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ABSTRACT

This paper proposes a new method of designing finite-
support wavelet filters, based on minimization of energy in
key parts of the frequency domain. In particular this tech-
nique is shown to be very effective for designing families
of filters that are suitable for use in the shift-invariant Dual-
Tree Complex Wavelet structure that has been developed by
the author recently, and has been shown to be important for
a range of image processing applications. The Dual-Tree
structure requires most of the wavelet filters to have a well-
controlled group delay, equivalent to one quarter of a sam-
ple period, in order to achieve optimal shift invariance. The
proposed new design technique allows this requirement to
be included along with the usual smoothness and perfect re-
construction properties to yield wavelet filters with a unique
combination of features: linear phase, tight frame, compact
spatial support, good frequency domain selectivity with low
sidelobe levels, approximate shift invariance, and good di-
rectional selectivity in two or more dimensions.

1. INTRODUCTION

The Dual-Tree Complex Wavelet Transform (DT CWT), as
shown in fig. 1, was introduced in [1] in order to provide
the following significant improvements over the usual fully-
decimated discrete wavelet transform (DWT): approximate
shift invariance, and good directional selectivity for images
and other multidimensional signals. The penalty paid for
this is a 2:1 increase in redundancy per signal dimension (ie
4:1 for 2D signals, 8:1 for 3D etc), but this is much less
redundant than the undecimated (or continuous) DWT. The
redundancy is introduced through the addition of a second
tree of subband filters (treeb), shown below the dashed line
in fig. 1.

In [1] we showed that the key to obtaining shift invari-
ance from the dual tree structure lies in designing the filter
delays at each stage, such that the lowpass filter outputs in
treeb are sampled at points midway between the sampling
points of the equivalent filters in treea. This requires a delay
difference between thea andb lowpass filters of 1 sample
period at tree level 1, and of12 sample period at subsequent
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Fig. 1. Dual-Tree Complex Wavelet Transform over 3 levels.

levels. At level 1 we can use any standard orthogonal or
bi-orthogonal wavelet filters, and produce the required de-
lay shift trivially by insertion or deletion of unit delays, but
at further levels the12 sample delay difference is more dif-
ficult. In [2], Selesnick showed that these lowpass delay
constraints produce a Hilbert pair relationship between the
wavelet bases for the two trees. This leads naturally to the
interpretation of the outputs from treesa andb as the real
and imaginary parts respectively ofcomplexwavelet coeffi-
cients.

In [3, 4] we introduced Q-shift filters for levels 2 and
below, in order to give the dual-tree improved orthogonal-
ity and symmetry properties over an earlier form. This pa-
per describes a new and effective design technique for op-
timizing the Q-shift filters, particularly for image process-
ing applications where linear-phase is an important prop-
erty of the resulting complex wavelets and scaling func-
tions. Our previous published design approach, proposed
in [3, 4], was based on optimization of a set of rotationsθi

in a polyphase matrix factorization of the filters, but this is
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Fig. 2. 2-band analysis and reconstruction filter banks.

a highly non-linear problem space and only works well for
relatively short filters (typically less than 14 taps). The new
technique works quickly and effectively for filters of lengths
up to 50 or more taps and provides considerable flexibility
to the designer.

An alternative technique, which is based on a flat-delay
allpass filter and is very neat, is given in [5], but this does
not produce linear-phase complex wavelets and so is less
attractive for image processing applications.

2. FILTER REQUIREMENTS FOR Q-SHIFT
COMPLEX WAVELETS

The key properties required for the Q-shift filters are that
they should provide a group delay of either1

4 or 3
4 of a sam-

ple period, while also satisfying the usual 2-band filterbank
constraints of no aliasing and perfect reconstruction. Since
the filters are even-length, the time reverse of a1

4 sample de-
lay filter is a 3

4 sample delay filter, giving the required delay
difference of12 sample if the filter and its time reverse are
used in treesa andb respectively. This then leads to com-
plex transform bases in which the imaginary part (from tree
b) is the time reverse of the real part (from treea), and so
the complex bases exhibit conjugate symmetry (with a45◦

rotation) about their mid points and hence have linear phase
responses, even if the real and imaginary parts separately
arenot linear-phase.

Additionally we believe that it is advantageous in many
emerging applications of complex wavelets that the Q-shift
filters should be orthogonal (not just bi-orthogonal) to make
the transform a tight frame which conserves energy from
the signal to the transform domain. This has the further
advantage that the same filters (and their time-reverses) can
be used in the forward and inverse transforms.

The design problem can now be simplified to designing
the four even-length filters of the 2-band filter banks of fig. 2
such that they provide:

1. No aliasing.
2. Perfect reconstruction
3. Orthogonality
4. Approximate group delay of14 sample forH0.
5. Good smoothness properties when iterated over scale.

To achieve the first three of these we have the standard
conditions:

G1(z) = zH0(−z) ; H1(z) = z−1G0(−z) (1)
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Fig. 3. Impulse response ofHL2(z) for n = 6. TheH0 andG0

filter taps are shown as circles and crosses respectively.

H0(z)G0(z) + H0(−z)G0(−z) = 2 (2)

G0(z) = H0(z−1) (3)

where we assume that each filter is of length2n taps and the
H filter terms extend fromzn−1 to z−n, while theG filters
extend fromzn to z1−n.

To achieve the fourth property, we design a length4n
linear-phase (symmetric) lowpass filter,HL2(z), to operate
at twice the required sampling rate, and then subsample it
by 2:1, as shown in fig. 3. This filter will have a delay of1

2
sample, and, as long as it has negligible gain between1

4 and
1
2 of its sample rate, then the subsampled filter,H0(z), will
have half of its delay (ie14 sample) and twice its bandwidth.
We defineHL2 in terms ofH0 andG0 as follows:

HL2(z) = H0(z2) + z−1H0(z−2)
= H0(z2) + z−1G0(z2) (4)

Finally, to ensure the fifth property (smoothness), we
must ensure that the stopband ofH0(z) at each scale sup-
presses as much energy as possible at frequencies where the
unwanted passbands appear from subsampled filters oper-
ating at coarser scales. It is sufficient to consider the com-
bined frequency response ofH0 over just two scales, which
is

H0(z)H0(z2)|z=ejω = H0(ejω)H0(e2jω) (5)

If the passband and stopband ofH0(z) cover0 ≤ ω ≤ ωp

andωs ≤ ω ≤ π respectively, and there is a transition band
in between, then the unwanted transition and pass bands of
H0(z2) will extend fromπ − ωs

2 to π. If the stopband of
H0(z) is to suppress these unwanted bands fromH0(z2)
then

ωs ≤ π − ωs

2 .
.
. ωs ≤ 2π

3 (6)

The perfect reconstruction and orthogonality conditions
of equ. (2) and (3) require thatH0(z) H0(z−1) must have no
terms inz2k (k integer) except the term inz0. This in turn
implies thatH0(z2)H0(z−2) must have no terms inz4k ex-
cept the term inz0. It is then straightforward to use equ. (4)
to show thatHL2(z) HL2(z−1) must have no terms inz4k

except the term inz0. Hence we can include the perfect
reconstruction requirement as a direct design constraint on
HL2(z)HL2(z−1) (= H2

L2(z), sinceHL2 is symmetric).
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2) (magenta), and the gain correction matrixT (red)
for n = 6 (12 taps forH0).

3. OPTIMIZATION FOR MINIMUM SQUARED
ERROR IN THE FREQUENCY DOMAIN

We have now reduced the ideal design conditions for the
length4n symmetric lowpass filterHL2 to be:

1. Zero amplitude for all the terms ofH2
L2(z) in z4k ex-

cept the term inz0, which must be unity;

2. Zero (or near-zero) amplitude ofHL2(ejω) for the
stopband,π3 ≤ ω ≤ π.

Condition 1 is a set of quadratic constraints on the el-
ements of the filter tap vectorhL2, while condition 2 is a
set of linear constraints onhL2, evaluated at a sufficiently
fine set of frequencies covering the stopband. Together they
form an overdetermined set of equations for the2n un-
knowns that form one half of the symmetric vectorhL2. If
the constraints were all linear, the least mean square (LMS)
error solution could be found in the standard way using the
pseudo-inverse of the matrix which defines the equations.

To deal with the quadratic constraints, we take the
straightforward approach of linearising the problem and us-
ing an iterative solution. IfhL2 at iterationi is given by
hi = hi−1 + ∆hi, then, since convolution (∗) is commuta-
tive,

hi ∗ hi = (hi−1 + ∆hi) ∗ (hi−1 + ∆hi)
= hi−1 ∗ (hi−1 + 2∆hi) + ∆hi ∗∆hi (7)

If ∆hi is assumed to become small asi increases, the final
term can be neglected and the convolution is expressed as a
linear function of∆hi.
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Fig. 5. Frequency responses ofHL2(z) for n = 8 (blue),n = 12
(green) andn = 16 (red). Each filter has one predefined zero at
ω = π

2
and one atω = π.

Hence the design problem can now be expressed as –
solve for∆hi such that:

C (hi−1 + 2∆hi) = [0 . . . 0 1]T (8)

F (hi−1 + ∆hi) ' [0 . . . 0]T (9)

whereC is a matrix which calculates every fourth term in
the convolution withhi−1, andF is a matrix which evalu-
ates the Fourier transform atM discrete frequenciesω from
π
3 to π (typically M ' 8n to ensure that all sidelobe max-
ima and minima are captured reasonably accurately). Note
that only one side of the convolution is needed inC, since
the result is symmetric about the central term. Also, the
columns ofC andF can be combined in pairs so that only
the first half of the symmetric∆hi need be solved for.

In typical applications of complex wavelets, it is often
more important to ensure high accuracy in the perfect recon-
struction condition than to produce highly smooth wavelets.
This why we have shown equ. (8) as an equality while
equ. (9) is only an approximation. Within an LMS envi-
ronment, we can produce high accuracy solutions to some
equations by scaling these up by a factor,βi, which is pro-
gressively increased withi. Hence we may now express the
optimisation as the iterative LMS solution of:

[
2βiC
F

]
∆hi =

[
βi(c−C hi−1)
−F hi−1

]
(10)

hi = hi−1 + ∆hi (11)

wherec = [0 . . . 0 1]T . Typically we useβi = 2i, and
iterate over about 20 iterations, so that reconstruction errors
are of the order of2−20 ' 10−6 of smoothness errors.



−60 −40 −20 0 20 40 60

0

0.05

0.1

Sc. funcs.

−60 −40 −20 0 20 40 60

−0.05

0

0.05

0.1

Wavelets

Real Imaginary

Magnitude

−60 −40 −20 0 20 40 60

0

0.05

0.1

Sc. funcs.

−60 −40 −20 0 20 40 60

−0.05

0

0.05

0.1

Wavelets

Real Imaginary

Magnitude

Fig. 6. Scaling functions and wavelets at level 4 forn = 6. Red
and blue curves show the real and imaginary parts, and the green
curves show the magnitudes of the complex waveforms.

There are two final refinements. One takes account of
the transition band gain when evaluating the frequency do-
main errors. The other allows predefined zeros to be in-
serted atz = −1 (ω = π) in eitherH0(z) or HL2(z).

To include transition band effects, we scale the rows ofF
by the gain ofH0(z2)/H0(1) at frequencies corresponding
to π

3 ≤ ω ≤ π
2 in the frequency domain ofHL2. Since

HL2 has twice the sampling rate of the filterH0, we must
use the substitutionz = e2jω in H0(z2). For π

2 < ω ≤ π
we use a unit scaling of the rows ofF because all of these
components must be kept small to avoid errors when we
subsampleHL2 by 2 to getH0. The function which scales
F is shown in red in fig. 4. This scaling down ofF allows
larger stopband gains at frequencies just aboveπ

3 where the
transition band of the next-level filter (H0(z2) in equ. (5) )
provides some additional attenuation.

To insert predefined zeros inH0(z) or HL2(z), we first
note from equ. (4) that a zero atz = ejπ in H0 will be pro-
duced by a pair of zeros atz = e±jπ/2 in HL2. We can force
zeros inHL2 by forming a convolution matrixHf such that
Hf h′i = hi, whereh′i is the coefficient vector of the filter
which represents all the zeros ofHL2 that arenot prede-
fined,Hf produces convolution with the predefined zeros,
andhi is the coefficient vector ofHL2, as before.Hf can
be included in equ. (10,11), so that we now solve for∆h′i
at each iteration. We can also incorporate a diagonal gain
matrixTi−1 to represent the transition band gain correction
to get

[
2βiC
Ti−1F

]
Hf ∆h′i =

[
βi(c−C hi−1)
−Ti−1F hi−1

]
(12)

hi = hi−1 + Hf ∆h′i (13)
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Fig. 7. Scaling functions and wavelets at level 4 forn = 12.

The incorporation of predefined zeros, allows the designer
to control the amount of flatness in key regions of the fre-
quency domain and gives additional design flexibility.HL2

always has at least one zero atω = π, because it is an even-
length symmetric filter.

4. RESULTS

Figures 4 and 5 show the frequency responses of the op-
timized filter HL2 for n = 6, 8, 12 and16. Note the im-
provement in stopband attenuation asn is increased. Figure
7 shows the improved smoothness of the resulting level-4
bases, whenn = 12 compared withn = 6 (fig. 6). Many
more results could have been shown, to illustrate the wide
range of tradeoffs available with this design method and
comparisons with other methods but space limitations do
not permit this.

Papers by the author and Matlab code for this algorithm
are available at http://www-sigproc.eng.cam.ac.uk/˜ngk/.
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