless systems. Several statistical models

based on multiple experiments and analyses of the physics of the channels

have been proposed and validated.

One of the widely acceptable scenarios, which is under consideration in

this thesis, is Rayleigh fading. It is based on the assumption of a large num-

ber of scatters in the channel, which after the application of the central limit

theorem results in a Gaussian process model, leading to the Rayleigh distri-

bution of the channel response envelope for the zero-mean channel [Jakes,

1974]. A zero-mean channel assumption particularly applies when the re-
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Figure 2.8: Multipath channel response to a very narrow pulse.
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ceiver and the transmitter have no line-of-sight connection because of the

lack of dominance of any particular reflected wave. This is typical for ur-

ban environment, where a large number of buildings and trees obstruct the

transmitted signal.

When there is a predominant line-of-sight between the transmitter and

the receiver the above no longer holds since the mean value of (at least) one

component is non-zero due to a strong wave (in addition to the Rayleigh

fading), and the channel is described as Rician (with the channel response

envelop distributed according to Rice distribution).

An alternative probability function, which provides more flexibility and

accuracy in matching the observed signal statistics and includes both Rayleigh

and Rician models as a special case, is the Nakagami-m distribution.

2.1.5.3 Fading types

All statistical models presented in the previous subsection describe so-

called small-scale fading. Large-scale fading refers to the path loss caused

by motion over large areas due to considerably large physical objects (like

hills and forests), and is described in terms of a mean loss and variations

around it. Large-scale fading is reflected only on the strength of the received

signal, and will not be considered in this thesis (see [Rappaport, 1996] for

more details).

We will look, however, at different types of small-scale fading, both in

terms of the signal dispersion and time variance of the channel (see Figure

2.9).

Due to the signal dispersion a transmitted digital pulse is spread in time,

and if this maximum spread Tm is greater than the duration of the symbol, it

overlaps with the other pulses transmitted at adjacent times (a phenomenon

known as intersymbol interference), and frequency selective fading occurs.

This happens when the coherence bandwidth of the channel fco (a range of

frequencies over which the channel passes all spectral components with ap-

proximately equal gain and linear phase, fco ∝
1

Tm
) is smaller than the signal

bandwidth Ws: Ts < Tm, i.e. fco < 1
Ts

≈ Ws, and, as a result, the spec-

tral components of the signal are affected in a different way by the channel.
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Figure 2.9: Fading types.

If this does not occur, the fading is called flat, meaning that the channel

characteristics are approximately flat for all frequencies; such a channel has

actually only one path, G = 1.

The time variability of the channel depends on its coherence time of the

channel Tco (an expected time during which the channels response is essen-

tially invariant); if it is smaller than the symbol duration Ts, the fading is

considered to be fast. This occurs when the signal bandwidth Ws is less than

the maximum Doppler frequency shift fd of the signals in the mobile envi-

ronment, where fd depends on the relative velocity between the transmitter

and the receiver ν, and the wavelength of the transmitted signal λ: fd = ν/λ.

Otherwise, the slow fading conditions are exhibited.

A common way to quantify this is to refer to the normalized Doppler

frequency (or Doppler rate) defined as the product of the maximum Doppler

frequency shift and the transmission symbol period fdTs. The higher Doppler

rates lead to the faster varying channels.

All types of fading described above will be considered in this thesis.
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2.1.5.4 Channel modelling

As it was already mentioned, the channel is completely described by its

impulse response, which is usually regarded as a stochastic process due to

many random effects that occur in nature.

For many physical channels, including mobile communication channels,

the statistics of the fading can be considered approximately stationary over

long enough time intervals, and as such can be regarded as wide-sense sta-

tionary (WSS) [Bello, 1963]. The time-evolution of such processes can be

effectively modelled by a finite-order, complex, auto-regressive moving aver-

age (ARMA) model.

For the flat Rayleigh fading channel with just one path G = 1, it will

take the following form [Bello, 1963]:

f
(l)
k,t = a

(l)T
k f

(l)

k,t−1:t−ρ
(l)
k,1

+ b
(l)T
k v

(l)

k,t:t−ρ
(l)
k,2

, (2.3)

where a
(l)
k and b

(l)
k are the vectors of length ρ

(l)
k,1 and ρ

(l)
k,2 containing ARMA

coefficients, f
(l)
k,t is a complex channel disturbance for the lth subchannel kth

user, and v
(l)
k,t is complex Gaussian noise with independent and identically

distributed (i.i.d.) zero-mean real and imaginary components of variance 1,

v
(l)
k,t

i.i.d.
∼ Nc (0, 1).

This model, however, is difficult to use in a multipath environment due

to its high complexity for the number of taps G > 1. Therefore, for the

frequency-selective fading scenario, we adopt a simple first order autore-

gressive (AR) model (ρ
()
k,1 = 1, ρ

(l)
k,2 = 1), which, nevertheless [Iltis, 1990;

Komninakis et al., 1999] captures most of the channel tap dynamics:

f
(g,l)
k,t = a

(g,l)
k f

(g,l)
k,t−1 + b

(g,l)
k v

(g,l)
t , g = 0, . . .G − 1.

In this thesis, the coefficients of the model are assumed known, and their

choice is discussed in Chapters 4 and 7.



24 A Digital Communication System

2.1.6 Diversity receiver

A major problem with the fading channels is when the signal has a large

magnitude fade and becomes unreadable (deep fade). In this case, unless

another replica of the same transmitted signal are available, it might be

impossible to recover transmitted symbols, and they might be lost.

To overcome this problem, a receiver with multiple antennas is employed

in the system. If the antennas are spaced sufficiently far apart (more than

half of the wavelength), the transmitted signals have different propagation

paths and their fading statistics can be considered independent. Since deep

fades rarely occur simultaneously during the same time intervals on two or

more paths, the receiver level could be considerably improved.

We assume that a diversity receiver with L antennas is employed. The

complex output of the lth subchannel y
(l)
t at instant t can, thus, be expressed

as

y
(l)
t =

∑K
k=1

∑G−1
g=0 f

(g,l)
k,t strans, k ((t − g)Ts − θk,t) + ε

(l)
t ,

l = 1, . . . , L,
(2.4)

where the channel length G is considered to be the same for each subchannel,

θk,t represents the unknown propagation delay for the kth user transmitted

waveform strans, k (τ ) and ε
(l)
t is complex zero-mean additive noise at each

subchannel. We assume that the delay corresponding to a user is the same

for all receiver antennas.

The output y
(l)
t is sampled at the Nyquist rate T−1

s , with Ts = Tch/2 due

to the PN bandwidth being approximately equal to 1/Tch, resulting in two

samples per chip. This means that 2H samples (t = 2H (q − 1)+1, . . . , 2Hq)

correspond to each (qth) 2κ-ary symbol obtained after coding, i.e.

rk,q ↔ y
(l)
2H(q−1)+1:2Hq

, l = 1, . . . , L, k = 1, . . . , K,

and 2HR samples (t = 2HR (n − 1) + 1, . . . , 2HRn) correspond to the orig-

inal nth symbol transmitted

dk,n ↔ y
(l)
2HR(n−1)+1:2HRn

l = 1, . . . , L, k = 1, . . . , K.



2.1 Digital communication system model 25

For channels with no delay θk,t = 0, k = 1, . . .K, the transmitted infor-

mation sequence for each user should be oversampled correspondingly, and a

discrete time equivalent model [Forney, 1972; Hoeher, 1992; Dai & Schwedyk,

1994; Proakis, 1995] can, thus, be obtained (see Chapter 5 for more details).

2.1.7 Propagation delay

Following [Iltis, 1990], we assume that the code delay also propagates

according to a first-order AR model

θk,t = γkθk,t−1 + σk,θϑk,t, ϑk,t
i.i.d.
∼ Nc (0, 1) ,

with the coefficients γ and σk,θ adjusted to account for transmitter and re-

ceiver timing jitter (see [Iltis, 1990] for details). In the above expression, ϑk,t

is a complex white Gaussian process with i.i.d. real and imaginary compo-

nents of variance 1, ϑk,t
i.i.d.
∼ Nc (0, 1).

2.1.8 Non-Gaussian additive noise

As mentioned above, the signal at each receive antenna is corrupted by

complex zero-mean additive noise ε
(l)
t . We assume that real and imaginary

parts of ε
(l)
t are mutually independent i.i.d. random sequences distributed

as a mixture of zero-mean1 Gaussians with a known number of components

Z, the same for all subchannels l = 1, . . . , L. This assumption allows us to

model non-Gaussian noise and, in particular, outliers.

In order to identify the parameters (the variance in our case) of the distri-

bution from which the noise samples are drawn, it is convenient to introduce

a latent allocation variable z
(l)
t ,

z
(l)
t ∈ Z = {1, 2, . . . , Z}, t = 1, 2, . . . ,

such that

Pr(z
(l)
t = ξ(l)) = λξ(l) , for ξ(l) = 1, . . . , Z, l = 1, . . . , L,

1The extension to non-zero mean Gaussian components is straightforward.
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Z∑

ξ(l)=1

λξ(l) = 1, l = 1, . . . , L.

Given the values of z
(l)
t , the additive noise component at time t is drawn from

the complex Gaussian distribution with standard deviation σ
(l)
zt correspond-

ingly. Thus, one obtains

ε
(l)
t = σ

(l)
zt ε

(l)
t , ε

(l)
t

i.i.d.
∼ Nc (0, 1) , (2.5)

2.2 Digital communications problems
In this thesis we assume that the symbols dk,n, the channel characteristics

f
(l)
k,t and the code delays θk,t are unknown for k = 1, . . . , K, l = 1, . . . , L,

n > 0 and t > 0; and our aim is to obtain sequentially in time the estimates of

these parameters based on the currently available data y1:2HRn – the process

known as filtering.

2.2.1 Selected digital communications applications

Formulated in this general form, the problem has many particular cases

that are of great interest in digital communications. A diagram presented

in Figure 2.10 indicates some of them, mainly, the ones that this disserta-

tion concerns. However, the results, and, indeed, the diagram itself, can be

significantly extended.

2.2.2 Classification of digital communications

problems

From a methodological point of view, these cases fall into two general

classes (Figure 2.11). In the first one, the unknown state of the model –

typically the transmitted symbols – takes its values in a finite set and one is

concerned with exponentially increasing number of terms in the summations;

this includes, for example, demodulation in fading channels, or multiuser de-

tection in synchronous CDMA. This type of models is also known as jump

Markov linear systems, i.e. linear Gaussian state space models switching ac-
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Figure 2.10: Selected digital communications applications.
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Figure 2.11: Classification of digital communications problems.
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cording to an unobserved finite state space Markov chain. In the second class,

one faces a more challenging problem where the unknown state of interest

consists not only of the symbols but also some continuous-valued parameters,

such as the code delays as in DS spread-spectrum system analyses, and the

integration required to obtain the estimates of interest cannot be performed

analytically. A development of efficient filtering algorithms for both these

classes is of interest in this thesis.

Even in its simplest form (demodulation in flat fading channels), the prob-

lem still presents a great challenge for researchers, and requires the use of an

accurate filtering technique capable of coping with the difficult transmission

conditions described above. We will now review the non-linear non-Gaussian

filters previously proposed in the literature with particular emphasis on par-

ticle filters – the technique which has recently gained much interest in the

literature and proved to be useful in multiple complicated scenarios. This

approach shows a great promise for our purposes and is investigated in this

dissertation.
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In many engineering applications, one needs to extract the signal from the

data corrupted by additive random noise and interferences of different kinds

in order to recover the unknown quantities of interest. The data often arrive

sequentially in time and, therefore, require on-line decision-making responses.

Except for several special cases restricted to a narrow linear Gaussian class

of models, this problem still presents a major challenge to researchers. A

number of approximate filters have been devised for more complicated sce-

narios. However, until recently, there existed no general methodology when-

ever non-linearity or non-Gaussianity was involved. The Sequential Monte

Carlo (SMC) also known as particle filtering methods, recently emerged in

the field of statistics and engineering, are believed to be such a key leading

technology, and are the subject of this chapter.

We begin with the mathematical formulation of the general model studied

in this dissertation and the introduction of the Bayesian approach to filtering.

Several filters previously proposed in the literature are then reviewed, and,

finally, basic ideas of particle filtering techniques and some strategies for their

efficient implementation are discussed.
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3.1 Problem statement

3.1.1 State-space model

For the sake of clarity, we restrict ourselves here to the following state-

space model, which is of interest in this thesis2. The unobserved nx - dimen-

sional state of interest, {xn; n = 0, 1, 2, . . . }, changes over time according to

the system equation of the following form:

xn = Ψ (xn−1,vn) , (3.1)

and the ny-dimensional measurements yn, taken at discrete time points n =

1, 2, . . . , are given by

yn = Ω (xn, εn) , (3.2)

where Ψ (·) is a system transition function, Ω (·) is a measurement function,

and vn and εn are independent noise vectors with a known distribution. For

simplicity, the same notation is used throughout for both random variables

and their realization, and we also assume that the analytical forms of the

functions Ψ (·) , Ω (·) and the initial probability density of the state p(x0) are

known.

3.1.2 Bayesian inference

In this thesis, we follow the Bayesian approach, which provides an elegant

and consistent method of dealing with uncertainty. The Bayesian posterior,

p (x0:n|y1:n), reflects all the information we have about the state of the system

x0:n, contained in the measurements y1:n and the prior p (x0:n) , and gives

a direct and easily applicable means of combining the two last-mentioned

densities (Bayes’ theorem)3:

p (x0:n|y1:n) =
p (y1:n|x0:n) p (x0:n)

p (y1:n)
. (3.3)

2SMC can be applied in a more general setting.
3Recall that the sequences x0:n and y0:n denote respectively the signal and the obser-

vations up to time n: x0:n = {x0, . . . ,xn} and y1:n = {y1, . . . ,yn}.
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Taking into account that the observations up to time n are independent given

x0:n, the likelihood p (y1:n|x0:n) in the above equation can be factorized as

follows:

p (y1:n|x0:n) =
n∏

i=1

p (yi|x0:n) , (3.4)

and, since, conditional on xi, the measurement yi is independent of the states

at all other times, it is given by:

p (y1:n|x0:n) =

n∏

i=1

p (yi|xi) . (3.5)

In addition, as a result of the Markov structure of the system Equation (3.1),

the prior p (x0:n) takes the following form:

p (x0:n) = p (x0)

n∏

i=1

p (xi|xi−1) , (3.6)

resulting in the posterior probability density being equal to

p (x0:n|y1:n) =
p (x0)

∏n

i=1 p (yi|xi) p (xi|xi−1)

p (y1:n)
. (3.7)

3.1.3 Filtering objectives

Our objective is to obtain the estimates of the state at time n, conditional

upon the measurements up to time n̆, such as, for example, Minimum Mean

Square Estimate (MMSE) of xn:

x̂MMSE
n = Ep(xn|y1:n̆)[xn] =

∫
xnp (xn|y1:n̆) dxn, (3.8)

or Marginal Maximum A Posteriori (MMAP) given by:

x̂MMAP
n = arg max

xn

p (xn|y1:n̆) . (3.9)
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These can obviously be extended to estimating the functions of the state

instead of the state itself:

Υ̂(xn)
MMSE

= Ep(xn|y1:n̆) [Υ(xn)] =

∫
Υ (xn) p (xn|y1:n̆) dxn.

Calculating p (xn|y1:n̆) for n̆ = n, and hence the estimates of xn, given

the data up to time n, is the aim of Bayesian filtering and a primary subject

of this dissertation. One might also be interested in the related problems of

evaluating p (x0:n|y1:n̆) for n̆ > n (smoothing) or for n̆ < n (prediction).

3.1.4 Sequential scheme

The probability density of interest p (xn|y1:n) can be obtained by marginal-

ization of (3.7), however, the dimension of the integration in this case grows

as n increases. This can be avoided by using a sequential scheme.

A recursive formula for the joint probability density can be obtained

straightforwardly from Equation (3.7):

p (x0:n|y1:n) = p (x0:n−1|y1:n−1)
p (yn|xn) p (xn|xn−1)

p (yn|y1:n−1)
, (3.10)

with the marginal p (xn|y1:n) also satisfying the recursion [Sorenson, 1988]:

p (xn|y1:n−1) =

∫
p (xn|xn−1) p (xn−1|y1:n−1) dxn−1, (3.11)

p (xn|y1:n) =
p (yn|xn) p (xn|y1:n−1)

p (yn|y1:n−1)
, (3.12)

where

p (yn|y1:n−1) =

∫
p (yn|xn) p (xn|y1:n−1) dxn. (3.13)

Equations (3.11) and (3.12) are called respectively prediction and updating.

The above expressions are deceptively simple, however, since the inte-

grations involved are usually intractable. One cannot typically compute the

normalizing constant p (y1:n) and the marginals of p (xn|y1:n) , particularly,

p (xn|yn), except for several special cases when the integration can be per-
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formed exactly. The problem is of great importance, though, which is why a

great number of different approaches and filters have been proposed, and in

the next subsection we will briefly review some of them.

3.2 Standard approach to filtering
The major breakthrough in the filter theory4 was due to Kalman and

Bucy [Kalman & Bucy, 1961], who noticed that Equations (3.11-3.13) could

be solved to produce the Kalman filter for a linear Gaussian class of problems.

The Kalman filter was then extended (EKF) to consider more general non-

linear non-Gaussian scenario. Later, with the increase in computer power,

more computationally expensive filters were introduced approximating the

posterior of interest by mixture distributions, with the Gaussian sum filter

and Interacting Multiple Model algorithm among others. Finally, the grid-

based methods evaluating the required density as a set of nodes covering the

state space appeared. All these methods are briefly described in this section,

where we also mention some problems associated with their use.

3.2.1 Kalman filter

If the state space model is linear, with uncorrelated system and observa-

tion Gaussian noise and a Gaussian prior, i.e. Equations (3.1-3.2) are of the

following form:

xn = Axn−1 + Bvn, vn
i.i.d.
∼ N (0, Inv

) ,

yn = Cxn + Dεn, εn
i.i.d.
∼ N (0, Inε

) ,

with x0 ∼ N (x̂0,Σ0) ,

(3.14)

the probability densities p (xn|y1:n−1) and p (xn|y1:n), which can be regarded

as the prior and posterior at time n, are themselves Gaussian random vari-

ables. Here, A, B, C and D are, correspondingly, nx ×nx, nx ×nv, ny ×nx,

and ny×nε,matrices5. A probability distribution of a Gaussian random vari-

4for the state-space models
5Recall also the assumptions specified in Subsection 3.1.1.
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able is uniquely defined by its mean vector and covariance matrix, which, in

turn, can be updated according to Equation (3.11-3.13).

If one sets x0|0 = x̂0 and Σ0|0 = Σ0, and denotes the mean and covariance

of the prior Gaussian p (xn|y1:n−1) at time n by xn|n−1 and Σn|n−1, and the

mean and covariance of the posterior Gaussian p (xn|y1:n) at time n by xn|n

and Σn|n, then, for n = 1, ..., T, the Kalman filter proceeds as follows

xn|n−1 = Axn−1|n−1,

Σn|n−1 = AΣn−1|n−1A
T + BBT,

xn|n = xn|n−1 + Σn|n−1C
TK−1

n

(
yn − Cxn|n−1

)
,

Σn|n = Σn|n−1 − Σn|n−1C
TK−1

n CΣn|n−1,

(3.15)

where the ny × ny matrix Kn is the Kalman gain:

Kn = CPn|n−1C
T + DDT. (3.16)

These equations could be easily adapted to consider prediction and smooth-

ing [Anderson & Moore, 1979]. For the other cases when Equations (3.11-

3.13) could be solved see, for example, [Daum, 1988].

3.2.2 Extended Kalman Filter

Although the Kalman filter is extremely simple and optimal in the linear

Gaussian scenario, new methods of filtering were required to consider more

general case. Therefore, a number of approximate filters have been devised.

Extended Kalman filter (EKF) is historically the first [Jazwinski, 1973], and,

probably, most used one. The idea is to use a Taylor expansion to linearize

the system and observation Equations (3.1-3.2), and, thus, approximate the

system and noise distributions as Gaussians. The Kalman filter can then be

used to obtain the solution for the resulting system.

Let us consider the following more general state space model :

xn = Ψ1 (xn−1) + Bvn, vn
i.i.d.
∼ N (0, Inv

) ,

yn = Ω1 (xn) + Dεn, εn
i.i.d.
∼ N (0, Inε

) ,
(3.17)
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where B and D are the nx × nv, and ny × nε matrices.

Using a Taylor expansion about the current estimate of the mean of the

state xn−1|n−1, one obtains

xn ≈ Ψ1(xn−1|n−1) + ∂Ψ1(x)
∂x

∣∣∣
xn−1|n−1︸ ︷︷ ︸

An−1

(
xn−1 − xn−1|n−1

)
+ Bvn, (3.18)

Similarly, the observation equation can be linearized about xn|n−1

yn ≈ Ω1(xn|n−1) + ∂Ω1(x)
∂x

∣∣∣
xn|n−1︸ ︷︷ ︸

Cn

(
xn − xn|n−1

)
+ Dεn, (3.19)

Applying the Kalman filter to these approximations (3.18-3.19) gives the

EKF equations:

xn|n−1 = Ψ1

(
xn−1|n−1

)
,

Σn|n−1 = An−1Σn−1|n−1A
T

n−1 + BBT,

xn|n = xn|n−1 + Σn|n−1C
T

nK
−1
n

(
yn − Ω1

(
xn|n−1

))
,

Σn|n = Σn|n−1 − Σn|n−1C
T

nK
−1
n CnΣn|n−1,

(3.20)

where

Kn = CnPn|n−1C
T

n + DDT. (3.21)

The filter works quite well for a weakly non-linear system. For a systems

with higher degree of non-linearity, the accuracy of the linearization could be

increased, for example, by using Iterated EKF. The idea is to improve the es-

timates xn−1|n−1, xn|n−1 by smoothing, i.e. using the filter to estimate xn−1|n

as well as xn|n, and then re-linearizing the equations at time n− 1 about the

new estimate. This, in turn, will lead to a new xn−1|n−1, and a, hopefully,

better xn|n and xn−1|n. The algorithm could cycle repeatedly through the

data until there are no significant changes in the estimates [Wishner et al.,

1968].

A different way of reducing the error in the linearization approximation is
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by intelligent choice of the co-ordinates: for instance, using polar co-ordinates

instead of Cartesian as in [Collings & Moore, 1994, 1995]. Another suggestion

is to include quadratic terms in the Taylor expansion, although, at the cost of

increased computational load and complexity [Sorenson & Stubberud, 1968],

see also [Wishner et al., 1969] for the comparison of the EKF, iterated EKF

and EKF with quadratic terms.

Divergence is a further problem with the EKF occurring due to model

mis-specification. Since the model that the Kalman filter is solving is inac-

curate, the EKF can often considerably underestimate the covariance of its

estimate of the state, and, if the current estimate is poor, will struggle to

improve the accuracy with time. To overcome this, the old data could be

exponentially weighted [Fagin, 1964]. Alternatively, some extra uncertainty

could be included in the system by increasing Σn|n−1 [Fitzgerald, 1968; Wolf,

1968], or fixing it to a predetermined value obtained after processing a lim-

ited amount of data [Fitzgerald, 1968]. A more structured way to evaluate

filter performance [Jazwinski, 1973] is to include some small and random

residuals, and make the modifications to the noise input level according to

their size: if the residuals become large, which indicates the divergence, the

noise input increases.

3.2.3 Gaussian Sum filter

One way or another, the EKF and its variants always approximate the

probability densities as Gaussian ones, which is itself a false assumption.

With the increase in computer power, therefore, the efforts were directed

into developing the filters estimating the densities as mixture distributions;

and the Gaussian sum filter [Sorenson & Alspach, 1971; Alspach & Sorenson,

1972] is one of them.

The filter approximates the probability densities of all the non-Gaussian

model parameters by mixture of Gaussians, and, in a way, is an extension

of the Kalman filter or EKF allowing to cope with non-Gaussianity. The

probability densities p (xn|y1:n−1) and p (xn|y1:n) are also approximated by
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a Gaussian mixture with Nn terms at each time step:

p̂ (xn|y1:n−1) =
Nn∑

i=1

w
(i)
n|n−1N

(
xn;x

(i)
n|n−1,Σ

(i)
n|n−1

)
, (3.22)

p̂ (xn|y1:n) =
Nn∑

i=1

w
(i)
n|nN

(
xn;x

(i)
n|n,Σ

(i)
n|n

)
, (3.23)

where w
(i)
n|n−1 and w

(i)
n|n are the sets of weights, such that

∑Nn

i=1 w
(i)
n|n−1 =

1 and
∑Nn

i=1 w
(i)
n|n = 1. The means x

(i)
n|n and covariances Σ

(i)
n|n for the ith

term can be updated using the EKF, conditional on both, the term in the

densities mixture, Equation (3.22), and the term in the noise mixture (when

the noise as well is non-Gaussian). This means that at each time step, the

number of means and covariances calculated is Nn = Nn−1NvNε, where Nv,

Nε are correspondingly the number of terms in the system and observation

noise mixture approximation. This number grows exponentially with time,

and should be reduced at each step either by removing the terms with low

weight or by merging two “close” terms together. The details are given in

[Sorenson & Alspach, 1971], where the update equation for the weights could

also be found, and the issues with “best” Gaussian mixture approximations

are discussed.

As such, the Gaussian sum filter still uses the EKF, and, therefore, suf-

fers from its inaccuracies. The linearization error in this framework, however,

might be substantially reduced by using larger number of terms in the mix-

ture approximations.

3.2.4 Jump Markov Linear System Filters

The filters estimating the densities of interest by the mixtures of Gaus-

sians are particularly suitable for the Jump Markov Linear Systems (JMLS),

and a lot of work has been done in this direction.

The JMLS can be modelled as

xn = A(dn)xn−1 + B(dn)vn, vn
i.i.d.
∼ N (0, Inv

) ,

yn = C(dn)xn + D(dn)εn, εn
i.i.d.
∼ N (0, Inε

) ,
(3.24)
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where vn, and εn denote independent white Gaussian noise vectors, and dn

is an unobserved indicator variable, which takes its values in a discrete set

M

dn ∈ M = {1, 2, . . . , M}, n = 1, 2, . . . , (3.25)

and changes over time according to known transition probabilities:

pij = Pr {dn = j| dn−1 = i} , i, j ∈ M. (3.26)

For this model, if the value of d1:n was known6, it would be possible to

calculate the posterior p (xn|y1:n) straightforwardly in a sequential manner

with the help of the Kalman filter. For the unknown d1:n, however, the true

posterior at time n is a mixture with Mn Gaussian terms, each corresponding

to a specific value of d1:n and weighted accordingly:

p (xn|y1:n−1) =
∑

d1:n∈Mn

p (xn| d1:n,y1:n) p (d1:n|y1:n) . (3.27)

The weights p (d1:n|y1:n) of the Gaussians p (xn| d1:n,y1:n) could be estimated

recursively similar to Equation (3.11-3.12):

p (d1:n|y1:n−1) = p (dn| d1:n−1) p (d1:n−1|y1:n−1) , (3.28)

p (d1:n|y1:n) ∝ p (yn| d1:n) p (d1:n|y1:n−1) , (3.29)

and should sum to 1, with p (yn| d1:n) being the likelihood of the observations.

The means and covariances of the Gaussians could be propagated using the

Kalman filter.

Unfortunately, one faces the same problem of the exponentially increasing

computational complexity of the filter, therefore, the number of terms in the

mixture should be limited. A number of algorithms developed in order to

solve this problem will be briefly reviewed now.

6Recall that the sequences d1:n denotes d1:n = {d1, . . . , dn}.
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3.2.4.1 Detection-Estimation Algorithm

The Detection-Estimation Algorithm (DEA), first, proposed in [Tugnait

& Haddad, 1979] employs the simplest approach. The exponentially growing

computational cost of the filter is reduced by keeping at each stage only

a certain predetermined number of terms with the highest weights in the

mixture. The rest of the components are discarded. The number of Kalman

filters required in this approach is equal to the number of terms in the mixture

kept multiplied by the number of possible states M . This algorithm is studied

in more details in Chapter 6.

3.2.4.2 Random Sampling Algorithm

The Random Sampling Algorithm (RSA) of [Akashi & Kumamoto, 1977]

is based on an alternative approach. A sufficiently large number, say N,

of possible Markov chain sequences {d(i)
1:n}

N
i=1 is sampled, and, given these

samples, an approximation of the filtering density function is obtained as a

mixture of N corresponding Gaussians:

p̂RSA (xn|y1:n) =
N∑

i=1

w̃(d
(i)
1:n)p

(
xn| d

(i)
1:n,y1:n

)
, (3.30)

where w̃(d
(i)
1:n) denote normalized weights. The probability of any term being

sampled is proportional to its weight in the mixture. Similar to the DEA,

the computational load of this algorithm is proportional to MN.

3.2.4.3 Generalized Pseudo-Bayes Algorithm

The Generalised Pseudo-Bayes (GPB) algorithm assumes that the fil-

tering probability density, conditioned on lGPB last values of the indicator

variable dn−lGPB+1:n, is Gaussian:

p̂GPB (xn| dn−lGPB+1:n,y1:n) ∼ N (x̂n|n, Σ̂n|n), (3.31)
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with the mean x̂n|n and covariance Σ̂n|n of the Gaussian sum it is approxi-

mating:

x̂n|n =
M lGPB∑

i=1

x̂
(i)
n|np

(
d

(i)
n−lGPB+1:n

∣∣∣y1:n

)
, (3.32)

Σ̂n|n =

M lGPB∑

i=1

[
Σ̂

(i)
n|n +

(
x̂

(i)
n|n − x̂n|n

)
T
(
x̂

(i)
n|n − x̂n|n

)]
p
(

d
(i)
n−lGPB+1:n

∣∣∣y1:n

)
.

(3.33)

Here, x̂
(i)
n|n and Σ̂

(i)
n|n are obtained by using the Kalman filter conditional on

one of M lGPB possible sequences d
(i)
n−lGPB+1:n, i = 1, . . .M lGPB . At the next

time step, these mean and covariance are updated for the new sequence{
d

(i)
n−lGPB+2:n, dn+1

}
that contain all but first parameters of the sequence

d
(i)
n−lGPB+1:n, and one of the possible values of the indicator variable dn+1

at time n + 1. A total number of M lGPB+1 Kalman steps is required at each

stage to perform these calculations. As lGPB → n, the GPB approaches the

optimal solution.

The basic form of the algorithm was first proposed in [Ackerson & Fu,

1970], and later several more general versions appeared in the literature. The

relevant references can be found in [Tugnait, 1982] who also compared this

approach with previously described DEA and RSA methods. The conclusion

was in favour of GPB, although, in general, the performance was found to

be problem dependent.

3.2.4.4 Interacting Multiple Model Algorithm

The Interacting Multiple Model (IMM) method, which is, probably, the

most popular among the others, is, in fact, quite similar to the GPB with

lGPB = 0. It is slightly more accurate, however, as it delays the mixture

reduction, as a result of which, the probability density is never reduced to

a single Gaussian. This makes a big difference if the transition probabilities

pij, Equation (3.26), vary for different values of i, j, however, the two filters

are identical if they are equal.

The detailed description of the algorithm is given in [Blom & Bar-Shalom,

1988], where the comparison of the two approaches is also presented.
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3.2.5 Grid-based methods

A different strategy for non-linear non-Gaussian filtering is to evaluate

the filtering density function at a number of prescribed grid points [Sorenson,

1988], i.e. approximate p (xn|y1:n−1) by a discrete distribution, or use these

points as the basis for an approximation by a simple function, such as splines

[Bucy & Youssef, 1974], or a piecewise linear function [Kitagawa, 1987].

Such approximation simplifies integration in Equation (3.11-3.13), how-

ever, the calculations at each point might be quite time-consuming, and the

number of them needs to be increased exponentially as the dimension of the

state space grows. This results in a quite computationally expensive filter

not suitable for high dimensional problems. Moreover, it is not at all clear

how to choose the grid points, or, indeed, what constitutes a good choice. In

addition, due to the moving state, a new choice might have to be made at

each time step.

As one can see, while a large number of different filters have been proposed

in the literature, all of them suffer from quite serious drawbacks and do not

provide a general methodology for non-linear non-Gaussian filtering. The

Sequential Monte Carlo (SMC) also known as particle filtering approach,

described in details in the next section, shows a great promise in providing

such a fundamental technology.

3.3 Sequential Monte Carlo
The idea to use Monte Carlo integration methods in filters can be traced

back to [Handschin & Mayne, 1969; Akashi & Kumamoto, 1977; Zaritskii

et al., 1975]. However, it is not until recently, with the increase of computa-

tional power, that Monte Carlo based filters gained much interest in different

areas of statistics and engineering. The interest has arisen with the proposal

of the so called bootstrap filter [Gordon et al., 1993], simultaneously developed

by [Kitagawa, 1993]. Since then, Sequential Monte Carlo (SMC) algorithms,

under the names of particle filters, sequential importance resampling (SIR)

and condensation trackers, have been applied to a wide range of problems in

the fields of engineering, financial data analyses, genetics, medicine, biology,
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to name a few (see [Doucet et al., 2001a] for the list of references).

The Sequential Monte Carlo methods approximate the posterior distri-

bution of interest by swarms of points in the sample space, called particles,

which evolve randomly in time according to a simulation-based rule, and

either give birth to offspring particles or die according to their ability to

represent the different zones of interest of the state space dictated by the

observation process and the dynamics of the underlying system. Some simi-

larities can be seen with the grid based methods, however, particle filters use

adaptive stochastic grid approximation, i.e. naturally follow the movement

of the state instead of being chosen arbitrary by the user. The probability

density of interest is, thus, represented more accurately, and, in addition, the

rate of convergence of the approximation error towards zero is theoretically

not sensitive to the size of the state space [Crisan et al., 1999].

This section describes the basic particle filtering algorithm based on se-

quential importance sampling and resampling (SIR), and points out some

of its limitations. The issues concerning some improvements on SIR are

discussed in the next section.

3.3.1 Monte Carlo Methods

Monte Carlo methods are commonly used for approximation of intractable

integrals and rely on the ability to draw a random sample from the required

probability distribution. The idea is to simulate N independent identically

distributed (i.i.d.) samples
{
x

(i)
0:n

}N

i=1
from the distribution of interest, which

is in our case the posterior p (x0:n|y1:n), and use them to obtain an empirical

estimate of the distribution:

p̂N (dx0:n|y1:n) =
1

N

N∑

i=1

δ
(
dx0:n − x

(i)
0:n

)
. (3.34)

The function δ
(
dx0:n − dx

(i)
0:n

)
here denotes the Dirac delta function.

The expected value of x0:n

Ep(x0:n|y1:n) [x0:n] =

∫
x0:np (dx0:n|y1:n) , (3.35)



44 Bayesian Filtering

or, indeed, of any function Υ (·) of x0:n:

Ep(x0:n|y1:n) [Υ(x0:n)] =

∫
Υ (x0:n) p (dx0:n|y1:n) , (3.36)

can be obtained consequently by approximating the corresponding integrals

by the sums:

Ep̂N (x0:n|y1:n) [x0:n] =

∫
x0:np̂N (dx0:n|y1:n) =

1

N

N∑

i=1

x
(i)
0:n, (3.37)

Ep̂N (x0:n|y1:n) [Υ (x0:n)] =

∫
Υ (x0:n) p̂N (dx0:n|y1:n) =

1

N

N∑

i=1

Υ
(
x

(i)
0:n

)
.

(3.38)

The estimate (3.38) is unbiased with the variance proportional to 1/N

for the finite variance of Υ (x0:n) (see [Doucet et al., 2000] for more details),

and is easily obtained providing one can sample from p (x0:n|y1:n). This

is usually not the case, however, with p (x0:n|y1:n) being multivariate, non

standard and typically only known up to a normalizing constant, and in the

next section we briefly discuss an alternative approach for drawing random

samples from such distribution.

3.3.2 Bayesian Importance Sampling

The approach is based on the following remark. Suppose one cannot

efficiently sample from p (x0:n|y1:n), however, there is another arbitrary con-

venient probability distribution π (x0:n|y1:n) (such that p (x0:n|y1:n) > 0

implies π (x0:n|y1:n) > 0) which is easy to sample from. Then the estimate

of the function Υ (·) of x0:n can be represented as

Ep(x0:n|y1:n) [Υ(x0:n)] =

∫
Υ (x0:n)

p (x0:n|y1:n)

π (x0:n|y1:n)
π (x0:n|y1:n) dx0:n

= Eπ( ·|y1:n)

[
Υ (x0:n)

p (x0:n|y1:n)

π (x0:n|y1:n)

]
, (3.39)
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with w(x0:n) being the importance weight

w(x0:n) =
p (x0:n|y1:n)

π (x0:n|y1:n)
. (3.40)

Taking into account the Bayes’ theorem (3.3) one obtains:

Ep(x0:n|y1:n) [Υ(x0:n)] =

∫
Υ (x0:n)

p (y1:n|x0:n) p (x0:n)

p (y1:n)π (x0:n|y1:n)
π (x0:n|y1:n) dx0:n

=
1

p (y1:n)

∫
Υ (x0:n)wnπ (x0:n|y1:n) dx0:n, (3.41)

where wn are so called unnormalized importance weights:

wn =
p (y1:n|x0:n) p (x0:n)

π (x0:n|y1:n)
, (3.42)

and π (x0:n|y1:n) is called the importance distribution.

From (3.41) follows

Ep(x0:n|y1:n) [x0:n] =
1

p (y1:n)

∫
Υ (x0:n) wnπ (x0:n|y1:n) dx0:n

=

∫
Υ (x0:n) wnπ (x0:n|y1:n) dx0:n

∫
p (y1:n|x0:n) p (x0:n)

π (x0:n|y1:n)

π (x0:n|y1:n)
dx0:n

=

∫
Υ (x0:n) wnπ (x0:n|y1:n) dx0:n∫

wnπ (x0:n|y1:n) dx0:n

(3.43)

=
Eπ( ·|y1:n) [Υ (x0:n)wn]

Eπ( ·|y1:n) [wn]
.

The estimate of interest can, thus, be approximated by

Ep̂N (x0:n|y1:n) [Υ(x0:n)] =

1
N

∑N

i=1 Υ
(
x

(i)
0:n

)
w

(i)
n

1
N

∑N
i=1 w

(i)
n

(3.44)

=

N∑

i=1

Υ
(
x

(i)
0:n

)
w̃(i)

n ,
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where x
(i)
0:n denote samples drawn from π (x0:n|y1:n) , and w̃

(i)
n are the nor-

malized importance weights:

w̃(i)
n =

w
(i)
n

∑N

i=1 w
(i)
n

. (3.45)

This estimate is biased since it involves a ratio of estimates. How-

ever, under the assumptions of x
(i)
0:n being a set of i.i.d. samples drawn

from π (x0:n|y1:n) , the support of π (x0:n|y1:n) including the support of

p (x0:n|y1:n) , and Ep(x0:n|y1:n) [Υ(x0:n)] existing and being finite, one could ob-

tain a convergence of the empirical distribution
∑N

i=1 w̃
(
x

(i)
0:n

)
δ
(
dx0:n − x

(i)
0:n

)

towards p (dx0:n|y1:n) in the sense of almost sure convergence of

Ep̂N (x0:n|y1:n) [Υ(x0:n)] towards Ep(x0:n|y1:n) [Υ(x0:n)] as N → +∞. Under

the additional assumptions of the expectations Ep( ·|y1:n) [Υ2(x0:n)w(x0:n)] and

Ep( ·|y1:n) [w(x0:n)] existing and being finite, a central limit theorem also holds.

The details are given in [Doucet et al., 2000; Geweke, 1989].

The above means that the algorithm could be interpreted as a simulation

based method for sampling from p (dx0:n|y1:n) , with p (dx0:n|y1:n) being

approximated by point mass estimate:

p̂N (dx0:n|y1:n) =
N∑

i=1

w̃(i)
n δ
(
dx0:n − x

(i)
0:n

)
. (3.46)

The “perfect” simulation case would correspond to

π(x0:n|y1:n) = p(x0:n|y1:n), (3.47)

and w̃
(i)
n = N−1 for all i.

3.3.3 Sequential Importance Sampling

The method described up to now is a batch method. In order to obtain

the estimate of p (dx0:n|y1:n) sequentially, one should be able to propagate

p̂N (dx0:n|y1:n) in time without modifying the past simulated states {x(i)
0:n}

N
i=1.
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In general, the importance function π (dx0:n|y1:n) can be expanded as:

π (x0:n|y1:n) = π (x0|y1:n)

n∏

j=1

π (xj|x0:j−1,y1:n) . (3.48)

In order to fulfil the above condition, though, the adopted distribution should

be of the following form:

π (x0:n|y1:n) = π (x0)

n∏

j=1

π (xj|x0:j−1,y1:j) (3.49)

= π (x0:n−1|y1:n−1)π (xn|x0:n−1,y1:n) ,

i.e. it should admit π (x0:n−1|y1:n−1) as marginal distribution.

A recursive expression for the importance weights can then be derived by

substituting Equations (3.49) and (3.5-3.6) into Equation (3.42):

wn =
p (x0:n−1|y1:n−1) p (yn|xn) p (xn|xn−1)

π (x0:n−1|y1:n−1) π (xn|x0:n−1,y1:n)

= wn−1
p (yn|xn) p (xn|xn−1)

π (xn|x0:n−1,y1:n)
. (3.50)

The algorithm could be initialized by sampling x
(i)
0 ∼ p(x

(i)
0 ) and setting w0

= 1 for i = 1, . . . , N . For n ≥ 1, it proceeds as follows:

Sequential Importance Sampling

• For i = 1, . . . , N , sample x
(i)
n ∼ π(xn|x

(i)
0:n−1,y1:n) and set x

(i)
0:n =

(x
(i)
0:n−1,x

(i)
n ).

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing

constant:

w(i)
n ∝ w

(i)
n−1

p
(
yn|x

(i)
n

)
p
(
x

(i)
n

∣∣∣x(i)
n−1

)

π
(
x

(i)
n

∣∣∣x(i)
0:n−1,y1:n

) .
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• For i = 1, . . . , N , normalize the importance weights:

w̃(i)
n =

w
(i)
n

∑N
j=1 w

(j)
n

.

The numerical complexity of this algorithm is O(N), with its greatest

advantage being parallelisability. The memory requirements are O((n+1)N),

as it is necessary to keep all the simulated trajectories. If, however, one is

interested in the estimation of filtering distribution p (xn|y1:n) only, and the

chosen importance distribution does not depend on the previous values of

particles
{
x

(i)
0:n−2

}N

i=1
, the memory requirements are O(N).

3.3.4 Selection procedure

3.3.4.1 Degeneracy of the algorithm

Unfortunately, the algorithm presented above has a serious limitation.

What happens is that, after running it for a few iterations, one typically finds

that one of the normalized importance weights tends to 1, while the remaining

weights are negligible. A large computational effort, thus, is directed into

updating trajectories which virtually do not contribute to the final estimate.

This occurs due to increase of the variance of the importance weights over

time which has a negative effect on the accuracy of the algorithm. Indeed,

in the ideal case, when we are able to sample directly from the distribution

of interest π(x0:n|y1:n) = p(x0:n|y1:n), the mean and the variance of the

importance weights are equal to 1 and 0 correspondingly:

Eπ( ·|y1:n) [w(x0:n)] = Eπ( ·|y1:n)

[
p (x0:n|y1:n)

π (x0:n|y1:n)

]
= 1, (3.51)

varπ( ·|y1:n) [w(x0:n)] =

Eπ( ·|y1:n)

[(
p(x0:n|y1:n)
π(x0:n|y1:n)

− Eπ( ·|y1:n)

[
p(x0:n|y1:n)
π(x0:n|y1:n)

])2
]

= 0,
(3.52)

and this is the situation we would like to be as close to as possible. It is,

however, proven that the unconditional variance (that is, when the mea-

surements are regarded as random) of the importance weights increases over
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time [Doucet et al., 2000; Kong et al., 1994], and, therefore, it is impossible

to avoid a degeneracy of the algorithm.

3.3.4.2 Selection step

One way of limiting the degeneracy would be to choose an appropriate

importance function which minimizes the conditional variance of the impor-

tance weights (see more details in Subsection 3.4.1.1.2). Unfortunately, this

is not always possible. Another approach would be to introduce a forgetting

factor on the weights as in [Moral & Salut, 1995]. Although this technique

does slow down the degeneracy, the problem is not eliminated completely.

A solution might be to introduce a selection procedure in the algorithm

which discards the low weighted trajectories, and replicates samples with the

high normalized importance weights as in Sequential Importance Resampling

(SIR) first suggested in [Rubin, 1988].

In general, a selection scheme introduces an additional sampling step

based on the obtained discrete distribution, which places a probability mass

w̃
(i)
n at each of the original points, say x̃

(i)
0:n, referred to as particles:

p̂N (dx0:n|y1:n) =
N∑

i=1

w̃(i)
n δ
(
dx0:n − x̃

(i)
0:n

)
. (3.53)

At each step, a certain number of offspring (replicas), say Ni, is assigned to

each trajectory x̃
(i)
0:n according to its weight w̃

(i)
n , with Ni being equal to 0 for

particles with negligible weights that should be discarded. These values are

chosen so that a total number of samples in the scheme stays the same, i.e.
∑N

i=1 Ni = N. The resulting samples
{
x

(i)
0:n

}N

i=1
form an approximate sample

from p (dx0:n|y1:n) and the approximating distribution follows as

p̂N (dx0:n|y1:n) =
1

N

N∑

i=1

δ
(
dx0:n − x

(i)
0:n

)
, (3.54)

that is the weights are reset to N−1, and the “surviving” particles
{
x

(i)
0:n

}N

i=1
are distributed approximately according to p (dx0:n|y1:n).
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3.3.4.3 Particle filtering algorithm

The resulting algorithm for the nth step, with n ≥ 1, x
(i)
0 ∼ p(x0) w0 = 1

for i = 1, . . . , N, is described below.

Particle Filtering Algorithm

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample x̃
(i)
n ∼ π(xn|x

(i)
0:n−1,y1:n) and set x̃

(i)
0:n =

(x
(i)
0:n−1, x̃

(i)
n ).

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing

constant:

w(i)
n ∝ w

(i)
n−1

p
(
yn| x̃

(i)
n

)
p
(
x̃

(i)
n

∣∣∣ x̃(i)
n−1

)

π
(
x̃

(i)
n

∣∣∣ x̃(i)
0:n−1,y1:n

) .

• For i = 1, . . . , N , normalize the importance weights:

w̃(i)
n =

w
(i)
n

∑N

j=1 w
(j)
n

.

Selection Step

• Multiply / discard particles
{
x̃

(i)
0:n

}N

i=1
with respect to high/low normalized

importance weights w̃
(i)
n to obtain N particles

{
x

(i)
0:n

}N

i=1
with w̃

(i)
n =

1

N
.

Numerous algorithms proposed in the literature are, in fact, special cases

of this general (and simple) algorithm.

3.3.4.4 Selection Schemes

A number of different selection schemes have been previously proposed

in the literature. These include sequential importance resampling, residual

resampling and stratified sampling briefly presented below. All these schemes
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are unbiased, i.e. insure that E[Ni] = Nw̃
(i)
n at each step n, while they differ

in terms of var[Ni] and computational load.

While the most popular Sequential Importance Resampling (SIR) / Multi-

nomial Resampling, based on drawing uniformly from the discrete set{
x̃

(i)
0:n

}N

i=1
with probabilities

{
w̃

(i)
n

}N

i=1
, can be implemented in O (N) op-

erations [Ripley, 1987; Doucet et al., 2000] instead of original O (N log N)

[Gordon et al., 1993], the variance for this algorithm is Nw̃
(i)
n

(
1 − w̃

(i)
n

)
.

This variance could be reduced by setting Ñi equal to the integer part of

Nw̃
(i)
n , and then selecting the remaining N = N −

∑N
i=1 Ñi samples with

the new weights w̃
′(i)
n = N

−1
(
Nw̃

(i)
n − Ñi

)
using SIR. The result is Residual

Resampling with the lower variance of Nw̃
′(i)
n

(
1 − w̃

′(i)
n

)
(see [Liu & Chen,

1998], for example).

However, one could do even better by employing Stratified Sampling

[Kitagawa, 1996; Carpenter et al., 1999]. The idea is to generate N points

equally spaced in the interval [0, 1], and to set the number of offspring Ni for

each particle to be equal to the number of points lying between the partial

sums of weights qi−1 and qi, where qi =
∑i

j=1 w̃
(j)
t . This scheme can still be

implemented in O (N) operations and has the minimum variance one can

achieve in the class of unbiased schemes [Crisan, 2001], namely,

var [Ni] =
{
Nw̃(i)

n

} (
1 −

{
Nw̃(i)

n

})
,

where, for any α, bαc is the integer part of α, and {α} , α − bαc .

Recent theoretical results [Crisan et al., 1999; Crisan, 2001] suggest that

it is not necessary for the selection schemes to be unbiased, i.e. it is possible

to have Ni 6= Nw̃
(i)
t , or to be randomized [Kitagawa, 1994].

3.3.4.5 Whether to resample

It has been argued in [Liu & Chen, 1995, 1998] that when all the impor-

tance weights are nearly equal, it is not beneficial to introduce the selection

step in the algorithm, and a measure of degeneracy in a form of the effective

sample size Neff is proposed. It is suggested that one should resample only
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if Neff defined as

Neff =
1

∑n

i=1

(
w̃

(i)
n

)2 , (3.55)

is below a fixed threshold. This is an intuitively reasonable result, however,

the performance largely depends on the threshold employed. In addition, al-

though resampling increases the variance of the estimate Ep(x0:n|y1:n) [Υ(x0:n)]

at time n, it usually leads to a decrease of variance of the future estimates

[Liu & Chen, 1995; Doucet et al., 2001b].

3.3.4.6 Problems with selection procedure

The selection procedure helps to solve the problems associated with the

degeneracy of the algorithm. However, it introduces some practical and the-

oretical limitations. In particular, the statistical independence of the simu-

lated trajectories no longer holds, and the convergence results of the algo-

rithm should be re-established (see [Berzuini et al., 1997]). The parallelis-

ability of the algorithm employing the resampling procedure is also limited,

and there is loss of diversity due to numerous copies of the same particles in

the approximating sample [Gordon et al., 1993; Higuchi, 1995a,b]. Despite

these limitations, the algorithm is the basis for numerous works, and many

strategies have been developed to increase its efficiency.

3.4 Efficient implementation of particle

filters
The particle filter forms an approximate weighted sample from the re-

quired posterior using convenient proposal distribution, and, after resam-

pling, produces a point-mass estimate of this posterior given by:

p̂N (dx0:n|y1:n) =
1

N

N∑

i=1

δ
(
dx0:n − x

(i)
0:n

)
. (3.56)

The success of this operation depends on how accurate the employed sam-

pling scheme is (i.e. how close the proposal distribution is to the posterior)
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and whether the resulting point-mass approximation is an adequate represen-

tation of the distribution of interest. The former is connected to the choice of

the proposal distribution, or, indeed, of the sampling scheme itself, whereas

the latter is related to the possible loss of diversity in the samples as a result

of the selection. Not surprisingly, a lot of work on particle filtering meth-

ods was concentrated in these two areas as well as general reduction of the

variance of the Monte Carlo integration.

3.4.1 Improvements on the accuracy of the sampling

scheme

Sequential importance sampling produces an approximate sample from

the distribution of interest, and, thus, a lot depends on how well the pro-

posal distribution is chosen, or, in some cases, whether an alternative sam-

pling scheme should be employed so that a true, independent sample from

the target distribution could be obtained. The issues associated with this

question are briefly discussed in this subsection.

3.4.1.1 Choice of the importance density

Although sequential importance sampling poses only one restriction on

the importance density, Equation (3.49), with the number of choices, oth-

erwise, being unlimited, the design of the appropriate proposal function is,

in fact, one of the most critical issues in importance sampling algorithms.

Poor choice leads to poor approximation in (3.56), and to poor algorithm

performance in general. The problem, therefore, has received a lot of inter-

est in the literature, with different importance distributions being advocated

by different researchers. The most popular choices are described below.

3.4.1.1.1 Prior distribution

This by all means is the most popular and most widely used [Handschin

& Mayne, 1969; Gordon et al., 1993] proposal distribution, which is largely
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due to the simplicity of its implementation. If one takes

π (xn|x0:n−1,y1:n) = p (xn|xn−1) , (3.57)

the importance weights could be evaluated straightforwardly:

w(i)
n ∝ w

(i)
n−1p

(
yn|x

(i)
n

)
, (3.58)

often resulting in a reduced computational complexity of the designed algo-

rithm (see Chapter 4 for an illustration). This distribution, however, does

not incorporate the information contained in the most recent observations,

and, therefore, may be inefficient and especially sensitive to outliers.

3.4.1.1.2 Optimal distribution

This choice of the proposal distribution was introduced in [Zaritskii et al.,

1975] and later used for a particular case in [Akashi & Kumamoto, 1977], in

[Liu & Chen, 1995], and in [Doucet et al., 2000], where list of references could

also be found. The distribution of the form

π (xn|xn−1,y1:n) = p (xn|xn−1,yn) , (3.59)

is, indeed, optimal in a sense that it minimizes the variance of the impor-

tance weights w(x1:n) conditional upon the simulated trajectory x
(i)
1:n−1 and

the observations y1:n [Doucet et al., 2000], thus, limiting the problem of de-

generacy of the algorithm (Subsection 3.3.4.1). Interestingly, the weights in

this case do not depend on the current value of the state, x
(i)
n :

w(i)
n ∝ w

(i)
n−1

p
(
yn|x

(i)
n

)
p
(
x

(i)
n

∣∣∣x(i)
n−1

)

p
(
x

(i)
n

∣∣∣x(i)
n−1,yn

) (3.60)

∝ w
(i)
n−1p

(
yn|x

(i)
n−1

)
, (3.61)

which facilitates parallelisation of the simulation of
{
x

(i)
n

}N

i=1
and evaluation

of w
(i)
n for i = 1, . . . , N . The selection step in this case can be done prior
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to the sampling step. Unfortunately, sampling from p
(
xn|x

(i)
n−1,yn

)
, and

evaluating p
(
yn|x

(i)
n−1

)

p (yn|xn−1) =

∫
p (yn|xn) p (xn|xn−1) dxn, (3.62)

for many models is impossible, in which case other, suboptimal, importance

distributions should be designed.

3.4.1.1.3 Suboptimal distributions

Since any probability density fulfilling the condition specified in (3.49)

could be used as an importance density, a great number of “clever” sub-

optimal proposals could be derived. Unfortunately, there is still no general

strategy specifying how to perform this procedure, and the design of each

suboptimal function should be considered on the case by case basis.

One of the examples is the technique recently suggested in the literature

and based on building a suboptimal distribution by local linearisation of the

state space model similar to the Extended Kalman Filter. This approach is

described in great detail in [Doucet et al., 2000], where a number of other

strategies for the importance distribution design are also discussed.

3.4.1.2 Auxiliary particle filter

Another method of reducing the variability of the importance weights

was introduced in [Pitt & Shephard, 1999, 2001], resulting in an algorithm

known as an auxiliary particle filter (APF). At (n − 1)th step, the filter re-

samples the particles with probability close to p (xn−1|y1:n) , hence, taking

into account the information carried by the new measurement yn. Such a

“look ahead” allows us to sample more efficiently in comparison with the

standard methods, and ,as a result, the algorithm is more robust to outliers.

In practice, p (xn−1|y1:n) is, of course, unavailable analytically and must be

approximated. The approximation can be based, for instant, on the predic-

tions x̂n of xn from each particle x
(i)
n , the details can be found in [Godsill &

Clapp, 2001; Pitt & Shephard, 2001].
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3.4.1.3 Rejection sampling

Importance sampling produces an approximate sample from the distri-

bution of interest and might, therefore, be inaccurate. A solution would be

to employ a related but slightly different method called rejection sampling

[Hurzeler & Kunsch, 1998]. The technique is based on generating a pro-

posal and then accepting or rejecting it with certain acceptance probability.

As a result, a true, independent sample from the required distribution is

obtained. Thus, if the proposal density is quite different from the target

one, the method naturally compensates by sampling more points from the

required distribution. This results, however, in an unpredictable number of

iteration required to complete each step, and proves to be extremely compu-

tationally expensive in high-dimensional spaces. In general, the comparison

of both methods is given in [Liu, 1996], where the conclusion in favour of

importance sampling is drawn. In [Pitt & Shephard, 1999] some directions

on increasing the efficiency of the approach by adopting an auxiliary filtering

technique are presented.

A similar idea is actually employed by [Gordon et al., 1993] when he

introduces prior editing to the SIR filter in a form of acceptance/rejection

test based on the sample weight. This is similar to increasing the number of

particles in order to approximate the required distribution better yet without

the increased memory capacity and computational cost of resampling.

3.4.1.4 Markov chain Monte Carlo

A third approach to sampling from the target distribution is to use the

Markov chain Monte Carlo (MCMC) techniques [Berzuini et al., 1997; Gor-

don & Whitby, 1995]. The idea is to construct a Markov chain that allows

one to sample from p (xn|x0:n−1,y1:n) . However, it may take a lot of time to

converge, particularly if the amount of system noise is small, and can gen-

erally be too computationally demanding for on-line analyses. The MCMC

methods may help, however, with solution of other problem associated with

particle filtering, in particular, samples depletion.
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3.4.2 Problems with sample depletion

The problem with sample depletion arises at the resampling stage, when

the particles with high importance weights are duplicated multiple times,

resulting in numerous identical samples. As a result, the discrete approxi-

mation of the distribution of interest would be inaccurate simply due to the

number of samples being inadequate.

Of course, the total number of particles could be increased, however, this

would be a rather brutal strategy. Alternatively, prior boosting [Gordon

et al., 1993] could be employed, increasing the number of the sample size,

say, to NPB > N , with subsequent selection of N particles only. Although a

standard SIR with NPB particles has a lower variance, a computational gain

is apparent.

More elegant strategies include an introduction of the MCMC step and

kernel smoothing. They will now be briefly described.

3.4.2.1 MCMC step

The idea behind the use of MCMC step is based on the fact that, by

applying a Markov transition kernel Ξ
(

dx0:n| x̊
(i)
0:n

)
of invariant distribu-

tion p(dx0:n|y1:n) to each particle x̊
(i)
0:n distributed marginally according to

p(dx0:n|y1:n), we obtain new particles that are still distributed according to

this target distribution. In this case, the total variation of the current distri-

bution with respect to the invariant distribution can only decrease [Doucet

et al., 2001a; Gilks & Berzuini, 1998], and any standard MCMC method

[Robert & Casella, 1999] can be used, employing a Markov kernel that does

not even have to be ergodic [Gilks & Berzuini, 1998].

3.4.2.2 Kernel density smoothing

Kernel methods introduce a different approach to the problem of approx-

imation discreteness [Gordon, 1994; Hurzeler & Kunsch, 1998; Liu & West,

2001]. They replace the point-mass estimator of the distribution

p̂N (dx0:n|y1:n) =

N∑

i=1

δ
(
dx0:n − x̆

(i)
0:n

)
. (3.63)
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by the estimator of the following form:

p̂Ω (dx0:n|y1:n) =
N∑

i=1

w̃(i)
n

1

κ
Ω

(
dx0:n − x̆

(i)
0:n

κ

)
, (3.64)

where Ω (·) is usually a unimodal symmetric density function, centered at x̆
(i)
0:n

with smoothing parameter κ. The sample depletion problem is mitigated by

sampling with replacement from
{
x̃

(i)
0:n

}N

i=1
to obtain

{
x̆

(i)
0:n

}N

i=1
, and adding

a smoothing term ξ(i) consequently to obtain new particles
{
x

(i)
0:n

}N

i=1
:

x
(i)
0:n = x̆

(i)
0:n + ξ(i), (3.65)

Here p
(
ξ(1), . . . ξ(N)

)
=
∏N

i=1
1
κ
K
(

ξ(i)

κ

)
, and the estimation of the parameter

κ is discussed, for example, in [Silverman, 1986; Liu & West, 2001].

The jittering approach proposed in [Gordon et al., 1993], based on adding

some random noise to each particle, is nothing but a simple Kernel smoothing

technique.

3.4.3 Variance reduction techniques

In general, particle filtering may be viewed as both a sampling and Monte

Carlo integration problem, and, therefore, a number of useful methods from

Monte Carlo theory can be applied to increase its efficiency. A stratified

sampling scheme [Kitagawa, 1996; Carpenter et al., 1999], Subsection 3.3.4.4,

is one of the results of such treatment based on the ideas from survey sampling

theory. The other strategies include Rao-Blackwellisation, quasi-Monte Carlo

methods and stratification, and will be briefly reviewed below.

3.4.3.1 Rao-Blackwellisation and Dimension reduction

Rao-Blackwellisation is a well known technique in mathematical statistics

[Casella & Robert, 1996], which, as was noted by [Doucet et al., 2000; Liu &

Chen, 1998], can be successfully applied to particle filtering. It is shown there,

that for certain important classes of models, a Rao-Blackwellised particle

filter could be designed, which samples from a low-dimensional distribution
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with the rest of the integration being performed analytically. The result is

a reduced variance of the estimates of interest [Doucet et al., 2000], and,

generally, more efficient algorithm performance. Rao-Blackwellised filter is

used throughout this thesis, and described in great details in Chapter 4, and

7.

3.4.3.2 Quasi-Monte Carlo

Another method commonly used for increasing the accuracy of Monte

Carlo integration is using quasi-random numbers to generate the points which

are well spaced in the state space. The extent of the improvement would

depend on the dimension of the space and the size of the sample, however,

the results obtained recently are very promising [Paskov & Traub, 1995].

Regularised sampling in [Fearnhead, 1998] is an example of an application of

a similar method to particle filtering problem.

3.4.3.3 Stratification

Stratification is yet another example of variance reduction technique aimed

at “exploring” the state space in a better way by using systematic sampling.

They do this by ensuring that only the right number of particles are generated

from each component, and, although the idea has received much attention in

a resampling context, systematic sampling procedures can also be used for

proposal, and even in rejection sampling framework, see [Künsch, 2003] for

details and the list of references.

Out of all non-linear non-Gaussian filters, the Sequential Monte Carlo

approach seems to be the most promising one, and we are now in a position

to apply it to the problems arising in digital communications. For clarity of

presentation, we begin our treatment with a simpler, but nevertheless very

important, problem of demodulation under conditions of flat fading channel,
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and we will try to develop an efficient particle filtering algorithm taking into

account the guidelines specified above.



4 Particle Filtering for

Demodulation in Flat Fading

Channels

In the transmission of digital information over a communication chan-

nel, a sequence of binary digits is mapped into a set of corresponding ana-

log waveforms that match the characteristics of the channel. Whatever the

physical medium used for transmission of the information, the transmitted

signal is corrupted in a random manner by a variety of possible mechanisms,

such as thermal noise or interferences of different kinds. The function of the

demodulator is to make a decision on the transmitted signal based on the

observations. This is a challenging non-linear filtering problem, and it has

proved to be especially difficult under conditions of noisy fading transmission

channels.

In general, multipath fading occurs when the transmitted signal arrives

at the receiver via multiple propagation paths at different delays. The signal

components in this case may add destructively, resulting in random ampli-

tude and phase variations on the signal. Thus, demodulation of the signal

requires recursive estimation of both the signal and channel distortions given



62 Particle Filtering for Demodulation in Flat Fading Channels

the currently available data. The problem can be formulated in a linear

Gaussian state space form (conditional upon the symbols), and within a

sequential framework, general recursive expressions may be derived for the

filtering and fixed-lag smoothing distributions, from which estimates of the

states can be obtained. However, the exact computation of these estimates

involves a prohibitive computational cost exponential in the growing number

of observations, and thus approximate methods must be employed.

Several classical approximate schemes have, in the past, been proposed

to tackle the problem of demodulation, including extended Kalman filtering

(EKF) [Haeb & Meyr, 1989; Lodge & Moher, 1990], or coupled EKF and

hidden Markov model (HMM) approaches [Collings & Moore, 1994, 1995].

In [Georghiades & Han, 1997] the expectation-maximization (EM) algorithm

is applied to demodulation of signals in fading conditions; in [Gertsman &

Lodge, 1997] joint demodulation and decoding using iterative processing tech-

niques is developed. Other more recent techniques involve the pilot symbol-

aided schemes (PSAM) [Cavers, 1991; Sampei & Sunaga, 1993; Torrance &

Hanzo, 1995], decision-feedback [Kam & Ching, 1992; Liu & Blostein, 1995],

and per-survivor processing [Vitetta & Taylor, 1995].

In this chapter, we concentrate on the general case of M -ary modulated

signals7 under conditions of noisy fading channels and base our approach on

particle filtering techniques. Particle filters are efficient simulation-based al-

gorithms combining sequential importance sampling, a selection scheme and

Markov chain Monte Carlo (MCMC) methods in order to perform optimal

estimation. The key idea is to use an adaptive stochastic grid approximation

of the conditional probability of the state vector with particles (values of the

grid) evolving randomly in time according to a simulation-based rule. De-

pending on their ability to represent the different zones of interest of the state

space which is dictated by the observation process and the dynamics of the

underlying system, the particles can either give birth to offspring particles

or die.

This chapter develops particle filtering techniques to compute optimal

7Both coherent (PSK, QAM) and non-coherent (DPSK) demodulation is considered in
this chapter.
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estimates of the symbols under conditions of frequency-nonselective (flat)

Rayleigh fading channels. The tracking of the channel is naturally incorpo-

rated into the estimation scheme developed here and the case of a possibly

non-Gaussian additive channel noise can be easily treated. A straightforward

extension of the algorithm allows us to easily address the fixed-lag smoothing

problem and, thus, more accurate delayed symbol and channel estimates can

be obtained. Although particle filtering (in the absence of differential encod-

ing) also requires the transmission of pilot symbols in order to prevent cycle

slipping, the pilot symbol spacing is not restricted by the Doppler spread

of the channel as with PSAM and can be made much longer. The method

proposed here is also designed to make use of the structure of the model, and

incorporates efficient variance reduction strategies based on Kalman filtering

techniques. At each iteration the algorithm has a computational complexity

that is linear in the number of particles, and can easily be implemented on

parallel processors.

The rest of the chapter is organized as follows. The model specification

and estimation objectives are stated in Section 4.1. Section 4.2, develops a

particle filtering method to solve the problem of demodulation in the general

case of M -ary modulated signals. The bit-error-rate (BER) performance of

the M -ary phase shift keyed (PSK), differential phase shift keyed (DPSK)

and quadrature amplitude modulated (QAM) signals is examined in Section

4.3 by means of an extensive simulation study. Some conclusions are drawn

at the end of the chapter.

4.1 Model Specification and Estimation

Objectives
We shall begin our treatment of digital signaling over flat Rayleigh fad-

ing channels by formulating the model specified in the first chapter for the

particular case of uncoded M -ary modulated signals (see Figure 4.1). For

clarity of presentation, since the number of sources K and the number of

antennas L are equal to 1, and the channel is flat, the indices k, l and g

will be suppressed throughout this chapter. Once the model is specified, we
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Figure 4.1: Transmission of M-ary modulated signals in Rayleigh fading
channels.

motivate the use of the pilot symbols periodically inserted into the symbol

stream, and recall the model for the flat Rayleigh fading channel and the

equations for the output of the channel corrupted by possibly non-Gaussian

noise. Eventually, the problem of demodulation is formulated in a state space

form; and, finally, the estimation objectives are stated.

4.1.1 Model Specification

We denote for any sequence αn, αi:j , (αi, αi+1, . . . , αj)
T if i < j, and

αi:j , (αi, αi−1, . . . , αj)
T otherwise.

4.1.1.1 Representation of digitally modulated signals

In the general case of M -ary modulation, the information sequence is

subdivided into blocks of κ binary digits, which are mapped into M = 2κ

deterministic, finite energy waveforms {strans,m(n), m = 1, 2, . . . , M}. Re-

call that dn is an indicator variable associated with one of M possible κ-bit

sequences

dn ∈ R = {1, 2, . . . , M}, n = 1, 2, . . . (4.1)

n being a discrete time index. Since no channel coding is employed in the

system, dn = rn for n = 1, 2, . . . , with q being equal to n (Chapter 2).

The signal waveform transmitted in the signaling interval of duration T (we

suppress index q for convenience) may be represented as

strans(τ ) = Re[sn(d1:n)η(τ ) exp(j2πfcarτ)], (n − 1)T ≤ τ ≤ nT, (4.2)
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where fcar is a carrier frequency, η(τ ) is a real-valued signal pulse which shape

influences the spectrum of the transmitted signal (the absence of DS spectrum

spreading leads also to H = 1, c1 = 1 and Tch = T ), d1:n. sn(·) performs the

mapping from the digital sequence to waveforms and, in a general case of a

modulator with memory, it depends on one or more previously transmitted

symbols.

In the absence of an encoder, the message symbols are assumed to be in-

dependent identically distributed (i.i.d.). However, if error correcting coding,

such as convolutional coding [Proakis, 1995] or trellis coding [Du & Vucetic,

1991], has been employed, the signals produced contain symbols which are

not i.i.d. and as such display Markov properties. Thus, (to a first approxi-

mation) it is reasonable to assume that dn is a first order, time-homogeneous,

M -state, Markov process with known transition probabilities

pij = Pr {dn+1 = j| dn = i} , i, j ∈ R, (4.3)

such that pij ≥ 0,
∑M

j=1 pij = 1 for each i, and initial probability distribution

pi = Pr{d1 = i}, pi ≥ 0,
∑M

i=1 pi = 1 for i ∈ R (see [Collings & Moore, 1994,

1995], for the same approach). Taking into account that Pr {dn+1| dn} =

Pr {d1:n+1| d1:n} , it is easy to show that d1:n is also a first order Markov

process with known transition probability matrix.

4.1.1.2 Pilot symbols

The analog waveforms are then passed to a noisy fading channel which can

cause the severe amplitude and phase fluctuations. This may lead to incorrect

demodulation even in the absence of noise. If the information sequence has

not been differentially encoded, one error might result in the whole cycle

slipping (especially under conditions of deep fading and low signal to noise

ratio). In order to prevent this, known pilot symbols can be periodically

inserted into the transmitted symbol stream (see [Georghiades & Han, 1997;

Gertsman & Lodge, 1997; Seymour & Fitz, 1995] for the same approach).

However, in our case unlike with pilot-symbol-assisted modulation (PSAM)

[Cavers, 1991; Sampei & Sunaga, 1993; Torrance & Hanzo, 1995], the pilot
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symbol rate is not restricted by the Doppler spread of the channel and the

pilot spacing can be made much longer thus reducing the bandwidth penalty

incurred.

4.1.1.3 Channel model

In this thesis we concentrate on a frequency-nonselective (flat) fading

channel, which, providing that the output is sampled at T−1 rate, can be

described by a multiplicative discrete time disturbance fn, t = n in this case.

In the case of Rayleigh fading, fn is a complex low-pass filtered Gaussian

process with zero-mean real and imaginary components. (The time variations

of fn are realistically assumed to be slow in comparison to the message rate.)

Ideally, in order to approximate the power spectral density of the fading

process, a high order low-pass pole-zero filter is required [Stuber, 1996]. Thus,

fn can be modelled as the following ARMA(ρ, ρ) process (Butterworth filter

of order q)

fn = aTfn−1:n−ρ + bTvn:n−ρ, (4.4)

where vn is a complex white Gaussian noise with i.i.d. zero-mean real and

imaginary components of variance 1, vn
i.i.d.
∼ Nc (0, 1). The coefficients of the

filter a , (a1,a2, . . . , aq)
T, b , (b0,b1, . . . , bq)

T are chosen so that the cut-off

frequency of the filter matches the normalized channel Doppler frequency

fdT (T is the symbol rate). We assume here that fdT and, thus, a and b are

known.

4.1.1.4 Observations

At the demodulator, the received signal is passed through a filter whose

impulse response is matched to the waveform η(τ ) and, as was already men-

tioned, is sampled at a rate T−1, resulting in one sample corresponding to

each symbol. The input of the filter is assumed to be corrupted by addi-

tive noise with mutually independent real and imaginary parts, which are

i.i.d. random sequences distributed as a mixture of zero-mean, complex,

Gaussians with a known number of components Z. Thus, non-Gaussian ad-

ditive noise could be approximated. A latent allocation variable zn, zn ∈



4.1 Model Specification and Estimation Objectives 67

Z = {1, 2, . . . , Z}, n = 1, 2, . . ., is introduced in order to identify the vari-

ance, σ2
zn

, of the distribution from which one samples. It is chosen such that

Pr(zn = ξ) = λξ, for ξ = 1, . . . , Z,
∑Z

ξ=1 λξ = 1. Thus, one obtains

yn = sn(d1:n)fn + σzn
εn, εn

i.i.d.
∼ Nc (0, 1) , (4.5)

where yn and εn are respectively the complex output of the matched filter and

the additive complex zero-mean Gaussian noise. Without loss of generality fn

and sn are normalized to have unity power. This results in the average signal

to noise ratio (SNR) per bit equal to −10 log (N0 log2 M) , where N0 = 2σ2
0

and σ2
0 is the overall variance of the noise, σ2

0 =
∑Z

ξ=1 λξσ
2
ξ .

4.1.2 State Space Signal Model

In order to express the system in a familiar form of a state space model

(see for example [West & Harrison, 1997]), we define a state xn such that

fn = bTxn:n−ρ+1. (4.6)

Then, from Equation (4.4) one obtains

xn = aTxn−1:n−ρ + vn, (4.7)

and, thus, conditional upon the symbols and allocation variables, the problem

can be formulated in the following linear state space form

xn:n−ρ+1 = Axn−1:n−ρ + Bvn, (4.8)

yn = C(d1:n)xn:n−ρ+1 + D(zn)εn,
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where B = (1, 0, . . . , 0)T, C(d1:n) = sn(d1:n)b
T, D =σzn

and

A =




a1 a2 . . . aρ−1 aρ

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




. (4.9)

We assume x0:1−ρ ∼ Nc (x̂0,Σ0), where Σ0 > 0, and let vn, εn be mutually in-

dependent for all n > 0. The message symbols dn, the channel characteristics

xn and the latent allocation variable zn are unknown for n > 0, whereas the

model parameters A, B, C(d1:n), D(zn), x̂0, Σ0 are known for each dn ∈ R,

zn ∈ Z.

4.1.3 Estimation Objectives

Filtering objectives: obtain the MMAP (marginal maximum a poste-

riori) estimates of the symbols

d̂n = arg max
dn

p (dn| y1:n) . (4.10)

The problem does not admit any analytical solution as computing

p (dn| y1:n) involves a prohibitive computational cost exponential in the (grow-

ing) number of observations.

Remark 1 Although the tracking of the channel is naturally incorporated

into the proposed algorithm, in principle, one may also be interested in ob-

taining the MMSE (conditional mean) estimates of the fading coefficients

xn, given by E (xn| y1:n). Due to the phase ambiguity problem, this cannot

be done straightforwardly. However, the estimates of xn could be obtained

conditional upon the estimated symbols d̂n.

Remark 2 In order to obtain more accurate results, if it is possible, one may

want to wait for a fixed delay Ls before performing the estimation (fixed-lag
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smoothing). The delayed MMAP estimates of the symbols in this case are

given by arg max
dn−Ls

p (dn−Ls
| y1:n) for n > Ls where Ls ∈ N∗.

4.2 Particle Filtering for Demodulation
In this section, we first describe the advantages of using Monte Carlo

(MC) simulation techniques, and show how variance reduction can be achieved

by integrating out the states x0:n using the Kalman filter. Then, we present

a Rao-Blackwellised version of the sequential importance sampling method,

and discuss the choice of the importance distribution and the selection scheme.

Finally, we propose a generic particle filtering algorithm to obtain an on-line

estimate of the time-varying posterior distribution of the symbols.

4.2.1 Monte Carlo Simulation for the Optimal Filter

Given the observations y1:n, all Bayesian inference for the signal model

specified in Section 4.1.2 relies on the joint posterior distribution

p (d1:n, z1:n, dx0:n| y1:n) . If it is possible to sample N i.i.d. samples, called

particles,
{

d
(i)
1:n, z

(i)
1:n, x

(i)
0:n

}N

i=1
according to p (d1:n, z1:n, dx0:n| y1:n), an empiri-

cal estimate of this distribution may be obtained by making use of the Monte

Carlo (MC) approximation:

p̂N (d1:n, z1:n, dx0:n| y1:n) =
1

N

N∑

i=1

δ
(
{d1:n, z1:n, dx0:n} −

{
d

(i)
1:n, z

(i)
1:n, x

(i)
0:n

})
.

(4.11)

As a corollary, an estimate of filtering distribution p (dn, zn, dxn| y1:n) follows

as

p̂N (dn, zn, dxn| y1:n) =
1

N

N∑

i=1

δ
(
{dn, zn, dxn} −

{
d(i)

n , z(i)
n , x(i)

n

})
, (4.12)

and the estimates of the marginal posterior distributions p (dn| y1:n) and

p (xn| y1:n) can be easily deduced.

Once these filtering distributions are computed, symbol detection can be

performed using MMAP criterion, Equation (4.10), and, consequently, the
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channel coefficients can be estimated if necessary.

The advantage of using the MC approximation scheme is clear. First of

all, the particles are automatically selected in the region of high probability,

which is a major improvement over a direct numerical approximation method.

Second, the estimates of interest are easily obtained. Moreover, the rate of

convergence of these estimates does not depend on n or the dimension of

the state space, but only on the number of particles N. Finally, in order

to obtain more accurate estimates, the algorithm can be straightforwardly

extended to fixed-lag smoothing with a fixed delay Ls. The estimate of the

marginal posterior distribution in this case is

p̂N (d1:n−Ls
, z1:n−Ls

| y1:n) =
1

N

N∑

i=1

δ
(
{d1:n−Ls

, zn−Ls
} −

{
d

(i)
1:n−Ls

, z
(i)
1:n−Ls

})
.

(4.13)

However, it is not possible to sample directly from the distribution

p (d1:n, z1:n, dx0:n| y1:n) at any n, and, as an alternative strategy, based on

particle filtering methods described in the previous chapter is proposed in

Subsection 4.2.3. But first we will make some simplifications to the algo-

rithm, which will furthermore lead to a reduction in the variance of the

estimates.

4.2.2 Variance Reduction by Rao-Blackwellisation

In fact, the joint posterior density p (d1:n, z1:n, x0:n| y1:n) can be factorized

as:

p (d1:n, z1:n, x0:n| y1:n) = p (x0:n| d1:n, z1:n, y1:n) p (d1:n, z1:n| y1:n) . (4.14)

Given d1:n, z1:n, the probability density p (x0:n| d1:n, z1:n, y1:n) is a Gaussian

distribution whose parameters may be computed using the Kalman filter.

Thus, it is possible to reduce the problem of estimating p (d1:n, z1:n, x0:n| y1:n)

to one of sampling from a lower-dimensional distribution p (d1:n, z1:n| y1:n),

which intuitively requires a reduced number of samples N in order to reach a

given precision. This is proved in [Doucet et al., 2000] where it is shown that
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the variance of the estimates when x0:n can be integrated out analytically is

lower.

The marginal posterior distribution p (x0:n| y1:n) in this case is given by

p (x0:n| y1:n) =
∑

d1:n

∑

z1:n

p (x0:n| d1:n, z1:n, y1:n) p (d1:n, z1:n| y1:n) , (4.15)

and can be approximated via:

p̂N (d1:n, z1:n| y1:n) =
1

N

N∑

i=1

δ
(
{d1:n, z1:n} −

{
d

(i)
1:n, z

(i)
1:n

})
, (4.16)

resulting in:

p̂N (x0:n| y1:n) =
1

N

N∑

i=1

p
(

x0:n| d
(i)
1:n, z

(i)
1:n, y1:n

)
. (4.17)

Then, the estimate of xn is obtained as

Ep̂N (x0:n|y1:n) [xn] =

∫
xnp̂N (x0:n| y1:n) dx0:n =

1

N

N∑

i=1

E

(
xn| d

(i)
1:n, z

(i)
1:n, y1:n

)
,

(4.18)

where E

(
xn| d

(i)
1:n, z

(i)
1:n, y1:n

)
is computed through the Kalman filter associ-

ated with Equation (4.8) (see Chapter 3).

Thus, one should focus now on obtaining the approximation of

p (d1:n, z1:n| y1:n), and as was already mentioned, one solution to estimate

p (d1:n, z1:n| y1:n) on-line is to use particle filtering techniques.

4.2.3 Sequential Importance Sampling

According to importance sampling, N particles
{
d

(i)
1:n, z

(i)
1:n

}N

i=1
are eas-

ily simulated according to an arbitrary convenient importance distribution

π(d1:n, z1:n| y1:n) (such that p (d1:n, z1:n| y1:n) > 0 implies π (d1:n, z1:n| y1:n) >

0), which is easy to sample from. Then, using the importance sampling
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identity

p (d1:n, z1:n| y1:n) =
w(d1:n, z1:n)π (d1:n, z1:n| y1:n)∑

(d1:n,z1:n) w(d1:n, z1:n)π (d1:n, z1:n| y1:n)
, (4.19)

where the importance weight w (d1:n, z1:n) is defined as

w(d1:n, z1:n) ∝
p (d1:n, z1:n| y1:n)

π (d1:n, z1:n| y1:n)
, (4.20)

one can obtain the estimate of p (d1:n, z1:n| y1:n)

p̂N (d1:n, z1:n| y1:n) =
∑N

i=1 w̃
(i)
n δ
(
{d1:n, z1:n} −

{
d

(i)
1:n, z

(i)
1:n

})
. (4.21)

Here w̃
(i)
n is the normalized version of the importance weight w

(
d

(i)
1:n, z

(i)
1:n

)

w̃(i)
n =

w(d
(i)
1:n, z

(i)
1:n)

∑N

j=1 w(d
(j)
1:n, z

(j)
1:n)

. (4.22)

Analogously,

p̂N (dn, zn| y1:n) =

N∑

i=1

w̃(i)
n δ
(
{dn, zn} −

{
d(i)

n , z(i)
n

})
. (4.23)

If now we want to obtain the estimate of p (d1:n, z1:n| y1:n) on-line, we

have to be able to propagate this estimate in time without subsequently

modifying the past simulated trajectories
{
d

(i)
1:n, z

(i)
1:n

}N

i=1
. This means that

π(d1:n, z1:n| y1:n) should admit π (d1:n−1, z1:n−1| y1:n−1) as marginal distribu-

tion:

π (d1:n, z1:n| y1:n) = π (d1:n−1, z1:n−1| y1:n−1)

× π (dn, zn| d1:n−1, z1:n−1, y1:n) ,
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in which case the importance weights wn can be evaluated recursively, i.e.

wn = wn−1
p (yn| y1:n−1, d1:n, z1:n) p(dn| dn−1)p(zn)

p(yn| y1:n−1)π (dn, zn| y1:n, d1:n−1, z1:n−1)

∝
p (yn| y1:n−1, d1:n, z1:n) p(dn| dn−1)p(zn)

π (dn, zn| y1:n, d1:n−1, z1:n−1)
.

(4.24)

Of course, there is an unlimited number of choices for the importance dis-

tribution of such a form, the only restriction being that its support includes

that of p (d1:n, z1:n| y1:n) . However, in practice, one obtains quite poor perfor-

mance of the algorithm when π (d1:n, z1:n| y1:n) is not well-chosen. Therefore,

selection of the importance function is the topic of the following section.

4.2.4 The Choice of the Importance Distribution

A sensible criterion for selection of the importance distribution would be

to choose a proposal that minimizes the conditional variance of the impor-

tance weights given d1:n−1, z1:n−1 and y1:n. The importance distribution that

satisfies this condition is

π (dn, zn| d1:n−1, z1:n−1, y1:n) = p (dn, zn| d1:n−1, z1:n−1, y1:n) , (4.25)

(see Chapter 3 for details), and this “optimal” importance distribution is

employed throughout the chapter.

It can be implemented in the following way. From Bayes’ rule

p (dn, zn| d1:n−1, z1:n−1, y1:n) may be expressed as

p (dn, zn| d1:n−1, z1:n−1, y1:n) =
p (yn| y1:n−1, d1:n−1, z1:n−1, dn, zn) p(dn| dn−1)p(zn)

p(yn| y1:n−1, d1:n−1, z1:n−1)
,

(4.26)

leading to wn in (4.24) being

wn ∝ wnp (yn| y1:n−1, d1:n−1, z1:n−1) , (4.27)
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Figure 4.2: Selection step.

with p (yn| y1:n−1, d1:n−1, z1:n−1) being equal to

p (yn| y1:n−1, d1:n−1, z1:n−1) =

M∑

m=1

Z∑

ξ=1

[p(dn = m| dn−1)p(zn = ξ)

× p (yn| y1:n−1, d1:n−1, z1:n−1, dn = m, zn = ξ)] ,

where p (yn| y1:n−1, d1:n−1, z1:n−1, dn = m, zn = ξ) is given by the Kalman filter

(see Chapter 3).

Thus, sampling from the optimal distribution requires evaluation of the

M×Z one-step ahead Kalman filter steps, which may be computationally in-

tensive if M×Z is large. In this case, the prior distribution p(dn, zn| dn−1, zn−1)

could be used as the importance distribution. Then the associated impor-

tance weights are proportional to p (yn| y1:n−1, d1:n, z1:n) , and only one step

of the Kalman filter for each particle has to be evaluated.

4.2.5 Selection Step

As discussed in the previous chapter, the variance of the importance

weights in the described method can only increase (stochastically) over time,

thus resulting in a degeneracy phenomenon. Practically, after a few itera-

tions of the algorithm, all but one of the normalized importance weights are

very close to zero. It is, therefore, of crucial importance to include a selection

step in the proposed filtering algorithm.
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The purpose of the selection step is to discard particles with low normal-

ized importance weights and multiply those with high normalized importance

weights. A selection procedure associates with each particle, say
{
d̃

(i)
1:n, z̃

(i)
1:n

}
,

a number of children Ni ∈ N, such that
∑N

i=1 Ni = N , to obtain N new par-

ticles
{
d

(i)
1:n, z

(i)
1:n

}N

i=1
. When Ni = 0,

{
d̃

(i)
1:n, z̃

(i)
1:n

}
is discarded, otherwise it has

Ni offspring at time n (Figure 4.2). If the selection procedure is performed at

each time step then, before the selection step, we have a weighted distribution

p̃N (d1:n| y1:n) =
∑N

i=1 w̃
(i)
n δ
(
d1:n − d̃

(i)
1:n

)
, and afterwards, the approximating

distribution follows as p̂N (d1:n| y1:n) = N−1
∑N

i=1 δ
(
d1:n − d

(i)
1:n

)
.

A number of different selection schemes have been previously proposed

in the literature (the list of references is given in Chapter 3). In this work,

the selection step is done according to stratified sampling (see Chapter 3 for

details), which has the minimum variance one can achieve in the class of

unbiased schemes, and can be implemented in O (N) operations.

4.2.6 Particle Filtering Algorithm

Thus, given at time n − 1,
{
d

(i)
1:n, z

(i)
1:n

}N

i=1
distributed approximately ac-

cording to p (d1:n−1, z1:n−1| y1:n−1), at time n the particle filter proceeds as

follows.

Particle Filtering Algorithm

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample (d̃
(i)
n , z̃

(i)
n ) ∼ π(dn, zn| d

(i)
1:n−1, z

(i)
1:n−1, y1:n)

and set d̃
(i)
1:n = (d

(i)
1:n−1, d̃

(i)
n ), z̃

(i)
1:n = (z

(i)
1:n−1, z̃

(i)
n ).

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing

constant:

w(i)
n ∝

p
(

yn| y1:n−1, d̃
(i)
1:n, z̃

(i)
1:n

)
p( d̃

(i)
n

∣∣∣ d̃(i)
n−1)p(z̃

(i)
n )

π
(

d̃
(i)
n , z̃

(i)
n

∣∣∣ d̃(i)
1:n−1, z̃

(i)
1:n−1, y1:n

) .
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• For i = 1, . . . , N , normalize the importance weights:

w̃(i)
n =

w
(i)
n

∑N
j=1 w

(j)
n

.

Selection Step

• Multiply / discard particles
{

d̃
(i)
1:n, z̃

(i)
1:n

}N

i=1
with respect to high/low nor-

malized importance weights w̃
(i)
n to obtain N particles

{
d

(i)
1:n, z

(i)
1:n

}N

i=1
.

Remark 3 In the case where the optimal importance distribution is em-

ployed, the importance weight w
(i)
n does not actually depend on d̃

(i)
n , z̃

(i)
n . Thus,

the selection step should be done prior to the sampling step.

The computational complexity of this algorithm at each iteration is O(N).

Moreover, since both the optimal and prior importance distributions

π (dn, zn| d1:n−1, z1:n−1, y1:n) and the associated importance weights depend on

d1:n−1, z1:n−1 via a set of low-dimensional sufficient statistics{
xn|n−1

(
d

(i)
1:n, z

(i)
1:n

)
, Pn|n−1

(
d

(i)
1:n, z

(i)
1:n

)}N

i=1
, only these values need to be kept

in memory and, thus, the storage requirements for the proposed algorithm

are also O (N) and do not increase over time.

4.2.7 Convergence Results

Let

pN (d1:n, z1:n| y1:n) =
1

N

N∑

i=1

δ
(
{d1:n, z1:n} −

{
d

(i)
1:n, z

(i)
1:n

})
(4.28)

be the empirical measure of the posterior distribution p (d1:n, z1:n| y1:n) gen-

erated by the particle filtering algorithm. An application of Theorem 1 in

[Crisan & Doucet, 2000] proves the convergence (and the rate of convergence)

of the average mean square error

E

[(∑
d1:n,z1:n

Υ (d1:n, z1:n) (p̂N (d1:n, z1:n| y1:n) − p (d1:n, z1:n| y1:n))
)2
]
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to 0 for any bounded function Υ (d1:n, z1:n) , and, as a result, the point-

wise convergence of pN (d1:n, z1:n| y1:n) towards the true posterior distribution

p (d1:n, z1:n| y1:n). This theorem is an extension of previous results obtained

in [Crisan et al., 1999].

Theorem 1 For all n ≥ 0, there exists cn independent of N such that, for

any fixed value (d1:n, z1:n) ∈ {1, . . . , M}n × {1, . . . , Z}n, one has

E
[
(p̂N (d1:n, z1:n| y1:n) − p (d1:n, z1:n| y1:n))

2] ≤ cn

N

where the expectation operator is over all the realizations of the random par-

ticle filtering method algorithm. This result proves that, though the particles

are interacting, one still keeps the convergence rate of classical Monte Carlo

methods.

4.3 Simulations
In the following experiments the bit-error-rate (BER) was evaluated by

means of computer simulations8. We assumed that the fading does not decor-

relate the pulse after matched filtering at the receiver, thus pulse shaping and

the matched filter were omitted. The channel was generated from the low

pass filtered (3rd order Butterworth filter) zero-mean complex Gaussian noise

with the bandwidth of the filter fdT times the bit rate different in each ex-

ample. The number of particles used was N = 50 unless otherwise stated.

In a number of simulations known pilot symbols were inserted into the data

stream at a rate of 1 in P + 1 (i.e. 1 : P ).

4.3.1 BER Performance for PSK signals

4.3.1.1 Gaussian additive noise

First, we applied the algorithm proposed above to the case of demod-

ulation of 4-PSK signals (sn = Ac exp(jθn), θn = 2πdn

M
) with Gray coding.

Computer simulations were performed for different fading bandwidth fdT ,

8In each simulation, a symbol sequence was transmitted until at least 100 errors were
collected. The results were averaged over 20 runs.
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Figure 4.3: Bit error rate for 4PSK signals for different pilot symbol rate
(additive Gaussian noise).
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Figure 4.4: Bit error rate for 4PSK signals for different fading characteristics
(additive Gaussian noise).
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Figure 4.5: Bit error rate for 4PSK signals (additive Gaussian noise).
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Figure 4.6: Tracking of the channel (real and imaginary parts). True channel
values are given by solid line. Estimated values are given by dotted one.
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pilot symbol rate 1 : P and average signal to noise ratio (SNR). Figure 4.3,

4.4 show the obtained BER for the number of particles N = 50. A number

of experiments have shown that increasing the number of particles does not

modify the results significantly (see Table 4.1). The results for fdT = 0.05 and

the pilot symbol rate of 1 : P (P = 20, 50) compared to those obtained by a

Maximum Likelihood receiver employing Per-Survivor Processing (MLPSP)

(P = 10) [Vitetta & Taylor, 1995], symbol-by-symbol maximum a posteriori

probability (MAP) receiver (P = 8) [Gertsman & Lodge, 1997], and the one

with ideal channel state information (CSI), are shown in Figure 4.5. As can

be seen, even in the case of fast fading (fdT = 0.05) and low pilot symbol

rate (1 : 50) the proposed algorithm performs well, and it outperforms the

existing methods when P ≤ 20 (compared to P = 10 for MLPSP receiver

and P = 8 for the MAP one). In addition, Figure 4.6 illustrates the tracking

abilities of the algorithm for fdT = 0.05, P = 20 and SNR=20 dB by showing

the true channel values and estimated channel values in real and imaginary

format. Finally, the robustness of the algorithm was studied by assuming the

fading rate fdT different from the one which was in reality. As one can see in

Figure 4.7, there is no appreciable difference in the BER performance when

the fading rate fdT = 0.04 is used (for fdTreal = 0.05). However, the degrada-

tion in the case of fdT ≤ 0.03 is quite significant since the channel coefficient

estimates are not able to track the actual channel states as accurately as in

the case of faster fading assumed.

SNR, dB N = 50 N = 200 N = 500

BER 10 4.69 × 10−2 4.69 × 10−2 4.67 × 10−2

BER 20 5.70 × 10−3 5.68 × 10−3 5.61 × 10−3

BER 30 5.05 × 10−4 4.93 × 10−4 4.89 × 10−4

Table 4.1: Bit error rate for 4PSK signals for different number of particles
N . Pilot symbol rate is 1:20 and fdT=0.05 (additive Gaussian noise).

4.3.1.2 Non-Gaussian additive noise

In the second experiment we applied the proposed algorithm to the case

when the additive noise is distributed as a two-component mixture of zero-
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mean Gaussians (Z = 2). The overall variance of the noise in this case is

λ1σ
2
1+(1−λ1)σ

2
2 with λ1 = 0.2. σ2

1 was chosen so that the average SNR would

be equal to 5 dB if λ1 = 1. The characteristics of the signal and channel are

the same as for the first experiment, and the results for the pilot symbol rate

1:50 and fdT = 0.05 are shown in Figure 4.8.

4.3.2 BER Performance for DPSK signals

An important consideration in dealing with PSK signals is the problems

associated with an M -ary phase ambiguity. One way to overcome these

problems is to introduce pilot symbols into the data stream (see Subsection

4.3.1). Another common method to solve them is to differentially encode the

information before transmission, in which case the information is carried in

the difference between adjacent received phases. Differential detection can

be then applied. Such differentially encoded PSK (DPSK) signals are the

subject of this subsection.

As a practical example we investigate 4-DPSK signals: sn = exp(jθn),

θn =
∑n

j=1

∑M
m=1

2πm
M

δ (dj − dm) (Gray coding has been employed). The

channel fading rate was fdT = 0.05, and Figure 4.9 shows the results for

different signal to noise ratio, compared to those obtained by a posteriori

probability (APP) demodulator [Hoeher & Lodge, 1999] (Ls = 2 for the

fixed-lag smoothing here and in the following experiments).

Then we considered 8-DPSK signal examined previously in [Collings &

Moore, 1995]. It is assumed that a coding scheme was employed in trans-

mission, which has the following signal properties: pii = 0.95, pij = (1 −

pii)/(M − 1) for i 6= j, M = 8 (such strong dependence from one message

symbol to the next one may occur in some convolutional codes or if oversam-

pling is used). In Figure 4.10, 4.11, the results for different fdT are compared

to those obtained by a hidden Markov model (HMM) and a matched fil-

ter/automatic gain controller/phase locked loop (MF/AGC/PLL) schemes

[Collings & Moore, 1995].

We also applied the proposed algorithm to 8-DPSK signals when the

additive noise is distributed as a two-component mixture of Gaussians with
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Figure 4.9: Bit error rate for 4-DPSK signals (i.i.d. message symbols).
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Figure 4.10: Bit error rate for 8-DPSK signals (non-i.i.d. message symbols).
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Figure 4.11: Bit error rate for 8-DPSK signals (non-i.i.d. message symbols).
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Figure 4.12: Bit error rate for 8-DPSK signals (additive non-Gaussian noise).
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the same parameters as in Subsection 4.3.1. The results for fdT = 0.04 are

presented in Figure 4.12.

4.3.3 BER Performance for QAM signals

Figure 4.13: 16QAM with Gray coding.

Finally, the performance of the particle filtering demodulation of QAM

signals is studied. In the case of QAM signal, mapping function sn = µn,

where at any time n, the complex elements µn = µR
n + jµI

n, associated with

different strings of bits, are chosen so as to generate a rectangular grid of

equally spaced points in the complex plane space C, which is illustrated in

Figure 4.13 for M = 16. The message is then modulated and transmitted on

two quadrature carriers cos (2πfcarτ ) and sin (2πfcarτ) as a bandpass signal,

thus resulting in a higher spectral efficiency.

In the following simulations M = 16 was assumed, i.e. 16 QAM (with

Gray coding) was studied. A pilot sequence was used in all simulations,

and the results for different pilot symbol rates for the case of fast fading

(fdT = 0.05) are shown in Figure 4.14. In Figure 4.15 the results for different

fading bandwidths (fdT = 0, 01, 0.02 and 0.05) for P = 20 are presented.

The performance of the proposed method is compared to the one of the ideal

pilot-symbol-assisted modulation (PSAM) and MAP Λ-lag decision feedback

estimator (DFE) (Λ = 7, pilot symbol spacing is 5) in Figure 4.16. Compari-

son with the ideal CSI case is also presented. Similarly to PSK demodulation,
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Figure 4.14: Bit error rate for 16QAM signals for different pilot symbol rate
(additive Gaussian noise).
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Figure 4.15: Bit error rate for 16QAM signals for different fading character-
istics (additive Gaussian noise).
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Figure 4.16: Bit error rate for 16QAM signals (additive Gaussian noise).
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Figure 4.17: Bit error rate for 16QAM signals (additive non-Gaussian noise).
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the number of particles was N = 50, and little or no improvement was gained

by increasing this number. Finally, Figure 4.17 shows the results for non-

Gaussian additive noise with the same characteristics as in Subsection 4.3.1,

for fdT = 0.02 and P = 20.

4.4 Discussion
It can be seen that the proposed algorithm outperforms the existing meth-

ods simulated in the comparison in the case of additive Gaussian noise for

all modulation schemes examined above. In particular, a number of points

can be noted here:

• There is a really small (or even virtually no) performance degradation

compared to that of the receiver with ideal CSI even in the case of fast

fading (for P ≤ 20).

• The number of pilot symbols inserted (in the absence of differential

encoding) is significantly reduced in comparison with other methods.

Furthermore, additional simulations have indicated little if any im-

provement is gained by decreasing a pilot symbol spacing.

• The number of particles used is reasonably small. Computer simula-

tions for different modulation schemes also showed that increasing this

number does not modify the results sensibly.

• Extensive study of PSK signals demonstrated, among others, good

tracking ability of the algorithm.

• Simulations for 16 QAM showed that demodulation of higher order

modulations (with high spectral efficiency) can be successfully per-

formed.

• Lastly, the BER results for DPSK proved that differentially encoded

signals can be treated efficiently as well.

In addition, the algorithm exhibits good performance in the case of non-

i.i.d. message symbols, and the degradation of the performance in the non-
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Gaussian noise case is quite small whereas other standard methods are not

actually designed to treat this case.

The efficient particle filtering algorithm that we have developed for de-

modulation under flat fading conditions have proved to perform well in com-

parison with currently existing methods. We will now try to extend it to ad-

dress more complicated problems of joint demodulation and decoding, space

diversity and multiuser detection.
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The demand for greater capacity and enhanced performance of the trans-

mission in modern communication systems is becoming more and more preva-

lent with the ever growing number of users and the spectrum of services pro-

vided. One of the obstacles that must be removed in order to satisfy these

requirements is signal degradation due to Rayleigh fading. To meet this goal,

a modern digital communication system is equipped with a channel encoder

and a diversity receiver. An increased system capacity is typically achieved

by employing multiuser transmission techniques. The question is now, how

to detect the transmitted information-bearing signals efficiently under such

complicated conditions.

A particle filtering demodulator developed in the previous chapter shows

great promise in coping with this task, and could be combined with other ex-

isting schemes to perform symbol demodulation and detection. It is, however,

possible to address these problems jointly in the particle filtering framework,

and, hence, design a generic particle filtering receiver. Similar to demodu-

lation scenario, the transmission model in all these cases facilitates a state-

space representation (conditional upon the symbols), and an efficient particle

filtering algorithm can be proposed that makes use of this structure and in-

corporates variance reduction strategies. The algorithm is a straightforward



5.1 Joint Demodulation and Decoding 91

Figure 5.1: Transmission of convolutionally coded M-ary modulated signals
in Rayleigh fading channels.

extension of the method described up to now, has a computational complex-

ity that is linear in the number of particles, and can be easily implemented

on parallel processors.

The remainder of the chapter is organized as follows. Section 5.1 extends

the receiver of the previous chapter to consider convolutionally coded sig-

nals, a diversity particle filtering receiver is presented in Section 5.2, and in

Section 5.3 multiuser detection for synchronous code division multiple access

(CDMA) schemes is considered. Simulation results are presented at the end

of each section, and are discussed at the end of the chapter in Section 5.4.

5.1 Joint Demodulation and Decoding
As already mentioned, the particle filtering algorithm presented in the

previous chapter can be easily extended to the case when the forward error

correcting (FEC) coding is employed. The purpose of FEC is to improve the

capacity of a channel by adding some carefully designed redundant informa-

tion to the data being transmitted through it so that the receiver is able to

correct a certain number of errors. The process of adding this redundant

information is also known as channel coding, and a distinction is made be-

tween two code families suitable for FEC, namely the linear block codes and

convolutional codes. The later is the subject of this section9.

9In principle, a decoder structure for an interleaved coded system can be designed.
However, a direct extension of the proposed method will lead to quite a complicated model
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Figure 5.2: Nonbinary 4-state (4,2,2) convolutional encoder.

5.1.1 Model Specification and Estimation Objectives

Let us consider a nonbinary M -state convolutional code (Ncode, κ, Λ). The

code has one of M = 2κ possible input and R output κ-bit symbols, resulting

in a code ratio of 1/R. It is generated by passing the original sequence through

a linear shift register, which consists of Λ (κ-bit) stages and Ncode = kR linear

algebraic function generators. (A schematic structure of a simple nonbinary

4-state, rate 1/2 convolutional encoder is illustrated in Figure 5.2.) The

output of the encoder is then treated by the modulator and transmitted

through the communication channel by means of some M -ary modulation

technique (see Figure 5.1).

Let us recall from Chapter 2 that dn is an input and r(n−1)R+1:nR is the

corresponding output of the encoder10, where dn, rq indicate one of the M

possible κ-bit sequences (dn ∈ {1, 2, . . . , M}, rq ∈ {1, 2, . . . , M} for n =

1, 2, . . . and q = 1, 2, . . .). Each symbol rq at the output of the encoder

is mapped into a corresponding waveform sq(rq) transmitted at times q =

(n − 1)R + χ, χ = 1, . . . , R. (This is illustrated in Figure 5.3 for κ = 2 and

R = 2.) The block of the code symbols r(n−1)R+1:nR is determined by the

and a large decoding delay when the size of the block interleaver matrix is relatively large.
Thus, an alternative method should be proposed, which is the subject of our current
research.

10Similar to the previous chapter, the indexes k, l and g are suppressed in this section
for clarity of presentation.
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input symbols dn−Λ−1:n,

r(n−1)R+1:nR = Φ(dn−Λ−1:n), (5.1)

where Φ(·) depends on the structure of the encoder. The block of corre-

sponding waveforms sn ,
(
s(n−1)R+1, s(n−1)R+2 . . . , snR

)
T

with the compo-

nents s(n−1)+χ = s(r(n−1)+χ) is then a function of dn−Λ−1:n, and the output

of the channel is given by

y|t=(n−1)R+χ = s(n−1)R+χ (dn−Λ−1:n) f(n−1)R+χ + σzt
εt, εt

i.i.d.
∼ Nc (0, 1) . (5.2)

Here, the channel disturbance ft is modelled as an ARMA (ρ, ρ) process with

coefficients a (AR part) and b (MA part), and, as described in the previous

chapter, is represented through the parameter xt defined as

ft = bTxt:t−ρ+1, (5.3)

σ2
zt

in Equation (5.2) is the variance of the Gaussian distribution correspond-

ing to the latent allocation variable zt ∈ Z = {1, 2, . . . , Z}, t = 1, 2, . . ., and

assumed to be i.i.d.

The message symbols dn which are also assumed to be i.i.d., the channel

characteristics xnR:(n−1)R−ρ+2 and the latent variables zn , z(n−1)R+1:nR, cor-

responding to this nth symbol are unknown for n > 0, whereas the model

parameters a, b, σ2
zt

are known for each dn, zn.

The objective: to obtain the MMAP estimates of the symbols from the

corresponding observations yn , y(n−1)R+1:nR :

d̂n = arg max
dn

p (dn|y1,y2, . . . ,yn) . (5.4)

5.1.2 Joint Demodulation and Decoding Algorithm

We will now extend the particle filtering algorithm presented in the pre-

vious chapter to address the problem of joint demodulation and decoding

of information sequences. In this case, recalling that dn and zn are i.i.d.
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Figure 5.3: Nonbinary 4-state rate 1/2 coding and 4-ary modulation.

sequences, the optimal importance distribution p (dn, zn| d1:n−1, z1:n−1,y1:n),

may be expressed in the following form11

p (dn, zn| d1:n−1, z1:n−1,y1:n) =
p (yn| d1:n−1, z1:n−1,y1:n−1, dn, zn) p(dn)p(zn)

p(yn|y1:n−1, d1:n−1, z1:n−1)
(5.5)

leading to the weights wn being equal to

wn ∝ p(yn| d1:n−1, z1:n−1), (5.6)

where p(yn| d1:n−1, z1:n−1) could be calculated as follows:

p(yn| d1:n−1, z1:n−1) =
M∑

m=1

Z∑

ξ1=1

. . .
Z∑

ξR=1

[
p(dn = m)p(zn = ξ1:R)×

p(yn| d1:n−1, z1:n−1, dn = m, zn = ξ1:R)

]

with ξ1:R = {ξ1, ξ2, . . . ξR} .

Taking into account that, conditional on d1:n, z1:n (and, consequently, on

r1:nR and z1:nR), the measurement yq (arranged into vector yn for the nth

11We use the following notation y1:n , (y1,y2 . . . ,yn)T and z1:n , (z1, z2 . . . , zn)T.
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symbol, i.e. yn , y(n−1)R+1:nR) are independent of the states at all other

times, one obtains for the ith particle

w(i)
n ∝

M∑

m=1

[
p(dn = m)

Z∑
ξ1=1

. . .
Z∑

ξR=1

R∏

χ=1

p(zχ = ξχ)×

p
(

y(n−1)R+χ

∣∣ {r(i)
1:(n−1)R, ρ

(i,m)
n,1:χ}, {z

(i)
1:(n−1)R, ξ1:χ}

)]

where the code sequence ρ
(i,m)
n,1:R is equal to ρ

(i,m)
n,1:R = Φ(dn = m, d

(i)
n−1:n−Λ−1)

(see Equation (5.1)) and p
(

y(n−1)R+χ

∣∣ {r(i)
1:(n−1)R, ρ

(i,m)
n,1:χ}, {z

(i)
1:(n−1)R, ξ1:χ}

)
is

given by the Kalman filter (see Chapter 3).

Thus, the importance weight w
(i)
n can be evaluated up to a normalizing

constant according to the following algorithm, where particles{
d

(i)
1:n−1, z

(i)
1:n−1

}N

i=1
are distributed approximately according to

p (d1:n−1, z1:n−1|y1:n−1).

Evaluation of the importance weight

(optimal importance distribution)

• For m = 1, . . . , M, obtain coded symbols ρ
(i,m)
n,1:R

ρ
(i,m)
n,1:R = Φ(dn = m, d

(i)
n−1:n−Λ−1).

• For m = 1, . . . , M,
w(i,m,ξ0)

n = p(dn = m),

· For χ = 1, . . . , R,

· For ξ1 = 1, . . . , Z,

· . . .

· For ξχ = 1, . . . , Z,

perform one-step Kalman update and evaluate



96 Extended particle filtering receiver

w
(i,m,ξ0,ξ1,...,ξχ)
n = w

(i,m,ξ0,ξ1,...,ξχ−1)
n ×

p
(

y(n−1)R+χ

∣∣ {d(i)
1:n−1, ρ

(i,m)
n,1:χ}, {z

(i)
1:n−1, ξ1:χ}

)
p(ξχ)

• Evaluate the importance weight w
(i)
n up to a normalizing constant

w(i)
n =

M∑

m=1

Z∑

ξ1=1

. . .

Z∑

ξ1=1

w(i,m,ξ0,ξ1,...,ξR)
n .

Thus, sampling from the optimal distribution requires evaluation of the

M×(Z+Z2+. . . ZR) = MZ(ZR−1)/(Z−1) one-step Kalman filter updates.

As it was mentioned previously, if MZ(ZR − 1)/(Z − 1) is large, the use of

the prior distribution as the importance distribution is recommended due to

computational complexity. The associated importance weights in this case

are proportional to p(yn|y1:n−1, d1:n, z1:n), and only R steps of the Kalman

filter for each particle have to be evaluated.

In the general case, given symbol particles
{
d

(i)
1:n−1, z

(i)
1:n−1

}N

i=1
distributed

approximately according to p (d1:n−1, z1:n−1|y1:n−1), the particle filter pro-

ceeds as follows.

Particle Filtering Algorithm for joint demodulation and decoding

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample (d̃
(i)
n , z̃

(i)
n ) ∼ π(dn, zn| d

(i)
1:n−1, z

(i)
1:n−1,y1:n)

and set d̃
(i)
1:n = (d

(i)
1:n−1, d̃

(i)
n ), z̃

(i)
1:n = (z

(i)
1:n−1, z̃

(i)
n ).

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing

constant:

w(i)
n ∝

p
(
yn|y1:n−1, d̃

(i)
1:n, z̃

(i)
1:n

)
p(d̃

(i)
n )p(z̃

(i)
n )

π
(

d̃
(i)
n , z̃

(i)
n

∣∣∣ d̃(i)
1:n−1, z̃

(i)
1:n−1,y1:n

) .
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• For i = 1, . . . , N , normalize the importance weights:

w̃(i)
n =

w
(i)
n

∑N
j=1 w

(j)
n

.

Selection Step

• Multiply / discard particles
{

d̃
(i)
1:n, z̃

(i)
1:n

}N

i=1
with respect to high/low nor-

malized importance weights w̃
(i)
n to obtain N particles

{
d

(i)
1:n, z

(i)
1:n

}N

i=1
.

If the optimal importance distribution is employed, the importance weight

w
(i)
n does not depend on d̃

(i)
1:n, z̃

(i)
1:n, and the weights evaluation and selection

can be done prior to the sampling step. The computational complexity and

memory requirements of the algorithm in this case are approximately equiv-

alent to the ones of N × MZ(ZR − 1)/(Z − 1) Kalman filters associated to

the model equations. Indeed, sampling from p (dn, zn| d1:n−1, z1:n−1,y1:n) and

evaluating wn require MZ(ZR − 1)/(Z − 1) one step Kalman filters associ-

ated to the N particles
(
d

(i)
1:n−1, z

(i)
1:n−1

)
. In the case of the prior distribution

used as the importance distribution, only N ×R Kalman filters are required.

Moreover, in both cases p (dn, zn| d1:n−1, z1:n−1,y1:n) and wn only depend on

(d1:n−1, z1:n−1) via the mean and covariance of the channel state xn condi-

tional upon (d1:n−1, z1:n−1) , therefore, one only needs to keep in memory

these statistics and the storage requirements do not increase over time as

might appear at first sight.

5.1.3 BER Performance for the coded PSK signals

Simulations were carried out to determine the performance of the pro-

posed receiver with coded PSK signals12. The code utilized was the standard

8PSK (with Gray encoding) 4-state code described in [Chan & Bateman,

1992, p.191, Fig. 2]. Different channel Doppler frequencies and average

signal-to-noise ratios were considered. Figure 5.4 and 5.5 show the results

for fdT = 0.01/0.05 (with and without pilot symbols) compared to those

12For a more detailed description of the simulation set-up see Section 4.3.



98 Extended particle filtering receiver

10 15 20 25 30 35
10−4

10−3

10−2

10−1

100

SNR dB

BE
R

f
d
T=0.01 

[Vitetta et al 1995]

Particle Filtering 

Particle Filtering (1:50) 

Ideal CSI 

Figure 5.4: Bit error rate for coded 8PSK signals (additive Gaussian noise).

obtained by a maximum likelihood receiver employing per-survivor process-

ing (MLPSP) (pilot sequence is not used) [Vitetta & Taylor, 1995], and to

the ideal CSI case. Whenever the pilot symbols were employed, the rate

was 1 : P with P = 50. The number of particles used in the algorithm was

equal to N = 50. The results for non-Gaussian additive noise are presented

in Figure 5.6.

5.2 Diversity Receiver for Fading Channels
The performance of the receiver in fading channels can sometimes be im-

proved significantly through the use of diversity combining techniques. These

techniques are based on the fact that the majority of errors under fading con-

ditions occur when the channel attenuation is large. Hence, if the receiver

can be supplied with several independently fading replicas of the same trans-

mitted signal, the probability that all received signals will experience deep

fade simultaneously is considerably reduced. The optimal combining of the

received signals in this case will yield vastly improved performance.

There are several common ways in which such independently fading repli-
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Figure 5.5: Bit error rate for coded 8PSK signals (additive Gaussian noise).

cas of the signal can be provided such as frequency (the signal is transmitted

on several separated carriers), time (the signal is transmitted in several differ-

ent time slots) and space (several receiving antennas are employed) diversity.

This section considers the later form, which is discussed in details below.

5.2.1 Diversity Model and Estimation Objectives

Let us consider a diversity receiver with L antennas spaced sufficiently

far apart to ensure different propagation paths of the transmitted signal (see

Figure 5.7). In this case, it is reasonable to assume that the fading processes

among the L diversity channels are mutually independent. Furthermore,

the channels are assumed to be frequency non-selective (flat) slowly fading

with Rayleigh-distributed envelop statistics modelled by a complex ARMA

model of order (ρ, ρ) (Subsection 4.1.1.3). The transmitted information-

bearing signal strans(τ ) (see Subsection 4.1.1.1) is the same for all the channels

(K = 1, k is subsequently suppressed) and in each channel is corrupted

by an additive non-Gaussian noise with characteristics given in Subsection

4.1.1.4. The noise processes in the L channels are assumed to be mutually
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Figure 5.6: Bit error rate for coded 8PSK signals (additive non-Gaussian
noise).

independent as well. Thus, the received signal for the lth channel can be

expressed by the following expression, see Subsection 4.1.2 (no coding is

employed in the system), i.e.

x
(l)
n:n−ρ+1 = Ax

(l)
n−1:n−ρ + Bv

(l)
n ,

y
(l)
n = C(d1:n)x

(l)
n:n−ρ+1 + D(z

(l)
n )ε

(l)
n ,

l = 1, . . . , L, (5.7)

where y
(l)
n , x

(l)
n:n−ρ+1, and z

(l)
n represent observations, channel states and allo-

cation variables for the lth channel, and v
(l)
n

i.i.d.
∼ Nc (0, 1) , ε

(l)
n

i.i.d.
∼ Nc (0, 1).

We assume x
(l)
0:1−n ∼ Nc

(
x̂

(l)
0 ,Σ

(l)
0

)
, where Σ

(l)
0 > 0, and let v

(l)
n , ε

(l)
n be

mutually independent for all l = 1, . . . , L, n > 0.

The message sequence dn, the channel characteristics x
(l)
n and the latent

allocation variable z
(l)
n are unknown for all l = 1, . . . , L, n > 0, and the aim

is to recover dn from the observations y
(1)
1:n, . . . , y

(L)
1:n , in particular, to obtain



5.2 Diversity Receiver for Fading Channels 101

Figure 5.7: Diversity receiver

the MMAP estimates of the symbols:

d̂n = arg max
dn

p
(

dn| y
(1)
1:n, . . . , y

(L)
1:n

)
. (5.8)

For each dn ∈ R, z
(l)
n ∈ Z, l = 1, . . . , L, the model parameters A, B, C(d1:n),

D(z
(l)
n ), x̂

(l)
0 , Σ

(l)
0 are given a priori.

Again, the evaluation of p
(

dn| y
(1)
1:n, . . . , y

(L)
1:n

)
does not admit any analyt-

ical solution, and, similarly to L = 1 case, particle filtering algorithm can be

employed in order to obtain the approximation of this posterior distribution

on-line.

5.2.2 Particle Filtering Diversity Receiver

In Chapter 4, particle filtering techniques were applied to the problem of

demodulation under conditions of Rayleigh fading channels. The steps anal-

ogous to those taken in this section can yield the particle filtering diversity

combining algorithm presented below.

Let us denote y
(1:L)
n =

(
y

(1)
n , . . . , y

(L)
n

)
T

, x
(1:L)
n =

(
x

(1)
n , . . . , x

(L)
n

)
T

, and

z
(1:L)
n =

(
z

(1)
n , . . . , z

(L)
n

)
T

. Using the assumption of independent fading chan-
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nels, the joint posterior density p
(

d1:n, z
(1:L)
1:n , x

(1:L)
0:n

∣∣∣ y(1:L)
1:n

)
can be factorized

as follows

p
(

d1:n, z
(1:L)
1:n , x

(1:L)
0:n

∣∣∣ y(1:L)
1:n

)

= p
(

x
(1:L)
0:n

∣∣∣ d1:n, z
(1:L)
1:n , y

(1:L)
1:n

)
p
(

d1:n, z
(1:L)
1:n

∣∣∣ y(1:L)
1:n

)

= p
(

d1:n, z
(1:L)
1:n

∣∣∣ y(1:L)
1:n

) L∏

l=1

p
(

x
(l)
0:n

∣∣∣ d1:n, z
(l)
1:n, y

(l)
1:n

)
,

where, given d1:n, z
(l)
1:n, p

(
x

(l)
0:n

∣∣∣ d1:n, z
(l)
1:n, y

(l)
1:n

)
may be computed using the

Kalman filter. Alike in L = 1 case, the Sequential Importance Sampling

method can be employed for the estimation of p
(

d1:n, z
(1:L)
1:n

∣∣∣ y(1:L)
1:n

)
. If the

optimal importance distribution

π
(

dn, z(1:L)
n

∣∣ d1:n−1, z
(1:L)
1:n−1, y

(1:L)
1:n

)
= p

(
dn, z

(1:L)
n

∣∣ d1:n−1, z
(1:L)
1:n−1, y

(1:L)
1:n

)

is to be used, the importance weights can be evaluated according to the

following procedure.

From Bayes’ rule, using the same assumption on fading channels as above,

one obtains

p
(

dn, z
(1:L)
n

∣∣∣ d1:n−1, z
(1:L)
1:n−1, y

(1:L)
1:n

)

=
p
(

y
(1:L)
n

∣∣∣ y(1:L)
1:n−1, d1:n−1, z

(1:L)
1:n−1, dn, z

(1:L)
n

)
p(dn| dn−1)p(z

(1:L)
n )

p(y
(1:L)
n

∣∣∣ y(1:L)
1:n−1, d1:n−1, z

(1:L)
1:n−1)

=
∏L

l=1




p
(

y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1, dn, z

(l)
n

)
p(z

(l)
n )

p(y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1)


 p(dn| dn−1).

(5.9)

Then, the importance weights wn are given by

wn ∝
∏L

l=1 p
(

y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1

)
, (5.10)
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where

p
(

y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1

)
=

∑M

m=1

∑K

k=1

[
p
(

y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1, dn = m, z

(l)
n = k

)

× p(dn = m| dn−1)p(z
(l)
n = k)

]
,

(5.11)

and p
(

y
(l)
n

∣∣∣ y(l)
1:n−1, d1:n−1, z

(l)
1:n−1, dn = m, z

(l)
n = k

)
is given by the Kalman fil-

ter (see Chapter 3).

Thus, given

{
d

(i)
1:n−1,

(
z

(1:L)
1:n−1

)(i)
}N

i=1

distributed approximately according

to p
(

d1:n−1, z
(1:L)
1:n−1

∣∣∣ y1:n−1

)
, the importance weights can be calculated (up to

a normalizing constant), according to the following algorithm:

Evaluation of the importance weight

(optimal importance distribution)

• For l = 1, . . . , L evaluate p

(
y

(l)
n

∣∣∣ y(l)
1:n−1, d

(i)
1:n−1,

(
z

(l)
1:n−1

)(i)
)

.

• Evaluate the importance weights up to a normalizing constant:

w(i)
n ∝

L∏

l=1

p

(
y(l)

n

∣∣ y(l)
1:n−1, d

(i)
1:n−1,

(
z

(l)
1:n−1

)(i)
)

,

This requires the evaluation of M ×K × L one-step ahead Kalman filter

steps for each particle, which may be computationally intensive. Alternative

solution is to employ the prior distribution p(dn, z
(1:L)
n

∣∣∣ dn−1, z
(1:L)
n−1 ) as the

importance distribution for which only L single steps of the Kalman filter

are required.

In general, given at time n − 1 a set of particles

{
d

(i)
1:n−1,

(
z

(1:L)
1:n−1

)(i)
}N

i=1

distributed approximately according to p
(

d1:n−1, z
(1:L)
1:n−1

∣∣∣ y1:n−1

)
, at time n

the particle filtering diversity receiver proceeds as follows:
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Particle Filtering Algorithm

Sequential Importance Sampling Step

• For i = 1, . . . , N ,

sample

(
d̃

(i)
n ,
(
z̃

(1:L)
n

)(i)
)

∼ π

(
dn, z

(1:L)
n

∣∣∣ d(i)
1:n−1,

(
z

(1:L)
1:n−1

)(i)

, y
(1:L)
1:n

)

and set d̃
(i)
1:n = (d

(i)
1:n−1, d̃

(i)
n ),

(
z̃

(1:L)
1:n

)(i)

=

((
z

(1:L)
1:n−1

)(i)

,
(
z̃

(1:L)
n

)(i)
)

.

• For i = 1, . . . , N , evaluate the importance weights w
(i)
n .

• For i = 1, . . . , N , normalize the importance weights w
(i)
n

w̃(i)
n =

w
(i)
n

∑N

j=1 w
(j)
n

.

Selection Step

• Multiply / discard particles
{

d̃
(i)
1:n, z̃

(1:L),(i)
1:n

}N

i=1
with respect to high/low

normalized importance weights w̃
(i)
n to obtain N particles

{
d

(i)
1:n, z

(1:L),(i)
1:n

}N

i=1
.

As was mentioned previously, in the case of the optimal importance dis-

tribution being used in the algorithm, the importance weight w
(i)
n does not

actually depend on d̃
(i)
1:n, z̃

(i)
1:n. Thus, the selection step can be done prior to

the sampling step. In both cases of optimal and prior importance distri-

butions the associated importance weights depend on d1:n−1, z
(l)
1:n−1 via the

mean and covariance of the state x
(l)
n:n−n+1 and only these values need to be

kept in memory.

5.2.3 BER Performance for QAM diversity reception

We assessed the performance of the particle filtering diversity receiver for

16 QAM signals (with Gray coding) with the second order diversity (L = 2).

Figure 5.8 and Figure 5.9 represent the results for fdT = 0.02 for Gaussian
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Figure 5.8: Bit error rate for 16QAM signals with second order diversity
(additive Gaussian noise).

and non-Gaussian noise correspondingly (the characteristics of other parame-

ters are the same as in the previous chapter13). The number of particles used

was N = 50 with the pilot symbol rate of 1 : 50. In Figure 5.8 the compari-

son with the ideal coherent detection, ideal pilot-symbol-assisted modulation

(PSAM), and diversity combining MAP K-lag decision feedback estimator

(DFE) with K = 4,7 and the pilot symbol spacing of 5 is also presented.

The analytical results for the ideal coherent detection and ideal PSAM are

derived in [Seymour, 1994].

5.3 CDMA
Code division multiple access (CDMA) systems have been recently under

intensive research, a significant thrust of which has focused on the multiuser

CDMA detection in fading environments [Davis & Collings, 1999; Hou &

Chen, 2000; Raphaeli, 2000]. Fading results in a significant increase of both

the intersymbol interference (ISI) among the data symbols of the same user,

13For a more detailed description of the simulation set-up see Section 4.3.
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Figure 5.9: Bit error rate for 16QAM signals with second order diversity
(additive non-Gaussian noise).

and the multiple-access interference (MAI) among the data symbols of differ-

ent users. These, added to a possibly non-Gaussian, often impulsive, nature

of the ambient noise in some physical channels (such as urban and indoor

radio channels), make the problem of symbol detection extremely difficult.

In this section, we address this problem using particle filtering techniques,

and extend the algorithm developed in the previous chapter, and already

proved useful for demodulation, decoding and detection of symbols received

by multiple antennas, to consider this more complicated multiuser scenario.

5.3.1 Problem statement and estimation objectives

Let us consider the downlink of a synchronous CDMA system that is

shared by K simultaneous users (see Figure 5.10), and let dk,n denote the nth

information symbol from the kth user14 and strans, k(τ) be the corresponding

equivalent lowpass signal waveform given by

14We assume that only L = 1 antenna and no channel coding is employed in the system,
index l is, therefore, suppressed, and rn = dn, q = n.
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Figure 5.10: CDMA transmission system.

strans, k(τ ) = sk,n(dk,1:n)uk(τ ), (n − 1)Tn < τ ≤ nTn, (5.12)

where sk,n(.) performs the mapping from the digital sequence to waveforms

and corresponds to the modulation technique employed, and uk(τ ) is the

signature waveform for the kth user,

uk(τ) =
H∑

h=1

ck,hη(τ − hTch).

Here, ck,1:H is a pseudo-noise (PN) code sequence consisting of H chips (with

values {±1}) per symbol, η(τ − hTch) is a rectangular pulse of duration

Tch transmitted at (h − 1)Tch < τ ≤ hTch, and Tch is the chip interval,

Tch = Tn/H.

The waveform goes through a flat15 Rayleigh fading channel and is cor-

rupted by additive complex noise which is assumed to be Gaussian16. Thus,

15Frequency-selective channels can be considered in the same framework.
16The case of non-Gaussian noise can be easily treated using the techniques presented

in the previous Chapter.
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after matched filtering and sampling at the rate T−1
ch , the complex output of

the channel at instant t = (n − 1)H + h, h = 1, . . . , H, corresponding to the

transmission of the nth symbols can be expressed as

y|t=(n−1)H+h =

(c1,h, . . . , cK,h)




sn(d1,1:n) 0 . . . 0

0 sn(d2,1:n) . . . 0
...

...
. . .

...

0 0 . . . sn(dK,1:n)




︸ ︷︷ ︸
diag(s1,n,...,sK,n)




f1,t

f2,t

...

fK,t




︸ ︷︷ ︸
f1:K,t

+ σεt,

where σ2 is the variance of the additive complex noise εt
i.i.d.
∼ Nc (0, 1) , and

f1:K,t represents a multiplicative discrete time disturbance of the channels,

which is at instant t modelled as an ARMA(ρ, ρ) process (Butterworth filter

of order ρ). The ARMA coefficients a (AR part) and b (MA part) are

chosen so that the cut-off frequency of the filter matches the normalized

channel Doppler frequency fdTch, which is known. Thus, the problem can

be formulated in a linear Gaussian state space form (conditional upon the

symbols), similar to Chapter 4.

The symbols dn = d1:K,n, which are assumed i.i.d., and the channel char-

acteristics f1:K,t corresponding to the transmission of the nth symbol are

unknown for n > 0. Our aim is to estimate dn given the currently available

data y1:n, where yn , y(n−1)H+1:nH , y1:n , (y1,y2 . . . ,yn)T. This can be done

using the MAP (maximum a posteriori) criterion:

d̂n = arg max
dn

p (dn|y1:n) .

As in all previously treated cases, the problem does not admit any analytical

solution as computing p (dn|y1:n) involves a prohibitive computational cost

exponential in the (growing) number of observations and, we propose to use

particle filtering techniques to estimate it.
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5.3.2 CDMA particle filtering receiver

The particle filtering demodulator presented in Chapter 4 can be extended

as follows. We simulate N particles
{
d

(i)
1:n

}N

i=1
according to a convenient

importance distribution π(d1:n|y1:n) (such that p (d1:n|y1:n) > 0 implies

π (d1:n|y1:n) > 0, and π(d1:n|y1:n) admits π (d1:n−1|y1:n−1) as marginal dis-

tribution), and, using the importance sampling identity, obtain an estimate

of p (d1:n|y1:n) given by the following point mass approximation:

p̂N (d1:n|y1:n) =
∑N

i=1 w̃
(i)
n δ(d1:n − d

(i)
1:n), (5.13)

The normalized importance weights w̃
(i)
1:n in the above expression are given

by,

w̃(i)
n =

w
(i)
n

∑N

j=1 w
(j)
n

, (5.14)

w(i)
n ∝

p
(
d

(i)
1:n

∣∣∣y1:n

)

π
(
d

(i)
1:n

∣∣∣y1:n

) . (5.15)

and a selection step is included in the algorithm at each time step in order to

discard particles with low normalized importance weights and multiply those

with high ones.

The resulting algorithm is similar to the one described in the previous

section. If at stage n − 1 one has N particles
{
d

(i)
1:n−1

}N

i=1
distributed ap-

proximately according to p (d1:n−1|y1:n−1), at time n one obtains:

CDMA Particle Filtering Receiver

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample d̃
(i)
n ∼ π(dn|d

(i)
1:n−1,y1:n) and set d̃

(i)
1:n =(

d
(i)
1:n−1, d̃

(i)
n

)
.

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing

constant, Equation (5.14).
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• For i = 1, . . . , N , normalize the importance weights, Equation (5.15).

Selection Step

• Multiply / discard particles
{
d̃

(i)
1:n

}N

i=1
with respect to high/low normalized

importance weights w̃
(i)
n to obtain N particles

{
d

(i)
1:n

}N

i=1
.

The choice of the importance distribution and a selection scheme are

discussed in Chapters 3 and 4; depending on those being employed, the

computational complexity of the algorithm varies. As it is shown there,

π (dn|d1:n−1,y1:n) = p (dn|d1:n−1,y1:n) is an importance distribution that

minimizes the conditional variance of w (d1:n) and, therefore, is “optimal” in

the framework considered (see Chapter 3 for details). However, for multiuser

detection, for each particle it requires evaluation of the MK H-step ahead

Kalman filters for detection of the nth symbols since in this case

wn ∝
MK∑

m=1

p
(
yn|d

(i)
1:n−1,dn = ρm,y1:n−1

)
p(dn = ρm), (5.16)

where ρmcorresponds to the mth (m = 1, . . . , MK) possible realization of dn.

Thus, sampling from the optimal distribution is computationally expensive

if MK is large. In this case, the prior distribution can be used alternatively

as the importance distribution, i.e. π (dn|y1:n,dn−1) = p (dn), so that, in

total, for each particle at time t only one Kalman filter step is calculated (H

one step Kalman filters per symbol). This could be inefficient, though, as it

does not use the information carried by yn to explore the state space.

Similar to the previous sections, a selection step is performed according

to a stratified sampling [Kitagawa, 1996] scheme in our algorithm, which can

be implemented in O (N) operations.

5.3.3 Simulations

In order to demonstrate the bit-error-rate (BER) performance of our al-

gorithm it was applied to the case of binary–phase-shift-keyed (BPSK) sym-

bols transmitted over fast fading CDMA channels with K = 3, H = 10
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and fdTch = 0.05. The results for different average signal to noise ratio

(SNR) compared to those obtained by maximum-a-posterior (MAP) decoder

in [Davis & Collings, 1999] are given in Figure 5.11, where also the ideal

channel state information (CSI) case is presented. Both, the particle receiver

employing optimal (PFO) and prior (PFP) importance distributions, are con-

sidered17. Not surprisingly, PFO turns out to be more efficient than PFP.

In order to achieve the same BER with PFP more than N = 300 particles

were required. In general, even for just N = 50 particles and pilot sym-

bol rate 1 : 20, both our algorithms outperform substantially that of [Davis

& Collings, 1999], especially when the signal-to-noise ratio (SNR) is large.

Additional simulations (with the number of users K = 2) have shown that

the algorithm exhibits good performance in the case of non-Gaussian18 ad-

ditive noise (with Z = 2), whereas other standard methods are not actually

designed to treat this case.

It should be emphasized, however, that if the number of users or process-

ing gain in CDMA is large, a more complex modulation scheme is used and/or

the additive noise is non-Gaussian (modelled as a mixture of Gaussians), PFP

is of no use due to its computational complexity. Using the prior as an im-

portance distribution combined with Markov chain Monte Carlo (MCMC)

methods ([Doucet et al., 2001b]) might be a good solution in this case.

5.4 Discussion
As one can see, the algorithm proposed in the previous chapter can be

easily extended to consider

• joint symbol decoding and demodulation

• diversity reception

• multiuser detection

17For a more detailed description of the simulation set-up see Section 4.3.
18The extension of the algorithm is straightforward.
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Figure 5.11: Bit error rate for CDMA transmission.

Performance advantages in comparison with other methods are demon-

strated in all these cases for both Gaussian and non-Gaussian noise. The

conclusions similar to the ones made at the end of the previous chapter could

be reached. In addition, fixed-lag smoothing could be considered similar to

Chapter 4.

The algorithm could be extended even further to consider more compli-

cated scenarios (Chapter 7, for example). However, one of the drawbacks of

the proposed methods for joint demodulation/decoding is that interleaving

cannot be addressed in the same framework. In this case, the method is

simply too computationally expensive to be applicable. In addition, in the

case of multiuser detection with large number of users (or, indeed, in general

case of the total number of states being large), a more efficient particle filter-

ing approach involving the optimal importance distribution might be of no

use due to its computational complexity. In this situation, PFP is relevant

but requires the use of MCMC steps; see [Doucet et al., 2001b] for details.

Alternatively, a “cleverer” suboptimal importance distribution should be de-

signed, or a different approach to multiuser detection (see [Iltis, 2001]) with
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consequent application of particle filtering could be used. This issues are the

subject of our current research.

In this chapter, we presented an extension of the basic particle filtering

demodulator to the problems of joint demodulation and decoding, space di-

versity and multiuser detection in flat fading conditions. The results show

that the algorithm outperforms the existing methods in the case of both addi-

tive Gaussian and non-Gaussian noise for convolutionally coded information

sequences, can be efficiently used with space diversity, and performs well in

the difficult situation of multiuser detection. In the next chapter, we will

try to investigate the proposed algorithm even further and compare it with

other general approaches applicable to a similar class of models.



6 Detection Estimation Algorithm

for Demodulation

The problem of demodulation under conditions of fading transmission

channels (Chapter 4) has always received a lot of interest, especially with the

development of particle filtering techniques capable of solving such challeng-

ing optimal filtering problems. The application of these powerful simulation-

based methods to demodulation seems only to be a reasonable choice, and,

while this thesis was in preparation, a number of approaches close to the

work presented in Chapter 4 have been independently proposed in the liter-

ature [Chen et al., 2000; Yang & Wang, 2002]. They all consider a special

case with the unknown state of the model including the discrete parameters

(symbols) only and the continuous-valued (channel) characteristics being in-

tegrated out. The problem one addresses hence belongs to a first class of

digital communications problems (Chapter 2), and an efficient implementa-

tion of particle filtering techniques involves the use of the optimal (Chapters

3 and 4) importance sampling distribution. The results obtained by such a

receiver are very promising (Chapter 4), and, in general, the method outper-

forms currently existing demodulation techniques.

In this chapter, however, we would like to review and compare this ap-
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proach with alternative deterministic and stochastic algorithms previously

presented in the literature for this class of problems. The ideas described

here originate in [Tugnait & Haddad, 1979] (which is known as the detection

estimation (DEA) algorithm), where preserving a limited number of most

likely sequences is proposed as a way of avoiding exponentially increasing

complexity of the problem. A more complicated selection scheme based on

resampling low-weighted particles and keeping the ones with high weights

[Fearnhead, 1998] is also considered. We discuss and test these approaches

for demodulation and CDMA detection in flat Rayleigh fading channels; the

performance of the proposed algorithms is demonstrated by means of com-

puter simulations.

The chapter is organized as follows. In Section 6.1, we briefly recall the

model specifications and estimation objectives for symbol demodulation in

flat fading conditions. Section 6.2 introduces and reviews the deterministic

and stochastic schemes to approximate the optimal filter. The simulation

results comparing various approaches are presented in Section 6.3, and are

discussed in Section 6.4. Finally, some conclusions are reached at the end of

the chapter.

6.1 Model Specifications
First, let us briefly recall the model for the signal transmission in flat

fading channels. Let dn be the nth information symbol transmitted19 by

means of the analog waveform strans(τ) = Re[sn(d1:n) exp(j2πfcarτ )], where

fcar is a carrier frequency, and sn(·) performs the mapping from the symbol to

waveforms and depends on the modulation scheme employed. If the number

of bits per symbol is κ, dn indicates one of M = 2κ possible symbol sequences,

dn ∈ {1, 2, . . . , M}, transmitted in the nth signalling interval; the sequence

dn is assumed to be independent identically distributed (i.i.d.).

The signal is passed through a flat Rayleigh fading channel which causes

random amplitude and phase variations on the signal that can be described

by a complex multiplicative discrete time disturbance fn. We model fn as an

19We denote for any generic sequence αn, αi:j , (αi, αi+1, . . . , αj)
T
.
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ARMA(ρ, ρ) process (Butterworth filter of order ρ) as, for example, in [Turin

& van Nobelen, 1998], with the ARMA coefficients a (AR part) and b (MA

part) chosen so that the cut-off frequency of the filter matches the normalized

channel Doppler frequency fdT (T is the symbol rate), fdT being known. Now,

using a new channel parameter xn, defined so that fn = bTxn:n−ρ+1, we can

formulate the problem in the linear state space form conditional upon the

symbol sequence d1:n :

xn:n−ρ+1 = Axn−1:n−ρ + Bvn,

yn = C(d1:n)xn:n−ρ+1 + σεn,
(6.1)

where yn is the complex output of the channel corrupted by additive com-

plex noise εn with variance σ2, A is a function of a, B = (1, 0, . . . , 0)T and

C(d1:n) = sn(d1:n)bT. We assume x0:1−ρ ∼ Nc (x̂0,Σ0), where Σ0 > 0, and

let vn
i.i.d.
∼ Nc (0, 1) , εn

i.i.d.
∼ Nc (0, 1) be mutually independent for all n > 0.

With the symbols d1:n and channel parameters f1:n (and correspondingly

x1:n) being unknown, our aim is to obtain the maximum a posteriori (MAP)

estimate of d1:n, arg max
d1:n

p (d1:n| y1:n) , sequentially in time.

6.2 Particle filtering receiver
Given the observations y1:n, all Bayesian inference on d1:n relies on the

posterior probability distribution p (d1:n| y1:n) , which satisfies the following

recursion:

p (d1:n| y1:n) = p(d1:n−1| y1:n−1) ×
p(yn| d1:n, y1:n−1)p(dn)

p(yn| y1:n−1)
. (6.2)

For a given symbol sequence d1:n, this posterior can be evaluated up to a

normalizing constant p(yn| y1:n−1) with the help of the Kalman filter. In our

case, at each stage n, there are Mn possible sequences that have to be consid-

ered resulting in exponentially increasing complexity of the scheme. Hence,

the problem that has to be addressed here is how to avoid this prohibitive

computational cost, i.e. limit the number of propagated terms to a finite

predetermined integer.
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6.2.1 Particle filter with optimal importance

distribution

In Chapter 4, we propose to use particle filtering to address this problem.

The idea is to approximate the posterior p (d1:n| y1:n) by the following point

mass approximation using the importance sampling identity:

p̂N (d1:n| y1:n) =
N∑

i=1

w̃(i)
n δ
(
d1:n − d

(i)
1:n

)
, (6.3)

The particles
{

d
(i)
1:n

}N

i=1
in the above expression are simulated according

to an arbitrary convenient importance distribution π(d1:n| y1:n) (such that

p (d1:n| y1:n) > 0 implies π (d1:n| y1:n) > 0, and π(d1:n| y1:n) admits

π (d1:n−1| y1:n−1) as marginal distribution), and an efficient implementation

involves using π(dn| d1:n−1, y1:n) = p(dn| d1:n−1, y1:n). This distribution min-

imizes the conditional variance of the importance weights and, therefore, is

“optimal” in the framework considered (see Chapter 3 and 4 for details).

However, for each particle it requires evaluation of M Kalman filter steps for

each symbol since in this case

w(i)
n ∝

M∑

m=1

p
(

yn| d
(i)
1:n−1, dn = m, y1:n−1

)
p(dn = m), (6.4)

where m corresponds to each possible realization of dn. Thus, sampling

from the optimal distribution is computationally expensive if M is large.

Moreover, since all the calculations have to be performed anyway, it is better

to base our approximation of p (d1:n| y1:n) directly on :

p̂N×M (dn| y1:n) =

N∑

i=1

M∑

m=1

w̃(i,m)
n δ(d1:n −

{
d

(i)
1:n−1, dn = m

}
), (6.5)

thus, considering all possible “extensions” of the existing state sequences for

each particle at step n. We refer to this method as deterministic particle

filter and describe it in details in the next section.
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6.2.2 Deterministic particle filter

Suppose that, at the (n−1)th stage, Nn−1 appropriately weighted symbol

sequences
{

d
(i)
1:n−1

}Nn−1

i=1
, hereafter referred to as particles, are available that

approximate the posterior distribution p (d1:n−1| y1:n−1) as follows:

p̂Nn−1 (d1:n−1| y1:n−1) =

Nn−1∑

i=1

w̃(i)
n δ
(
d1:n−1 − d

(i)
1:n−1

)
, (6.6)

where w̃
(i)
n are the normalized weights of the particles:

∑Nn−1

i=1 w̃
(i)
n = 1,

w̃
(i)
n > 0 for all i.

At stage n, each of these particles d
(i)
1:n−1, i = 1, . . . , Nn−1, could have

M new “extensions” or so-called offspring
{

d
(i)
1:n−1, dn = m : m = 1, . . . , M

}
,

where m corresponds to the possible realizations of dn, thus resulting in a

total number of Nn−1 × M potential candidates and the following approxi-

mation of p (d1:n| y1:n):

p̂Nn−1×M (d1:n| y1:n) =

Nn−1∑

i=1

M∑

m=1

w̃(i,m)
n δ

(
d1:n −

{
d

(i)
1:n−1, dn = m

})
. (6.7)

From Equation (6.2), the corresponding weights of these particle offspring are

proportional to the posterior p
(

d
(i)
1:n−1, dn = m

∣∣∣ y1:n

)
and, therefore, depend

on the weight of the parent at step n − 1, the prior distribution and the

likelihood term, which can be computed using the Kalman filter:

w(i,m)
n ∝ w̃

(i)
n−1p

(
yn| d

(i)
1:n−1, dn = m, y1:n−1

)
p(dn = m). (6.8)

The denominator in (6.2) is common for all d1:n and is eliminated in weight

normalization:

w̃(i,m)
n =

w
(i,m)
n

∑Nn−1

i=1

∑M

m=1 w
(i,m)
n

.

In terms of calculations, this approach is equivalent to the use of the op-

timal distribution in particle filtering algorithm. However, when performing

inference on the symbol dn, it is, of course, better to use p̂Nn−1×M (d1:n| y1:n)

than the standard particle filtering approximation (6.3) since one does not
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discard unnecessarily any information by selecting randomly one path out of

the M available.

If now the total number of components with non-zero weights Nn−1×M−

Nzero (where Nzero is the number of components with zero weight) exceeds

the predetermined maximum allowable number N , a selection scheme has to

be employed in the procedure in order to avoid the exponentially increasing

complexity of the algorithm. The simplest way to perform such selection is

to keep Nn = N most likely particles with the highest weights w̃
(i,m)
n (those

selected are then renumbered), and discard the others (as, for example, in

[Tugnait & Haddad, 1979]). This means that, at each stage, all possible

“extensions” of the existing symbol sequences are considered, however, only

a maximum allowable number of them are carried forward; the rest of the

sequences are disregarded as unlikely ones.

A more complicated approach involves preserving the particles with high

weights and resampling the ones with low weights (RLW), thus reducing their

total number to N . An important condition for the design of the selection

scheme in this specific context is to resample without replacement, i.e. with

each particle appearing at most once in the resulting set, as, indeed, there is

no point in carrying along two particles evolving in exactly the same way. An

algorithm of this type is presented in [Fearnhead, 1998] but other selection

schemes can be designed.

Thus, given at time n−1,
{

d
(i)
1:n

}Nn−1

i=1
distributed approximately according

to p (d1:n−1| y1:n−1), at time n the deterministic particle filter proceeds as

follows:

Deterministic particle filter

• For i = 1, . . . , Nn−1,

for m = 1, . . . , M, perform one-step Kalman filter update and

evaluate the importance weight w
(i,m)
n up to a normalizing constant:

w(i,m)
n ∝ w̃

(i)
n−1p

(
yn| d

(i)
1:n−1, dn = m, y1:n−1

)
p(dn = m).
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• For i = 1, . . . , Nn−1, for m = 1, . . . , M, normalize w
(i,m)
n to obtain w̃

(i,m)
n :

w̃(i,m)
n =

w
(i,m)
n

∑Nn−1

i=1

∑M

m=1 w
(i,m)
n

.

• If Nn−1 × M − Nzero > N,

select Nn = N trajectories out of Nn−1×M −Nzero possible “extensions”

with respect to high/low normalized importance weights w̃
(i,m)
n

without replacement to obtain a set of new particles
{
d

(i)
1:n

}Nn

i=1

Whether we choose to preserve the most likely particles or employ the

selection scheme proposed in [Fearnhead, 1998], the computational load of

the resulting algorithms at each step n is that of Nn−1 × M Kalman filters

with Nn−1 ≤ N . The selection step, if any, for both cases is implemented in

O(Nn−1 × M log Nn−1 × M) operations compared to O (N) when, for exam-

ple, the stratified sampling [Kitagawa, 1996] in standard particle filtering is

employed. Of course, if M is large, which is the case in many applications,

both these methods are too computationally expensive to be used.

6.3 Simulations

Computer simulations were carried out in order to compare the perfor-

mance of the methods presented in the previous section. The algorithms

were applied to demodulation of 4DPSK signals

sn = exp(jθn), θn =

n∑

j=1

4∑

m=1

2πm

4
(dj − dm) ,

transmitted over reasonably fast (see [Proakis, 1995]) Rayleigh fading chan-

nels with normalized channel Doppler frequency fdT = 0.05. The fading chan-
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Figure 6.1: Bit error rate performance comparison.

nel was generated using Jakes’ method with corresponding fdT . Figure 6.1

shows the bit-error-rate (BER) performance of the standard particle filtering

algorithm employing optimal importance sampling distribution (PFO) com-

pared to those obtained by deterministic approach preserving N most likely

particles (DML), and the deterministic receiver incorporating the resampling

low weights (RLW) selection procedure [Fearnhead, 1998]. The number of

particles used in all algorithms was equal to N = 50 and the average signal

to noise ratio (SNR) was 12 dB. The results for different average signal to

noise ratio (SNR) and the number of particles N are presented in Figure 6.2

and 6.3 correspondingly20. They are interesting in the sense that, in this

case, the simplest DML approach turned out to be the most effective one.

In order to achieve the same BER using a more complicated RLW selection

20For a more detailed description of the simulation set-up see Section 4.3.
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Figure 6.2: Bit error rate via SNR.

scheme more than N = 600 particles were required, and more than N = 1000

particles were needed with PFO. With other simulation parameters, however,

one may find that the results between the different algorithms are much less

pronounced, see BER for binary DPSK (BDPSK) signals in relatively slow

fading, Figure 6.4, for example.

In the second series of experiments, we extended the proposed algorithms

(analogously to Chapter 4 and 5) to the case of non-Gaussian additive noise.

Similar to Chapter 4, the additive noise was distributed as a two-component

mixture of zero-mean Gaussians (Z = 2) with the overall variance being

equal to λ1σ
2
1 +(1−λ1)σ

2
2, λ1 = 0.2. The results are shown in Figure 6.5, and
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Figure 6.3: Bit error rate for different number of particles.

are similar to the ones obtained earlier in terms of algorithms performance.

Finally, a synchronous CDMA system with K = 3 users and H = 10

was considered. The algorithms were applied to the case of binary DPSK

(BDPSK) signals with fdT = 0.05. The bit-error-rate performance for this

scenario is illustrated in Figure 6.6, and the same conclusions can be made.

6.4 Discussion
To conclude, one could hope that randomization “helps” by allowing par-

ticles with a small weight to survive, but simulations presented in the previous

section show that it is not necessarily the case. In this very specific but im-

portant context, particle filtering algorithms do not perform better than the
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Figure 6.4: Bit error rate for BDPSK signals and relatively slow fading.

simplest deterministic method which consists of keeping at each time step

the best N hypothesis. One should note, however, that

• These conclusions must indeed be interpreted cautiously. The results

with other simulation parameters (such as demodulation of BDPSK sig-

nals in very slow multipath fading) were much less pronounced. These

issues need further investigation.

• In principle, all schemes are capable of providing optimal performance

given a large number of particles. The simplicity and efficiency is,

however, one of the great advantages of DML.

• Although the DML approach outperforms many existing methods, it

might suffer from the drawback of “never forgetting the past”. As a

result, one minor error made at the beginning of estimation might lead
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Figure 6.5: Bit error rate for non-Gaussian additive noise.

to a significant performance degradation at later stages. The algorithm,

however, could be improved by introducing a discount factor β, 0 < β <

1, in order to reduce the effect of the previous decisions on the future

performance of the method. Following this approach, the discounted

weights of the particles would be calculated as:

w̃(i,m)
n ∝

(
w̃

(i)
n−1

)β

p
(

yn| d
(i)
1:n−1, dn = m, y1:n−1

)
p(dn = m), (6.9)

and the lower the value of the discount factor the less effect the past

would have on the future. Such discounted detection estimation (DDE)

algorithm is the subject of our current research. Further research

should be directed into optimization of this scheme with respect to

the parameter β.
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Figure 6.6: Bit error rate for multiuser detection.

• The problem considered in this chapter is rather specific in that the

unknown state of the model involves the discrete parameters only. In

more complex scenarios, the DML and RLW approaches are not appli-

cable.

• In the context involving both the discrete and continuous-valued un-

known parameters, DML could be combined with the particle filter to

obtain a deterministic particle filtering receiver. Such algorithm is in-

vestigated in the next chapter for the problem of joint symbol detection

and propagation delay estimation for DS spread spectrum systems in

the multipath environment.

• Using the techniques presented in Chapter 4 and 5, the algorithm can

be easily extended to consider non-Gaussian additive noise, decoding,

space diversity and multiuser detection. It should be emphasized, how-
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ever, that if the number of users is large, a more complex modulation

scheme is used and/or the additive noise is non-Gaussian (modelled as

a mixture of Gaussians), both DML and RLW are of no use due to

their computational complexity.

• In the case where it is too costly to explore M hypothesis for each

particle, standard particle filter employing the prior as an importance

distribution and combined with Markov chain Monte Carlo (MCMC)

methods (Chapter 2) leads to very good performance.

• The SMC algorithms could also prove useful if one could develop subop-

timal importance distributions allowing more efficient sampling. This

problem has to be addressed on a case by case basis. An interesting way

to explore consists of randomizing standard deterministic algorithms

such as successive interference cancellation or iterative least squares.

However, advanced deterministic pruning strategies can also be devel-

oped using, for example, a coordinate ascent version of the algorithm

proposed in [Doucet et al., 2001b].

In this chapter, we have reviewed several approaches based on SMC meth-

ods to perform (approximate) optimal filtering for the first class of digital

communications problems (Chapter 2). A simulation study has been carried

out in order to compare these algorithms for symbols demodulation. Such

a comparison has not been made before. In the context where only the dis-

crete parameters are unknown, which is the case in demodulation, standard

particle filtering methods, although quite capable of providing good perfor-

mance, do not necessarily compare favorably with deterministic approaches:

as simulations show, the most basic deterministic algorithm preserving the

N most likely particles also turns out to be the most effective one.
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This deserves further study and does not mean that particle filtering

methods are of no use in communication systems. Indeed, for more complex

problems involving continuous-valued unknown parameters, or in situations

where DML and similar methods are of no use due to their computational

complexity, these deterministic approaches do not apply and particle methods

appears to be really useful. In this framework, particle filtering based on

sampling importance resampling is relevant but requires the design of an

efficient suboptimal importance distribution and/or the use of MCMC steps;

see [Doucet et al., 2001b] for details. For the cases including both discrete and

continuous-valued parameter estimation, as in DS spread-spectrum system

analyses, the particle filter could be combined with DML in order to explore

the state space in a more efficient manner. This problem is addressed in the

next chapter where the algorithms of this type are investigated.



7 Joint Symbol/Delay Estimation in

Spread Spectrum Systems

Direct sequence (DS) spread spectrum systems are robust to many chan-

nel impairments, allow multiuser (CDMA) and low-detectability signal trans-

mission, and, therefore, are widely used in different areas of digital com-

munications. Unlike many other communication systems, however, spread

spectrum receivers require additional code synchronization, which can be a

rather challenging task under conditions of multipath fading, when severe

amplitude and phase variations take place.

The problem of joint delay and multipath estimation has been addressed

in the literature before (see [Iltis, 2001, 1990], for example), and has proved

to be difficult due to its inherited nonlinearity. The previously proposed ap-

proaches are mainly based on the use of the Extended Kalman Filter (EKF).

However, many of them concentrate on the channel parameters and delay

estimation only; moreover, in a number of cases, when EKF methods are

applied, the estimated parameters are divergent, [Iltis, 2001].

In this chapter, we propose to estimate the channel parameters, code

delays and symbols jointly using particle filtering techniques. The methods

have already been successfully applied to the problems arising in digital com-



130 Joint Symbol/Delay Estimation in Spread Spectrum Systems

munications, in particular, demodulation in fading channels (Chapter 4) and

detection in synchronous CDMA (Chapter 5). In this work, the unknown fad-

ing channel characteristics were integrated out and only the symbols needed

to be imputed. The algorithm, thus, made use of the structure of the model,

and the unknown state involved discrete parameters only. Later investigation

(Chapter 6), however, revealed some concerns regarding the efficiency of stan-

dard particle filtering techniques in this context. It has been shown that, for

a fixed computational complexity, more efficient deterministic schemes can

be designed which lead to improved receiver performance.

We attempt here to study these results further, and compare various

randomized and non-randomized approaches. The problem we are dealing

with is more complex though, since it involves both discrete (symbols) and

continuous-valued (delays) unknowns. Although the deterministic method

is not applicable directly in this case, it can be combined with sequential

importance sampling for the continuous-valued parameter, followed by an

appropriate selection procedure. The resulting algorithm explores the state

space in a more systematic way at little or no extra cost compared to standard

particle filtering using a suboptimal importance distribution. We develop and

test this approach against other deterministic and stochastic schemes, and

demonstrate its performance by means of an extensive simulation study.

The remainder of the chapter is organized as follows. The model spec-

ifications and estimation objectives are stated in Section 7.1. In Section

7.2, a particle filtering method is developed for joint symbol/channel coeffi-

cients/code delay estimation. Several alternative deterministic and stochastic

schemes are also introduced and reviewed. Simulation results and compar-

isons are presented in Section 7.3. Some conclusions are drawn at the end of

the chapter.

7.1 Problem statement and estimation

objectives
Let us begin with the model specification for signal transmission in DS

spread spectrum systems in a multipath environment. For simplicity, we
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address a single user case with one receiving antenna, and set K = 1 and

L = 1, suppressing the indices k and l hereafter. No channel coding is

employed in the system, and the additive channel noise is assumed to be

Gaussian. Extension to more complicated scenarios is straightforward.

Transmitted waveform. Let us denote for any generic sequence κt,

κi:j , (κi, κi+1, . . . , κj)
T, and let dn be the nth information symbol and

strans(τ ) be the corresponding analog bandpass spread-spectrum signal wave-

form transmitted in the symbol interval of duration Tn:

strans(τ) = Re[sn(d1:n)u(τ) exp(j2πfcarτ )], for (n − 1)Tn < τ ≤ nTn, (7.1)

where sn(.) maps the digital sequence to waveforms and depends on the

modulation technique employed, dn = rn, with q = n since uncoded symbols

are considered (see Chapter 2), fcar denotes the carrier frequency and u(τ) is

a wide-band pseudo-noise (PN) waveform defined by

u(τ) =
H∑

h=1

chη(τ − hTch). (7.2)

Here, c1:H is a spreading code sequence consisting of H chips (with values

{±1}) per symbol, η(τ − hTch) is a rectangular pulse of unit height and

duration Tch transmitted at (h − 1)Tch < τ ≤ hTch, and Tch is the chip

interval satisfying the relation Tch = Tn/H.

Channel model. The signal is passed through a noisy multipath fading

channel which induces random amplitude and phase variations. The channel

can be represented by a time-varying tapped-delayed line with taps spaced

Ts seconds apart, where Ts is the Nyquist sampling rate for the transmitted

waveform; Ts = Tch/2 due to the PN bandwidth being approximately 1/Tch.

The equivalent discrete-time impulse response of the channel is given by

hchannel,t =
∑G−1

g=0 f
(g)
t δ(t − g), (7.3)

where t is a discrete time index, G is the number of paths of the channel, f
(g)
t

are the complex-valued time-varying multipath coefficients (arranged into
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the vector ft), and δ denotes the Dirac delta function.

We assume here that the channel coefficients ft and code delay θt propa-

gate according to the first-order autoregressive (AR) model:

ft = Af t−1 + Bvt,vt
i.i.d.
∼ Nc (0, IG) , (7.4)

θt = γθt−1 + σθϑt, ϑt
i.i.d.
∼ N (0, 1) , (7.5)

which corresponds to a Rayleigh uncorrelated scattering channel model; here

A , diag(α(0), . . . , α(G−1)), B , diag(σ
(0)
f , . . . , σ

(G−1)
f ), where σ

(g)
f is the

standard deviation, and α(g) accounts for the Doppler spread (see [Iltis, 1990;

Komninakis et al., 1999] for details and discussion of the use of higher order

AR). In this work, matrices A, B, and parameters γ and σθ are assumed

known. Directions on the choice of these parameters are given in [Iltis, 1990;

Komninakis et al., 1999]

Received signal. The complex output of the channel sampled at the

Nyquist rate, (in which case samples 2H(n − 1) + 1, . . . , 2Hn correspond to

the nth symbol transmitted, i.e. dn ↔ y2H(n−1)+1:2Hn) can thus be expressed

as

yt = C(d1:n, θ1:t) + σεt, εt
i.i.d.
∼ Nc (0, 1) , (7.6)

where C(d1:n, θ1:t) =
∑G−1

g=0 f
(g)
t sreceive ((t − g)Ts − θt) and σ2 is the noise

variance21. The noise sequences ϑt, εt and v
(g)
t , n = 0, . . . , G − 1 are as-

sumed mutually independent and independent of the initial states f0 ∼

Nc

(
f̂0,Σf ,0

)
, θ0 ∼ N

(
θ̂0, Σθ,0

)
. The received waveform sreceive(τ ) is ob-

tained after ideal low-pass filtering of rectangular pulses and is given by

[Iltis, 1990]:

sreceive(τ) = sn(d1:n)
∑H

h=1 ch

1

π
[Si

(
2π

τ − (h − 1)Tch

Tch

)
− Si

(
2π

τ − hTch

Tch

)
],

for (n − 1)Tn < τ ≤ nTn,

21The case of non-Gaussian noise can be treated using the techniques presented in
Chapter 4.
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where

Si(φ) =

∫ φ

0

sin(ϕ)

ϕ
dϕ. (7.7)

Estimation objectives. The symbols dn, which are assumed i.i.d., the

channel characteristics ft and the code delay θt are unknown for n, t > 0. Our

aim is to obtain sequentially in time an estimate of the joint posterior prob-

ability density of these parameters p (d1:n, f0:2Hn, θ0:2Hn| y1:2Hn) , and some

of its characteristics, such as the MMAP (marginal maximum a posteriori)

estimates of the symbols

d̂1:n = arg max
d1:n

p (d1:n| y1:2Hn) , (7.8)

and the minimum mean square error (MMSE) estimates of the channel char-

acteristics E (f0:2Hn| y1:2Hn) and the delays E (θ0:2Hn| y1:2Hn). This problem,

unfortunately, does not admit any analytical solution and, thus, approximate

methods must be employed. One of the methods that has proved to be useful

in practice is particle filtering, and in the next section we propose a receiver

based on the use of this technique.

7.2 Particle filtering receiver

The particle filtering receiver has already been designed in Chapters 4

and 5, although for the simpler case of symbol estimation alone. The prob-

lem considered here is more complicated since an additional continuous pa-

rameter is involved, and, in this section, the particle filtering algorithm for

the joint estimation of all unknown parameters is detailed. We begin our

treatment by incorporating a variance reduction technique, particularly, Rao-

Blackwellisation, and then proceed with derivation of the particle filtering

equations for the estimation of the required posterior distribution. Alterna-

tive deterministic and stochastic approaches are considered at the end of the

section.
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7.2.1 Rao-Blackwellisation

We follow a Bayesian approach here, and, given the measurements y1:2Hn,

base our inference on the joint posterior distribution

p (d1:n, df0:2Hn, dθ0:2Hn| y1:2Hn) = p (d1:n, f0:2Hn, θ0:2Hn| y1:2Hn) df0:2Hndθ0:2Hn.

A straightforward application of particle filtering would focus on the esti-

mation of this joint probability distribution, and, consequently, obtaining

estimates of d1:n, f0:2Hn, and θ0:2Hn sequentially in time. It is beneficial, how-

ever, to improve the standard approach by making the most of the structure

of the model and applying variance reduction techniques.

Indeed, similar to Chapter 4, the problem of estimating

p (d1:n, df0:2Hn, dθ0:2Hn| y1:2Hn) can be reduced to one of sampling from a

lower-dimensional posterior p (d1:n, dθ0:2Hn| y1:2Hn). If the approximation of

p (d1:n, dθ0:2Hn| y1:2Hn) can be obtained, say, via particle filtering:

p̂N (d1:n, dθ0:2Hn| y1:2Hn) =
N∑

i=1

w̃(i)
n δ
(
{d1:n, dθ0:2Hn} −

{
d

(i)
1:n, θ

(i)
0:2nH

})
,

(7.9)

one can compute the probability density p (f0:2Hn| y1:2Hn, d1:n, θ0:2Hn) using

the Kalman filter associated with Equation (7.4, 7.6). As a result, the poste-

rior p (f0:2Hn| y1:2Hn) can be approximated by a random mixture of Gaussians

p̂N (f0:2Hn| y1:2Hn) =

∫
θ0:2Hn

∑
d1:n

p (f0:2Hn| y1:2Hn, d1:n, θ0:2Hn) p̂N (d1:n, θ0:2Hn| y1:2Hn) dθ0:2Hn

=
∑N

i=1 w̃
(i)
n p(f0:2Hn| y1:2Hn, d

(i)
1:n, θ

(i)
0:2Hn)

leading to lower variance of the estimates and, therefore, increased algorithm

efficiency [Doucet et al., 2000].

Strictly speaking, we are interested in estimating the information symbols

only with the tracking of the channel being naturally incorporated into the

proposed algorithm. However, the MMSE (conditional mean) estimates of
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fading coefficients can, of course, be obtained if necessary as follows:

Ep̂N

[
f2H(n−1)+1:2Hn

∣∣ y1:2Hn

]
=

∫
f2H(n−1)+1:2Hnp̂N (f0:2Hn| y1:2Hn) df0:2Hn

=

N∑

i=1

w̃(i)
n E

[
f2H(n−1)+1:2Hn

∣∣ y1:2Hn, d
(i)
1:n, θ

(i)
0:2Hn

]
,

with E

[
f2H(n−1)+1:2Hn

∣∣ y1:2Hn, d
(i)
1:n, θ

(i)
0:2Hn

]
being computed by the Kalman

filter, with 2H steps required for each symbol transmitted.

7.2.2 Particle filtering algorithm

We can now proceed with the estimation of p (d1:n, dθ0:2Hn| y1:2Hn) using

particle filtering techniques. The method is based on the following remark.

Suppose N particles,
{
d

(i)
1:n, θ

(i)
0:n

}N

i=1
, with θn denoting

θn = θ2H(n−1)+1:2Hn, for n = 1, 2, . . . , (7.10)

can be easily simulated according to a convenient importance distribution

π(d1:n, dθ0:n|y1:n) (such that p(d1:n, dθ0:n|y1:n) > 0 implies π(d1:n, dθ0:n|y1:n)

> 0).

Then, using the importance sampling identity, an estimate of

p (d1:n, dθ0:n|y1:n) is given by the following point mass approximation:

p̂N (d1:n, dθ0:n|y1:n) =
N∑

i=1

w̃(i)
n δ
(
{d1:n, dθ0:n} −

{
d

(i)
1:n, θ

(i)
0:n

})
, (7.11)

where w̃
(i)
n are the so-called normalized importance weights

w̃(i)
n =

w
(i)
n

∑N
j=1 w

(j)
1:n

, w(i)
n ∝

p
(

d
(i)
1:n, θ

(i)
0:n

∣∣∣y1:n

)

π
(

d
(i)
1:n, θ

(i)
0:n

∣∣∣y1:n

) , (7.12)

and yn denotes similarly

yn = y2H(n−1)+1:2Hn, for n = 1, 2, . . . (7.13)
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The distribution π
(

d
(i)
1:n, θ

(i)
0:n

∣∣∣y1:n

)
has to admit π

(
d

(i)
1:n−1, θ

(i)
0:n−1

∣∣∣y1:n−1

)
as

a marginal distribution so that one can propagate this estimate sequentially

in time without subsequently modifying the past simulated trajectories. The

weights w
(i)
n can also be updated on-line in this case:

w(i)
n ∝ w

(i)
n−1p

(
yn| d

(i)
1:n, θ

(i)
1:n,y1:n−1

)
×

p
(

d
(i)
n , θ(i)

n

∣∣∣ d(i)
n−1, θ

(i)
n−1

)

π
(

d
(i)
n , θ(i)

n

∣∣∣ d(i)
1:n−1, θ

(i)
0:n−1,y1:n

) .

(7.14)

The sequential importance sampling described above is combined with a

selection procedure introduced at each time step. This helps to avoid degener-

acy of the algorithm by discarding particles with low normalized importance

weights and multiplying those with high ones.

Given for the (n−1)th symbol N particles
{
d

(i)
1:n−1, θ

(i)
0:n−1

}N

i=1
distributed

approximately according to p (d1:n−1, dθ0:n−1|y1:n−1), the general particle fil-

tering receiver proceeds as follows:

Particle Filtering Algorithm

Sequential Importance Sampling Step

• For i = 1, . . . , N , sample (d̃
(i)
n , θ̃

(i)

n ) ∼ π(dn, θn| d
(i)
1:n−1, θ

(i)
0:n−1,y1:n).

• For i = 1, . . . , N , evaluate the importance weights w
(i)
n up to a normalizing

constant.

• For i = 1, . . . , N , normalize w
(i)
n to obtain w̃

(i)
n .

Selection Step

• Multiply/discard particles with respect to high/low w̃
(i)
n to obtain N un-

weighted particles
{
d

(i)
1:n, θ

(i)
1:n

}N

i=1
.
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7.2.3 Implementation issues

The choice of importance distribution and selection scheme is discussed

in [Doucet et al., 2001b]; depending on those chosen, the computational

complexity of the algorithm varies.

7.2.3.1 Importance density

Prior density. The simplest solution is to take the prior as an impor-

tance distribution, i.e.

π(dn, θn| d1:n−1, θ0:n−1,y1:n) = p(dn)p(θn|θn−1)

= p(dn)
2Hn∏

t=2H(n−1)+1

p(θt| θt−1),

then wn becomes

wn ∝ p (yn|y1:n−1, d1:n, θ0:n) =

2Hn∏

t=2H(n−1)+1

p (yt| d1:n, θ0:t, y1:t−1) , (7.15)

and requires evaluation of 2H one-step Kalman filter updates for each symbol.

Sequential Importance Sampling

(prior as an importance distribution)

• For i = 1, . . . , N ,

sample d̃
(i)
n ∼ p(dn), set w

(i)
n = 1,

For t = 2H(n − 1) + 1, . . . , 2Hn,

sample θ̃
(i)

t ∼ p(θt| θ
(i)
t−1),

perform one-step Kalman filter update

(w
(i)
n = w

(i)
n p
(

yt| d1:n, θ
(i)
0:t−1, θ̃

(i)

t , y1:t−1

)
).

• For i = 1, . . . , N , normalize w
(i)
n to obtain w̃

(i)
n .



138 Joint Symbol/Delay Estimation in Spread Spectrum Systems

If H is long, it is useful to resample the particles at intermediate steps

between t = 2H(n − 1) + 1 and t = 2Hn. One can also use Markov chain

Monte Carlo (MCMC) steps to rejuvenate the particle and in particular dn.

Suboptimal importance density. Of course, using the prior distribu-

tion in our case can be inefficient, as no information carried by the observa-

tions is used to explore the state space. The optimal choice, in a sense of

minimizing the conditional variance of the importance weights [Doucet et al.,

2000], would consist of taking

π(dn, θn| d1:n−1, θ0:n−1,y1:n) = p(dn, θn| d1:n−1, θ0:n−1,y1:n),

as an importance density. From Bayes’ rule p(dn, θn| d1:n−1, θ0:n−1,y1:n) may

be expressed as

p (dn, θn| d1:n−1, θ0:n−1,y1:n) =
p (yn|y1:n−1, d1:n−1, dn, θ0:n−1, θn) p(dn)p(θn| θn−1)

p(yn|y1:n−1, d1:n−1, θ0:n−1)
,

(7.16)

in which case,

wn = p(yn|y1:n−1, d1:n−1, θ0:n−1)

=
∫

θ̆n

∑M
m=1

[
p(yn|y1:n−1, d1:n−1, dm = m, θ0:n−1, θ̆n)

× p(dm = m)p
(

θ̆n

∣∣∣θn−1

)
dθ̆n

]
,

(7.17)

cannot be computed analytically. However, a suboptimal importance density

of the following form

π(dn, θn| d1:n−1, θ0:n−1,y1:n) = p(dn| d1:n−1, θ0:n,y1:n)p(θn|θn−1)

with

p (dn| d1:n−1, θ0:n,y1:n) =
p (yn|y1:n−1, d1:n−1, dn, θ0:n) p(dn)

p(yn|y1:n−1, d1:n−1, θ0:n)
, (7.18)
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can be employed instead, resulting in

wn ∝ p(yn|y1:n−1, d1:n−1, θ0:n) (7.19)

=

M∑

m=1

p(yn|y1:n−1, d1:n−1, dm = m, θ0:n−1, θ
(i)
n )p(dm = m),

where θ(i)
n is drawn from the prior Gaussian distribution with mean γθ

(i)
n−1

and variance σ2
θ :

θ(i)
n ∼ N

(
γθ

(i)
n−1, σ

2
θ

)
for i = 1, . . . , N. (7.20)

The importance weight w
(i)
n in (7.19) does not actually depend on d

(i)
n , and

the weights evaluation and selection steps can be done prior to the sampling

of d
(i)
n as follows:

Evaluation of Importance Weights

(suboptimal importance distribution)

• For i = 1, . . . , N ,

For m = 1, . . . , M, w
(i,m)
n = 1,

For t = 2Hn + 1, . . . , 2H(n + 1),

sample (θ̃
(i)

t ) ∼ p(θt| θ
(i)
t−1),

for m = 1, . . . , M, perform one-step Kalman filter update
(
w

(i,m)
n = w

(i,m)
n p

(
yt| d

(i)
1:n−1, dm = m, θ

(i)
0:t−1, θ̃

(i)

t , y1:t−1

))
.

• Evaluate the importance weight w
(i)
n up to a normalizing constant:

w(i)
n ∝

M∑

m=1

w(i,m)
n p(dm = m),

• For i = 1, . . . , N , normalize w
(i)
n to obtain w̃

(i)
n .
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For each symbol detection, this procedure requires the evaluation of the

M 2H-step ahead Kalman filters, which is quite computationally expensive.

Further research should, therefore, concentrate on development of other more

efficient suboptimal importance distributions on a case by case basis.
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Figure 7.1: Bit-error-rate performance.

7.2.3.2 Selection

As far as the selection step is concerned, a stratified sampling scheme

[Kitagawa, 1996] is employed in this work. The algorithm is discribed in

details in Chapter 3, and as was already pointed out, has the minimum

variance one can achieve in the class of unbiased schemes [Crisan, 2001], and

can be implemented in O (N) operations.

7.2.4 Deterministic Particle Filter

The use of the suboptimal importance distribution described in the pre-

vious section increases the efficiency of the algorithm in comparison with the
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Figure 7.2: Mean-square delay error for the different number of particles.

standard approach using the prior. However, as shown in Chapter 6, if one

already opts for (7.19), and all the calculations have to be performed anyway,

it might be better to base our approximation of p (d1:n, dθ0:n|y1:n) directly

on

p̂N×M (d1:n, dθ0:n|y1:n) =
∑N

i=1

∑M
m=1 w̃

(i,m)
n δ

(
{d1:n, dθ0:n} −

{
d

(i)
1:n−1, dn = µm, θ

(i)
0:n−1, θ

(i)
n

})
,

with corresponding weights w̃
(i,m)
n being equal to

w
(i,m)
n ∝ w̃

(i)
n−1p(yn|y1:n−1, d

(i)
1:n−1, dm = m, θ

(i)
0:n−1, θ

(i)
n )p(dm = m),

and θ(i)
n still drawn from its prior (7.20). Indeed, all possible “extensions” of

the existing state sequences at each step n are considered in this case, and

one does not discard unnecessarily any information by selecting randomly

one path out of the M available. In the above expression, w̃
(i)
n−1 is the weight
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Figure 7.3: Mean-square delay error via SNR.

of the “parent” particle, which has M “offspring” instead of the usual one,

resulting in a total number of N × M particles at each stage. This number

increases exponentially with time, and, therefore, a selection procedure has

to be employed at each step n.

The simplest way to perform such selection is to choose the N most likely

offspring and discard the others (as, for example, in [Tugnait & Haddad,

1979]); Chapter 6 shows the superiority of this approach over other meth-

ods in the fully discrete framework. A more complicated procedure involves

preserving the particles with high weights and resampling the ones with low

weights, thus reducing their total number to N . An algorithm of this type is

presented in [Fearnhead, 1998] but other selection schemes can be designed.

Contrary to the case involving the discrete parameters only, in this scenario a

resampling scheme with replacement could be employed, since θ(i)
n is chosen

randomly. Therefore, stratified resampling could be used in order to select

N particles from N × M available.

Whether we choose to preserve the most likely particles, employ the se-
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lection scheme proposed in [Fearnhead, 1998], or stratified resampling, the

computational load of the resulting algorithms at each time step n is that of

N ×M ×2H Kalman filters, and the selection step in first two cases is imple-

mented in O(N × M log N × M) operations. Of course, if M is large, which

is the case in many applications, all these methods are too computationally

extensive to be used, and one should resort to a standard particle filter.

7.3 Simulation Results

In the following experiments the bit-error-rate (BER) and the tracking

delay error
(
θt − θ̂t

)
were evaluated by means of computer simulations.

Gray-encoded M -ary differential phase shift keyed (MDPSK) signals were

employed with mapping function

sn = exp(jφn), and φn =

n∑

j=1

M∑

m=1

2πm

M
δ (dj − rm) .
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Figure 7.5: The error in delay estimation. SNR=10 dB.

In order to assess the performance of the proposed approaches we first

applied them to a simpler case of synchronization under flat fading condi-

tion, G = 1, for a system with no spectrum spreading employed, c1 = 1,

H = 1. In the first experiment, 4DPSK signals were considered with the av-

erage signal to noise ratio (SNR) varying from 5 to 20dB. The AR coefficients

for the channel, Equation (7.4), were set to α(0) = 0.999, σ
(0)
f = 0.01, and

the delay model parameters in Equation (7.5) were chosen to be the same,

γ = 0.999 and σθ = 0.01. The bit-error-rate (BER) obtained by the particle

filtering receiver employing prior (PFP) and suboptimal (PFS) importance

distributions, and the deterministic receiver preserving N most likely parti-

cles (DML) and using stratified resampling (DSR) is presented in Figure 7.1.

The number of particles used in these algorithms was equal to N = 100, and

little or no improvement in BER was gained by increasing this number for

deterministic schemes. For the randomized approaches, the number of parti-

cles required to achieve the BER of DSR algorithm was equal to N = 1200.

In Figure 7.2, the mean-square delay error (MSE) is presented as a function
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Figure 7.6: Mean-square delay error via SNR.

of the number of particles N for SNR=10dB:

θ̂MSE =
1

2HLd

2HLd∑

n=1

(
θn − θ̂n

)2

,

where Ld is a length of the symbol sequence, Ld = 1000. The results for

the different signal to noise ratios (SNR) are given in Figure 7.3. As one

can see, the deterministic particle filter with stratified resampling slightly

outperforms the receiver selecting most likely particles, and is more efficient

than both standard particle filtering schemes.

In the second experiment we applied this algorithm to perform joint sym-

bols/channel coefficients/code delay estimation for DS spread spectrum sys-

tems with H = 15, G = 4. A binary DPSK modulation scheme was employed

with the multipath channel response and AR coefficients chosen as in [Iltis,

1990, channel B]. As it is shown in Figure 7.4, the algorithm employing 100

particles exhibits good bit-error-rate (BER) performance. A tracking error
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trajectory for 100 information symbols (corresponding to 1500 chips and 3000

channel samples) and an average signal to noise ratio (SNR) equal to 10 dB

is presented in Figure 7.5. Figure 7.6 also illustrates the mean-square delay

error as a function of SNR for Ld = 1000.

In this chapter, we proposed the application of particle filtering tech-

niques to a challenging problem of joint symbols, channel coefficients and

code delay estimation for DS spread spectrum systems in multipath fading.

The algorithm was designed to make use of the structure of the model, and

incorporated a variance reduction technique. The work was based on the

results on the superiority of the DML approach in a fully discrete environ-

ment obtained in Chapter 6. The method could not be applied straightfor-

wardly, however, and several procedures combining both deterministic and

randomized schemes were considered. The algorithms were tested and com-

pared. Although computer simulations showed that all methods were capable

of providing good performance, in this particular case involving additional

continuous-valued parameters, the deterministic scheme employing stratified

resampling turned out to be the most efficient one. The choice of the al-

gorithm might, however, be application dependent so further investigation

is necessary. The receiver can be easily extended to address multiuser DS

CDMA transmission, or simplified to consider the channel tracking only since

it is naturally incorporated in the proposed algorithm. Future research should

concentrate on the development of suboptimal importance distributions and

selection schemes capable of increasing the algorithm efficiency.



8 Conclusion

The revolution in global communications is leading to unprecedented ac-

cess to information and knowledge. Affordability creates accessibility, and

as the number of users and the demand for services grows, so does the need

for efficient signal processing techniques capable of coping with the increas-

ingly difficult communication environment. Research into new methodologies

pushing the bounds of performance provides a means of meeting the challeng-

ing requirements of the future, and ensures that our capabilities remain at

the cutting edge of progress. In this thesis, the use in digital communications

of one of such promising and fairly recent advanced technology - Sequential

Monte Carlo methods - was investigated.

We aimed at developing a general framework for addressing a variety

of problems arising in the field, and considered several specific tasks as an

illustration of the general approach. Derivation of efficient particle filtering

algorithms based on the structure and particular features of the model was

the other our objective.

We presented a general model of a modern digital communication system

at the beginning of the thesis, reviewed currently existing algorithms, and

started our investigation with the simplest scenario of demodulation in flat

Rayleigh fading conditions.
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An efficient particle filtering demodulator was, first, developed, which

took into account the structure of the model, and combined variance reduc-

tion strategies based on Kalman filtering and the use of optimal importance

distribution. The ability to incorporate the tracking of the channel into the

algorithm, and straightforward extension to fixed-lag smoothing in order to

obtain more accurate estimates, are two of the advantages of the proposed

approach. Although, in general, SMC techniques tend to be quite computa-

tionally demanding, a relatively small number of particles was required for

this scenario; moreover, the use of parallel processors for the implementation

was also a possibility. In addition, the particle filter allowed to significantly

reduce the number of the inserted pilot symbols required when the differen-

tial encoding was not employed. The bit-error-rate results for both Gaussian

and non-Gaussian additive noise and a variety of linear modulation schemes

showed that the use of the developed receiver can significantly improve the

communication quality of the transmission in fading conditions.

We then demonstrated how easily the algorithm could be extended to

treat more complicated scenarios in the example of joint symbol decoding and

demodulation, space diversity combining and multiuser detection. Although

in all these cases the particle filtering receiver outperformed the methods

routinely used in communication applications, the issues connected to com-

putational complexity of the approach arose, and some other applications of

the SMC were suggested as one of the future research directions. Another

disadvantage of the algorithm, was, of course, its inability to take interleaving

into consideration.

The problems considered up to this point involved the discrete unknown

parameters only and belonged to the class of jump Markov linear systems.

Several other deterministic and randomized schemes were applicable in this

framework, and their review and comparison was, probably, the key con-

tribution of this thesis. To the best of our knowledge, such comparison had

never been made before, and the results were surprising. The basic determin-

istic approach preserving the limited number of most likely particles (DML)

turned out to be the most efficient one. This does not mean that the SMC

methods are of no use in communication systems. Indeed, all schemes were
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capable of providing optimal performance given a large number of particles.

In addition, the DML would be too computationally expensive to apply in

a number of different scenarios, whereas the particle filter with certain im-

provements is still relevant. These results, however, are important for many

other applications involving the same class of models not only in digital com-

munications but also in the other areas, and, therefore, should be investigated

further.

Moreover, other algorithms based on the SMC techniques could be de-

signed taking these results into account. We proposed such an algorithm

at the end of the thesis where the joint code delay estimation and symbol

detection for direct sequence spread spectrum systems were considered. This

problem required the estimation of both discrete and continuous-valued un-

known parameters, and, therefore, it was impossible to apply the determin-

istic schemes straightforwardly. We suggested, however, several procedures

combining both deterministic and randomized approaches, which were tested

and compared. The results were in favour of the deterministic particle filter

employing stratified resampling, which demonstrated excellent performance

in comparison with other methods, and enabled performing of efficient sym-

bol detection in difficult multipath conditions.

Future work

Some directions for future research and application of this work have

already been highlighted throughout this thesis. To conclude, however, we

would like to briefly identify three main areas where further investigation

would be of significant interest:

• Applications. First of all, of course, are the multiple extensions and

simplifications of the proposed algorithm to consider a large number

of digital communication applications for which the use of particle fil-

tering might be beneficial. There is an unlimited number of examples,

including, for instance, demodulation in asynchronous CDMA, or sim-

ple synchronization (with information symbols assumed to be known).

The model presented in Chapter 2 itself could be significantly extended
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to take into account, for example, Doppler effects or narrowband inter-

ferences (typical for underwater acoustic channels). In addition, some

of the parameters previously assumed known (such as ARMA model

coefficients for the channel characteristics) could be estimated. For

multiuser detection, the application of the SMC methods in a different

framework, involving the estimation of symbol from one source at a

time, should be studied. An efficient deterministic particle filter devel-

oped in Chapter 7 could also be applied in other fields of engineering

and science, such as genetics, economics and finances, to name a few.

• Algorithm efficiency. The performance of the algorithm could be

significantly improved if a suboptimal importance distribution allow-

ing more efficient sampling could be developed. At the moment, how-

ever, there is no general tool allowing us to design such importance

distributions, and the problem has to be addressed on a case by case

basis, depending on the task one is addressing. Some suggestions are

given at the end of Chapter 6. Another area for improvement is de-

velopment of other variance reduction techniques (in addition to Rao-

Blackwellisation) in the framework of SMC. Quasi-Monte Carlo meth-

ods and stratification are some of them.

• Deterministic schemes. Further research should be directed at in-

vestigation of the deterministic schemes. One of the improvements

could be the use of the discount parameter (Chapter 6), and conse-

quent optimization of the algorithm with respect to it. Other, more

efficient, selection schemes could also be proposed. The ideas initiated

in Chapter 6 and 7 could be incorporated into the design of efficient

particle filters for continuous-valued parameter estimation.
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While this thesis was in preparation, a great deal of work has appeared

in the literature on the application of particle filtering, [Dong et al., 2003;

Iltis, 2003; Huang & Djuric, 2002; Ghirmai et al., 2003] among others, and

the number is rapidly growing. Although there is still a lot to be done, one

may only hope that all these efforts will eventually help to increase the ease

and breadth of communicating.



References
Ackerson, G. & Fu, K. (1970). On state estimation in switching environments.

IEEE Transactions on Automatic Control , 15, 10–17.

Akashi, H. & Kumamoto, H. (1977). Random sampling approach to state

estimation in switching environments. Automatica, 13, 429–434.

Alspach, D. & Sorenson, H. (1972). Non-linear Bayesian estimation using

Gaussian sum approximation. IEEE Transactions on Automatic Control ,

17, 439–447.

Anderson, B. & Moore, J. (1979). Optimal FIltering . Prentice-Hall, Engle-

wood Cliffs.

Bello, P. (1963). Characterization of randomly time-variant linear channels.

IEEE Transactions on Communications Systems, 11, 360–393.

Berzuini, C., Best, N., Gilks, W. & Larizza, C. (1997). Dynamic conditional

independence models and Markov chain Monte Carlo methods. Journal of

American Statistical Association, 92, 1403–1412.

Biglieri, E., Proakis, J. & Shamai(Shitz), S. (1998). Fading channels:

Information-theoretic and communications aspects. IEEE Transactions on

Information Theory , 44, 2619–2692.

Blom, H. & Bar-Shalom, Y. (1988). The interacting multiple model algorithm

for systems with Markovian switching coefficients. IEEE Transactions on

Automatic Control , 33, 780–783.

Bucy, R. & Youssef, H. (1974). Nonlinear filter representation via spline

functions. In Proceedings of the 5th Symposium on Nonlinear Estimation,

51–60.

Carpenter, J., Clifford, P. & Fearnhead, P. (1999). An improved particle filter

for non-linear problems. IEE proceedings - Radar, Sonar and Navigation,

146, 2–7.



REFERENCES 153

Casella, G. & Robert, C. (1996). Rao-Blackwellisation of sampling schemes.

Biometrika, 83, 81–94.

Cavers, J. (1991). An analysis of pilot symbol assisted modulation for

Rayleigh fading channels. IEEE Transactions on Vehicular Technology ,

40, 686–693.

Chan, K. & Bateman, A. (1992). The performance of reference-based M-ary

PSK with trellis coded modulation in Rayleigh fading. IEEE Transactions

on Vehicular Technology , 41, 190–198.

Chen, R., Wang, X. & Liu, J. (2000). Adaptive joint detection and decoding

in flat-fading channels via mixture Kalman filtering. IEEE Transactions

on Information Theory , 46, 2079–2094.

Collings, I. & Moore, J. (1994). An HMM approach to adaptive demodula-

tion of QAM signals in fading channels. International Journal of Adaptive

Control and Signal Processing , 8, 457–474.

Collings, I. & Moore, J. (1995). An adaptive hidden Markov model approach

to FM and M-ary DPSK demodulation in noisy fading channels. Signal

Processing , 47, 71–84.

Crisan, D. (2001). Particle filters - A theoretical perspective. In Sequential

Monte Carlo Methods in Practice, Springer-Verlag, eds. A. Doucet, J.F.G.

de Freitas and N.J. Gordon.

Crisan, D. & Doucet, A. (2000). Convergence of sequential Monte Carlo

methods. Tech. Rep. CUED/F-INFENG/TR. 381, Cambridge University

Engineering Department.

Crisan, D., Moral, P.D. & Lyons, T. (1999). Discrete filtering using branching

and interacting particle systems. Markov Processes and Related Fields, 5,

293–318.

Dai, Q. & Schwedyk, E. (1994). Detection of bandlimited signals over fre-

quency selective Rayleigh fading channels. IEEE Transactions on Commu-

nications, 42, 941–950.



154 REFERENCES

Daum, F. (1988). New exact nonlinear filters. In Bayesian Analysis of Time

Series and Dynamic Models, Dekker, ed. J.C. Spall.

Davis, L. & Collings, I. (1999). Multi-user MAP decoding for flat-fading

CDMA channels. In Proceedings of the 5th International Conference on

Digital Signal Processing for Communication Systems, 79–86.

Dong, B., Wang, X. & Doucet, A. (2003). A new clas of soft MIMO demod-

ulation algorithms. IEEE Transactions on Signal Processing , to appear.

Doucet, A., Godsill, S. & Andrieu, C. (2000). On sequential Monte Carlo

sampling methods for Bayesian filtering. Statistics and Computing , 10,

197–208.

Doucet, A., de Freitas, J. & Gordon, N., eds. (2001a). Sequential Monte Carlo

Methods in Practice. Springer-Verlag: New-York.

Doucet, A., Gordon, N. & Krishnamurthy, V. (2001b). Particle filters for

state estimation of jump Markov linear systems. IEEE Transactions on

Signal Processing , 49, 613–624.

Du, J. & Vucetic, B. (1991). New 16QAM trellis codes for fading channels.

Electronics Letters, 27, 1009–1010.

Fagin, S. (1964). Recursive linear regression theory, optimal filter theory, and

error analysis. IEEE International Convention Record , 12, 216–240.

Fearnhead, P. (1998). Sequential Monte Carlo methods in filter theory . Ph.D.

thesis, University of Oxford.

Fitzgerald, R. (1968). Error divergence in optimal filtering problems. In Pro-

ceedings of the 2nd IFAC symposium AC space, Vienna, Austria.

Forney, G. (1972). Maximum-likelihood sequence estimation of digital se-

quences in the presence of intersymbol interferences. IEEE Transactions

on Information Theory , 18, 363–378.



REFERENCES 155

Georghiades, C. & Han, J. (1997). Sequence estimation in the presence of

random parameters via the EM algorithm. IEEE Transactions on Com-

munications.

Gertsman, M. & Lodge, J. (1997). Symbol-by-symbol MAP demodulation of

CPM and PSK signals on Rayleigh flat-fading channels. IEEE Transactions

on Communications, 45, 788–799.

Geweke, J. (1989). Bayesian inference in econometrics models using Monte

Carlo integration. Econometrica, 57, 1317–1339.

Ghirmai, T., Bugallo, M., Miguez, J. & Djuric, P. (2003). Joint symbol detec-

tion and timing estimation usign particle filtering. In Proceedings ICASSSP

2003 .

Gilks, W. & Berzuini, C. (1998). Monte Carlo inference for dynamic Bayesian

models, Medical Research Council, Cambridge, UK.

Godsill, S. & Clapp, T. (2001). Improvement strategies for Monte Carlo

particle filters. In Sequential Monte Carlo Methods in Practice, Springer-

Verlag, eds. A. Doucet, J.F.G. de Freitas and N.J. Gordon.

Gordon, N. (1994). Bayesian Methods for Tracking . Ph.D. thesis, Imperial

College, University of London.

Gordon, N., Salmond, D. & Smith, A. (1993). Novel approach to

nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings-F ,

140, 107–113.

Gordon, N.J. & Whitby, A. (1995). Bayesian approach to target tracking in

the presence of glint. In Proceedings of the SPIE Signal and Data Process-

ing of Small Targets, vol. 2561, 472–483.

Haeb, R. & Meyr, H. (1989). A systematic approach to carrier recovery and

detection of digitally phase modulated signals on fading channels. IEEE

Transactions on Communications, 37, 748–759.



156 REFERENCES

Handschin, J. & Mayne, D. (1969). Monte Carlo techniques to estimate the

conditional expectation in multi-stage non-linear filtering. International

Journal of Control , 9, 547–559.

Higuchi, T. (1995a). Kitagawa Monte Carlo filter from the perspective of ge-

netic algorithm. Research Memorandum, The Institute of Statistical Math-

ematics, Tokyo, Japan.

Higuchi, T. (1995b). Kitagawa Monte Carlo filter using the genetic algorithm

operators. Research Memorandum, The Institute of Statistical Mathemat-

ics, Tokyo, Japan.

Hoeher, P. (1992). A statistical discrete-time model for the WSSUS multipath

channel. IEEE Transactions on Vehicular Technology , 41, 461–468.

Hoeher, P. & Lodge, J. (1999). Turbo DPSK: Iterative differential PSK

demodulation and channel decoding. IEEE Transactions on Communi-

cations, 47, 837–843.

Hou, W. & Chen, B. (2000). Adaptive detection in asynchronous code-

division multiple access systems in multipath fading channels. IEEE Trans-

actions on Communications, 48, 863–873.

Huang, Y. & Djuric, P. (2002). A blind particle filtering detector for for joint

channel estimation, tracking and data detection over flat fading channels.

In Proceedings EUSIPCO 2002 .

Hurzeler, M. & Kunsch, H.R. (1998). Monte Carlo approximations for general

state space models. Journal of Computational and Graphical Statistics, 7,

175–193.

Iltis, R. (1990). Joint estimation of PN code delay and multipath using

the Extended Kalman Filter. IEEE Transactions on Communications, 38,

1677–1685.

Iltis, R. (2001). A DS-CDMA tracking mode receiver with joint channel/delay

estimation and MMSE detection. IEEE Transactions on Communications,

49, 1770–1779.



REFERENCES 157

Iltis, R. (2003). A Sequential Monte Carlo Filter for joint linear/nonlinear

state estimation with application to DS-CDMA. IEEE Transactions on

Signal Processing , to appear.

Jakes, W. (1974). Microwave Mobile Communications. Wiley, New York.

Jazwinski, A. (1973). Stochastic Processes and Filtering Theory . Academic

Press.

Kalman, R. & Bucy, R. (1961). New results in linear filtering and prediction

theory. Journal of Basic Engineering, Transactions ASME Series D , 83,

95–108.

Kam, P. & Ching, H. (1992). Sequence estimation over the slow nonselective

Rayleigh fading channel with diversity reception and its application to

Viterbi decoding. IEEE Journal on Selected Areas in Communications,

COM-10, 562–570.

Kitagawa, G. (1987). Non-Gaussian state-space modelling of non-stationary

time series (with discussions). Journal of the American Statistical Associ-

ation, 82, 1032–1063.

Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-

Gaussian nonlinear state space models. In Proceedings of the 2nd US-Japan

Joint Seminar on Statistical Time Series Analysis, 110–131, Honolulu,

Hawaii.

Kitagawa, G. (1994). The two-filter formula for smoothing and an imple-

mentation of the gaussian-sum smoother. Annals Institute of Statistical

Mathematics, 46, 605–623.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian non-

linear state space models. Journal of Computational and Graphical Statis-

tics, 5, 1–25.

Komninakis, C., Fragouli, C., Sayed, A. & Wesel, R.D. (1999). Channel

estimation and equalization in fading. In Proceedings of the 33rd Asilomar



158 REFERENCES

Conference on Signals, Systems, and Computers, vol. 2, 1159–1163, Pacific

Grove, CA.

Kong, A., Liu, J. & Wong, W. (1994). Sequential imputations and Bayesian

missing data problems. Journal American Statistical Association, 89, 278–

288.
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