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ABSTRACT

In this paper a novel visualisation method for diffusion ten-
sor MRI datasets is introduced. This is based on the use
of Complex Wavelets in order to produce “stripy” textures
which depict the anisotropic component of the diffusion ten-
sors. Grey-scale pixel intensity is used to show the isotropic
component. This paper also discusses enhancements of the
technique for 3D visualisation.

1. INTRODUCTION

Diffusion Tensor MRI (DT-MRI) is a relatively new medi-
cal imaging method which permits the visualisation of white
matter brain structures in vivo. It involves the calculation
of the diffusion of water along different directions, which
is described by a 3x3 symmetric and positive definite ten-
sor. This directionality property allows the DT-MRI data to
be used in a technique called “tractography” to reconstruct
white matter fibre tracts within the brain.

Using matrix algebra, it is possible to reduce the dimen-
sionality of the tensor and to obtain several scalar and vec-
tor measures of diffusion. These include various weighted
quantities involving the tensor’s eigenvectors and eigenval-
ues. Several authors have proposed ways of visualising the
DT-MRI data using these measures [1], [2], [3]. What is
of particular importance is the measure of the isotropic and
anisotropic component of diffusion at each voxel. By isotro-
pic, we term the component of diffusion which is equal in
all directions and by anisotropic we term the measure of dif-
fusion which is concentrated on one dominant direction.

In this study we first briefly introduce some common
methods of tensor visualisation. We then proceed to pro-
pose a novel method which makes use of the Dual Tree
Complex Wavelet Transform (DT-CWT) [4], [5]. The al-
gorithm we have developed produces images which show
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both the isotropic and the anisotropic component in a way
that makes it easy for the human eye to interpret. This can
also follow fibre tracts in 2D with high accuracy and com-
putational efficiency.

2. METHOD

2.1. DT-MRI Data Visualisation

A DT-MRI dataset consists of a specified number of slices
of the brain with a given resolution. We used a dataset
consisting of 8 slices (each 10mm apart) with resolution
128x128 and with intervoxel spacing 1mm. Each voxel con-
sists of a 2nd order Cartesian tensor, whose elements repre-
sent the diffusion gradient of water along different direc-
tions, as shown in equation (1).

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 (1)

This tensor is symmetric along its main diagonal and is
also positive definite, as negative diffusion (negative eigen-
values) has no physical meaning. Hence this tensor has six
degrees of freedom plus the positive definite constraint.

In order to reduce the dimensionality of the data, each
tensor is diagonalised. A computationally efficient way of
diagonalising a DT-MRI dataset is demonstrated in [6]. The
resulting sorted eigenvalues and eigenvectors can be used
to obtain measures of the isotropy and anisotropy within
the dataset. A useful way of representing the tensor is as a
3-dimensional ellipsoid whose 3 principal axes are defined
by the tensor’s eigenvectors scaled by their corresponding
eigenvalues. In this sense, the voxels can be classified into
three main categories: isotropic or spherical (when all eigen-
values are approximately equal), anisotropic or cigar-like
(when one eigenvalue is distinctly larger than the other two)
and finally flying saucer-like (when one eigenvalue is dis-
tinctly smaller than the other two). The latter case is very
rare in DT-MRI.



In the existing DT-MRI literature [3], [2], the most com-
mon quantities used when analysing diffusion tensor data
are the mean diffusion (D) defined as:

D =
1
3

tr(D) =
λ1 + λ2 + λ3

3
(2)

where “tr” represents the trace of the tensors andλ1 > λ2 >
λ3 are the sorted eigenvalues, and the fractional anisotropy
(FA), defined as:

FA =

√
3
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(3)

In our analysis we will instead use three alternative quan-
tities to characterise the diffusion tensors, which we will
term the isotropic component (Xis) and the anisotropic com-
ponent (Xan) defined as:

Xis =
λ2 + λ3

2
(4)

|Xan| = λ1 −Xis (5)
−−→
Xan = |Xan| × −→e1 (6)

where−→e1 ,−→e2 and−→e3 are the tensor’s eigenvectors. Note that
the polarity of the eigenvectors is arbitrary.

There is an existing method of vector visualisation. This
involves creating an rgb image in which the red, green and
blue image components are the absolute value of the x,y
and z vector components of

−−→
Xan respectively [2], but we

now propose an improvement on this.

2.2. Use of the Complex Wavelet Transform

After obtainingXis and Xan, the problem of visualising
the DT-MRI data is equivalent to the problem of visualis-
ing a vector field along with a scalar function on the same
plot. The DT-CWT is well suited to do this, due to its good
directional selectivity [4], [5]. Other transforms, such as
curvelets, could have been used, but the particular charac-
teristics of the DT-CWT make it well suited to this applica-
tion.

Figure 1 shows the impulse response of the six differ-
ent directional subbands available at each level of the DT-
CWT. It can be clearly seen that these take the form of
stripes pointing in the directionθd of the specific subband
(i.e. at±15o, 45o, 75o). The DT-CWT can normally be used
to analyse any given image in terms of its directional com-
ponents (edges) at each orientation.

We can hence generate a scalar “stripy” image which is
a representation of the vector field. This can be done by
calculating the components of the vectors along the differ-
ent subband orientations and exciting the subbands of an
inverse DT-CWT by a suitable amount. Furthermore, if
we include a scalar field as the scaling function in the in-
verse DT-CWT, we can superimpose the “stripiness” on the
smooth grey levels, representing the scalar values.

Fig. 1. Impulse responses of different directional subbands
in the DT-CWT

The equation which we use to get the component of each
CWT subband from each vector

−−→
Xan is:

−−→
Xan = X i + Y j + Zk (7)

θX = arctan
Y

X
(8)

φd = θX − θd (9)

Xd =

{
|Xan| × cos2(2φd) , if |φd| < 45o,

0 , otherwise.
(10)

Wd,i = Xd × e(α+θlag)j (11)

whereφd is the angle formed between each vector and the
direction of excitation of a particular subband d andWd,i

is the resulting wavelet coefficient at subband d and point i.
Note that a squared cosine is used, and the angleφd is dou-
bled in order to make the excitation of the subbands more
directionally selective. This rule was found to give a good
tradeoff between selectivity and interpolation as a function
of θx.

The angleα is a random variable uniformly distributed
in the range 0 to2π. This angle is the same for allWd,i with
samei but differentd (i.e. all wavelet coefficients originat-
ing from the same vector but belonging to different direc-
tional subbands).

By looking at figure 1 it can be seen that the impulse
responses for different CWT subbands are not aligned. This
means that the peak for each impulse response does not oc-
cur at the same point. Since proper alignment of the stripes
is needed, a phase lag has to be added to the CWT inputs in
order to align all the responses. This phase lag is different
for each CWT subband and was calculated experimentally.
This is denoted asθlag in equation 11.

The fact that we initially use random phases for all wave-
let coefficients causes many of the stripes not to line up. One
way of tackling this is to iteratively apply the forward and
inverse CWT, by exciting the subbands such that the magni-
tude of all wavelet coefficients is kept constant to the initial
calculated value, but the phase of the wavelet coefficients
is the phase after the previous iteration. It was found ex-
perimentally that this process causes the resulting inverse
CWT image to have stripes which are more aligned to each
other. This is due to the fact that the DT-CWT is a redun-
dant transform. Thus there is overlap between adjacent ba-
sis functions in the CWT domain. This means that if we
move from the spatial domain back to the CWT domain,



the phases of wavelet coefficients in adjacent subbands will
tend to be “pulled” into alignment. If we also apply the
magnitude constraint discussed above, we can achieve an
improved alignment of the stripes.

It was found experimentally that after 5 or 6 iterations of
the above process good alignment of the stripes is achieved
1. In this iterative algorithm we have only used a 1 level
inverse and forward CWT in order to reduce computational
load. For the final iteration however, we apply a 2-level
inverse CWT to get a higher resolution result. The finer
level has six completely empty subbands and the coarser
level is computed as described above. This is done in order
to increase the size of the image by 4 and make the stripes
more easily discernible.

Figure 2 shows the result of applying the above algo-
rithm with 5 iterations on the fourth slice of our dataset. The
stripes are lined up quite well and they give a good represen-
tation of the horizontal fibre tracts within the brain. Grey-
scale intensity represents isotropic diffusion, while “stripi-
ness” represents horizontal anisotropic diffusion.

It can be noted that there are regions within the image
where the stripes seem to have random directions. In these
regions the vector field has a large vertical component and
thus a good way of representing this vertical information is
needed.

Fig. 2. “Stripy” representation of the fourth slice of the
dataset
2.3. Representation of Vertical Information

We decided to show the vertical component in two ways.
Firstly, a red-scale image for each slice is generated,

which represents the vertical component of each principal
eigenvector. This is added to the grey-scale isotropic inten-
sity image and hence we can show both quantities simulta-
neously.

1Unless the initial random phase causes stripes to be in antiphase

Secondly we decided to represent stripes with a verti-
cal direction, by using a chequer-board stripy pattern. This
is done by superimposing stripes which are perpendicular
to the stripes calculated in the previous sub-section. The
amount of perpendicular stripes added to the parallel ones
depends on the angle between the principal eigenvector and
the horizontal plane. If this angle is0o then no perpendicu-
lar stripes are added. If this angle is90o the amount of par-
allel and perpendicular stripes is equal and hence the stripes
do not convey any horizontal directional information. The
amount of parallel and perpendicular “stripiness” is given
by two gain factors:Gh (for parallel stripes) andGv for
perpendicular stripes. This is shown in the following for-
mula: −→e1 = xi + yj + zk (12)

θvert = arctan
z√

x2 + y2
(13)

Gh = cos
θvert

2
× |Xan| (14)

Gv = sin
θvert

2
× |Xan| (15)

The Gain factorsGh andGv are multiplied with unit
vectors in a parallel and normal direction (respectively) to
the direction of the horizontal components. These are then
separately fed into the algorithm, instead ofXan described
in the previous sub-section. The resulting images are added,
together with the grey-scale image representing isotropic
diffusion and the red-scale image representing vertical aniso-
tropic diffusion. An example of this technique, as applied
to the fourth slice of our dataset is shown in figure 3.

As can be seen the proposed method can generate medi-
cal images which are easy to interpret. The “stripy” patterns
give a very fine detail of the directionality of the white mat-
ter tracts. This is especially good in the region of the brain
cortex, in the so-called “association fibers”, joining adjacent
sulci. The low amplitude stripes near the cortical surface
(skull boundary) show that relatively small anisotropies can
be observed quite clearly. This is not the case with the rgb
image shown in figure 4. This shows a distinct advantage of
our method in terms of offering complementary information
which facilitates the visualisation of the 3D diffusion tensor.

3. EXTENDING THE METHOD TO 3D

We have shown how to use our visualisation method to pre-
sent DT-MRI data in 2D. If we want to extend this method
into three dimensions, we must first find a good way to in-
terpolate between existing slices of our dataset.

The obvious way of doing this is to iteratively perform
simple averaging of the tensor elements between adjacent
slices. The big problem with this method is that it will blur
the interpolated image.

We can instead take advantage of the anisotropic com-
ponents of the 3D tensors in the dataset. This requires find-



Fig. 3. Representation of the fourth slice of the dataset with
vertical information

ing a pair of voxels in adjacent slices, whose principal eigen-
vector points to the same voxel in the interpolated slice.
Having found this pair of voxels we then compute its eigen-
values and eigenvectors as some form of weighted mean
of the eigenquantities of the top and bottom voxels. If no
two vectors line up properly for a given interpolated voxel,
we can just perform a least squared error calculation in its
neighborhood. This technique is currently under develop-
ment.

The final aim of this project is to extend the existing
method into 3D. The 3D DT-CWT has 28 subbands dis-
tributed on the surface of a hemisphere and their impulse
responses generate directional planar-like structures. In or-
der to generate filament-like structures, we need to excite
two subbands whose planes of impulse response are per-
pendicular to each other and to a given anisotropic vector.

This is quite a challenging task. It requires efficient
computer memory management and a good grasp of 3D
CWT visualisation and forms the remaining part of this proj-
ect.

4. CONCLUSIONS

We have presented a novel way of visualising DT-MRI data
based on the use of the dual tree CWT. This method is easy
to implement, it is computationally efficient and it produces
images which are easy to physically interpret.
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Fig. 4. Representation of the DT-MRI data using the stan-
dard rgb technique, where red is x, green is y, blue is z
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