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ABSTRACT

We present a watermarking algorithm in the complex wavelet
domain and show why complex wavelets are better than real
wavelets. Being an oversampled transform, the Complex
Wavelet Transform requires special precautions during wa-
termark embedding. We then model the watermarking pro-
cess as a communcation channel and our results show that
the complex wavelets domain has relatively higher capacity
than both the spatial and the real wavelets domains. We will
also outline a motion-based algorithm for image registration,
which can help recovering watermarks from images suffering
from geometric distortion.

1 INTRODUCTION

In recent years, digital watermarks have emerged as a means
to protect the copyright of digital images. Most existing
watermarking algorithms transform the host image into a
critically sampled domain, add a suitably scaled pseudoran-
dom sequence to the transformed image coefficients and in-
verse transform the modified coefficients back to obtain the
watermarked image. The Discrete Real Wavelet Transform
(DWT), the (block-based) Discrete Cosine Transform (DCT)
and the Discrete Fourier Transform (DFT) are among the
most popular transform domains. In general, the DWT pro-
duces watermark images with the best visual quality due to
the absence of blocking artefacts. However, it has two draw-
backs. The DWT lacks shift invariance, which means small
shifts in input signal can cause big changes in the energy
distribution of the wavelet coefficients. Secondly, the DWT
has poor directional selectivity for diagonal features, which
is evident from the impulse responses of the filters of individ-
ual subbands (fig. 1a). There is only one filter for diagonal
features.

A straightforward way to provide shift invariance is to use
the Undecimated Discrete Wavelet Transform (UDWT), but
it is computationally expensive and still has poor selectiv-
ity for diagonal features, as it uses the same filters as the
DWT. The Complex Wavelet Transform (CWT), on the other
hand, is more computationally efficient and has only a mod-
est amount of redundancy; yet it provides approximate shift
invariance and good directional selectivity (fig. 1b).

Complex wavelets have not been widely employed in the
past due to the difficulties in designing complex wavelets
with perfect reconstruction (PR) properties. A new im-
plementation of the CWT, called the Dual-Tree Complex
Wavelet Transform (DT CWT) has been developed [1],
which is both efficient and satisfies PR.

This paper is organised as follows. The DT CWT and the
watermarking algorithm will be described in section 2. The
capacity of the watermarking channel will be quantified in
section 3. In section 4 we will describe our motion-based reg-
istration algorithm for combating geometric distortion. We
will conclude in section 5.

2 WATERMARKING IN THE COMPLEX WAVELET
DOMAIN

In contrast to conventional implementations of the CWT,
which uses a single tree (for 1-D signals) of filters with com-
plex coefficients, the DT CWT uses two trees, each with real
coefficients, to give the real and the imaginary parts of the
complex coefficents separately. Therefore the redundancy at
the output is still 2:1. For 2-D signals, the two trees first op-
erate on the rows and then the columns of the data. The re-
dundancy thus rises to 4:1. At each resolution, there are six
subbands, instead of three as in the DWT case. The impulse
responses of the filters for each subband are shown in fig.
1b. The CWT can distinguish between opposing diagonal
features, because there are separate filters oriented at �45Æ.
The redundancy of the CWT has implications on watermark
embedding.

The essence of many watermarking algorithms is the ad-
dition of a pseudorandom sequence to the host image coeffi-
cients in some domain. However, this approach needs to be
modified to work in the CWT domain. Due to the inherent
redudancy, some components of an arbitrary sequency may
be lost during the inverse transform. The lost information
correponds to the component that lies in the null space of the
inverse transform.

We can reduce this information loss if we use valid wavelet
coefficients (i.e. coefficients which come from the CWT of
an image) as our pseudorandom sequence. In our approach,
the CWT of a pseudorandom bipolar image w is computed
and the resulting coefficients W are modulated by the pay-
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Figure 1: Filter impulse reponses in 2D (a) for the DWT and
(b) for the CWT. The CWT has separate filters for �45Æ and
so can distinguish opposing diagonals.

load (a binary bit stream1) to form W
0, which is then scaled

and added to the host image CWT coefficients X at each lo-
cation u as follows:

Yu = Xu +Gu �W
0

u
(1)

with Gu =

q
k2 � jX j2

U
+ 
2 (2)

where Yu is the watermarked wavelet coefficients, and jX j2
U

is the average squared magnitude in a 3 � 3 neighbourhood
U around u. k and 
 are level dependent constants which
are designed to make the watermark imperceptible and yet
produce significant watermark energy even in smooth re-
gions, where the wavelet coefficients are small. Many au-
thors (e.g. Daugman [2]) suggest that the processing of vi-
sual data within the visual cortex resembles filtering by an ar-
ray of Gabor filters of different orientations and scales, which
can in turn be approximated by the CWT. This means that the
magnitudes of the CWT coefficients are closely related to the
contrast perceived by humans. The scaling factor in (1) thus
offers a simple yet effective means to adapt the watermark
strength to the local image activity. This watermark embed-
ding approach is also suitable for other oversampled filter
bank transforms.

The embedding process is applied to levels 2 and 3 (level
1 is the finest level) and the watermarked CWT coefficients
are inverse transformed to obtained the watermarked image
y. Modifying coefficients at levels coarser than 3 tends to be
relatively ineffective and to introduce visual artefacts. Fig-
ure 2 shows an example of watermarking the “Lena” image.

1In our implementation, a 32-bit Hadamard code (i.e. 6-bit symbol, with
the MSB represented by the polarity of the codeword) is used to encode the
payload prior to modulation.

We can see that the high strength areas of the watermark
are aligned with the edges of the image, which is difficult
to achieve with DWT watermarks, because the DWT does
not have separate subbands for opposing diagonal features.
Another advantage of the CWT over DWT is that the phase
of the CWT coefficients allows us to infer pixel shifts quite
accurately. However, no such information is available with
the DWT coefficients. As we will see later, this information
allows us to register a distorted image.

During watermark detection, the CWT of the received im-
age (possibly corrupted) by is computed and the scaling fac-
tors bG are estimated using (2), with the CWT coefficients bY
of by replacing X . The CWT coefficents bY are then inversely
scaled by bG, and correlated with the watermark CWT coeffi-
cients W to obtain original watermark data 2.

T =
X
u

Ref(cYu=cGu) � conj(Wu)g (3)

Ref.g and conj(.) denote taking the real part and conjugate
respectively. “*” is pointwise multiplication and the sum is
performed over all the coefficients representing a symbol.

3 CAPACITY OF THE CWT DOMAIN

The watermarking process can be analysed as a communi-
cation channel, where the watermark is the signal and the
host image is the noise. Without loss of generality, we ig-
nore additional attacks on the watermark at the moment. The
simplest communication model is the Additive White Gaus-
sian Noise (AWGN) channel, which is valid as long as all the
statistics are Gaussian and the noise is simply added to the
signal. The corresponding channel capacity C is then given
by [3]:

C =
1

2
log

2
(1 +

S

N
) (4)

whereS andN are the signal and noise variance respectively.
Unfortunately, in a typical watermarking scenario, the

statistics of the noise is not Gaussian and the embedding rule
is not additive, because the watermark is normally scaled be-
fore being added to the host image (c.f. (1)).

Ramkumar et al. [4] introduced the idea of an “ideal in-
formation processor” which allows us to obtain the Gaussian
equivalent variance from an arbitrary distribution. In addi-
tion, if we divide (1) by G:

~Yu = ~Xu +W
0

u
(5)

where ~Yu = Yu=Gu etc. The channel then becomes additive.
It turns out that we can model the inversely scaled coeffi-
cients ~Xu reasonably well with a two-Gaussian mixture with
proportions p and 1 � p. We can treat this as two parallel
AWGN channels and the capacity is given by:

C =
p

2
log

2
(1 +

�
2

W

�2
~
X1

) +
1� p

2
log

2
(1 +

�
2

W

�2
~
X2

) (6)

2We modulate W with each codeword in the codetable in turn and then
correlate with the inversely scaled coefficients. The codeword which gives
the largest absolute correlation is decoded as the watermark symbol. The
polarity of the correlation T gives the MSB of the symbol.
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Figure 2: A watermark example. (a) The original image. (b) The watermarked image. (c) The enhanced watermark, showing the
effect of directional filtering.

�
2

W
is the variance of W (which is the same as the variance

of W 0). �2
~
X1

and �2
~
X2

are the variances of the noise in the
two-Gaussian mixtures respectively.

The data are partitioned according to p and then the vari-
ances �2

~
X1

and �2
~
X2

are estimated from two sets of the data
respectively. At present, p is adjusted manually to obtain the
best fit, although it is possible to use an iterative EM algo-
rithm to determine the optimal value of p. An image can be
regarded a set of such channels and the total capacity is given
by the sum of the capacities of individual channels. The ca-
pacities of a set of test images (each of 256 � 256 pixels)
were measured and the results are summarised in the table 1.
We can see that the CWT domain has higher capacities than
both the DWT and the spatial domain. The discrepancy be-
tween the theoretical and the empirical values is mainly due
to the fact that (6) assumes the use of an ideal code, which is
impractical.

Transform Domain (a) Theoretical (b) Empirical
Spatial 2.9 1.1
DWT 5.5 2.5

DT CWT 6.3 3.9

Table 1: Theoretical (a) and empirical (b) capacities in kbits
of the set of 256 � 256 test images. For the DT CWT, the
real and the imaginary parts are modelled separately as two-
Gaussian mixtures and the capacities are averaged.

4 COMBATING GEOMETRIC DISTORTION

Random geometric distortion, such as that introduced by
StirMark [5], is one of the most effective attacks on water-
marks. Each pixel is shifted by a small amount, so that the
resulting image still resembles the original. These small dis-
tortions are enough to jeopardise many watermark detectors.
Insertion of a template (e.g. Pereira et. al. [6]) helps with
the registration against a global transformation like rotation
but it is not very useful against geometric distortion since the
transformation is local. Another problem with the template
approach is that it assumes the underlying transformation is
affine, which is generally not true for geometrically distorted

images. However, in a small neighbourhood, the transforma-
tion is likely to be approximately affine [7].

One of the most accurate techniques for registering im-
ages is based on surface splines, which requires the use of
a reference image in addition to the distorted one. The ma-
jor step in surface spline registration is the identification of
matched features between the distorted and the reference im-
ages. Goshtasby [8] gives the details of surface spline reg-
istration. The drawback with this approach is that feature
points typically do not span the entire image and in regions
which lack features, the registration results may be inaccu-
rate. Measurement noise (inexact locations of features) will
also introduce inaccuracy into the results.

We can regard the distortion as motion between the dis-
torted and the reference image. Our proposed registration
algorithm is based on motion estimation in the CWT domain
[9], and works in a hierarchical manner. The main steps are
outlined below:

1. Compute the CWT of both the distorted and the wa-
termarked reference images. Then for each resolution,
starting from the coarsest one (level 4 in our case), do
steps 2 to 5.

2. Compute an initial estimate of the motion field, based
on the phase difference between the CWT coefficients
of the distorted and the reference image, and the associ-
ated confidence ellipse [9], which is an indication of the
amount of measurement noise present.

3. Detect and reject motion vectors which look “wrong”.
Since the distortion is small and the distorted image re-
sembles the original, the motion field must be smooth.
Wrong motion vectors therefore manifest themselves as
discontinuities in the motion field. In the current imple-
mentation, we compute the median of the motion vec-
tors at each location based on a local neighbourhood.
Any vector which differs too much from the median are
flagged as “wrong”.

4. Interpolate the “holes” left by the rejected motion vec-
tors using radial basis functions [10].
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Figure 3: Registering “Lena”. (a) Reference image. (b) Distorted image. (c) Reconstructed image. (d) Difference between (a)
and (b), rms error is 32.9. (e) Difference between (a) and (c), rms error (excluding boundary regions) is reduced to 4.7.

5. Apply a relaxation algorithm on the interpolated mo-
tion field based on the confidence of each motion vec-
tor. This allows the more confident motion vectors to
influence the less confident ones.

6. Repeat steps 2-5 for the next finer resolution, using the
current corrected motion field as the initial input. In
practice the algorithm stops at level 2 since the CWT
coefficients at level 1 are too noisy and the resulting mo-
tion field is not reliable.

7. Reconstruct the distorted image with motion compen-
sation using overlapping blocks [11]. Cubic splines are
used to obtain image intensities with sub-pixel shifts.

Although we require a reference image for the registra-
tion, this does not pose a serious problem. As long as we use
an undistorted copy of the watermarked image as the refer-
ence, we do not need to reveal the original, unwatermarked
host image. Fig. 3 shows an example of image registration.
It is not possible to reconstruct the boundary regions since
they are truncated by StirMark. Nevertheless, the registra-
tion has almost completely inverted the distortion. We found
that the watermark can be successfully extracted from the re-
constructed image.

5 CONCLUSIONS

In this paper, a watermarking algorithm in the complex
wavelet domain is proposed. We then model watermarking
as a communication process and it is shown that the CWT do-
main has relatively higher capacity than both the spatial and
the DWT domains. The Gabor-like nature of CWT filters al-
lows us to adapt the watermark strength to the local image ac-
tivity better than the DWT filters, which are real and separa-
ble. On the other hand, the approximate shift-invariant prop-
erty of the CWT coefficients allows us to infer pixel shifts,
which can be used to invert geometric distortion. A registra-
tion algorithm based on this idea is described in this paper.
The CWT also lacks blocking artefacts, which are present
in block-based transforms like the DCT. All these proper-
ties suggest the CWT would be a potentially good domain
for watermarking. Current work is directed towards investi-
gating the effect of wavelet-based denoising on watermarked
images, and the possibility of blind image registration.
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