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1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a specific modality of MRI which is based on the calculation
of the diffusion of water along different directions within the brain. It can be used efficiently to map white matter
tracts within the human brain. In previous work [1], we have shown how the Dual Tree Complex Wavelet Transform
[2], [3] can be used to visualise DT-MRI data in 2 dimensions. Our method produces images which contain more detail
than images developed using standard techniques [4], [5] and are also more easy to physically interpret. In this paper
we will present an extension of this method to 3 dimensions.

2 Method and Results

2.1 Preliminary Tensor Analysis

A DT-MRI dataset consists of a 3D array of voxels, for each of which a 3x3 diffusion tensor is calculated. By
diagonalising each of these diffusion tensors we can obtain their sorted eigenvalues and corresponding eigenvectors.
A computationally efficient way of calculating the eigenvectors and eigenvalues of a DT-MRI dataset is described in
[6]. The eigenvectors show the main directions of diffusion and the relative size of the eigenvalues is a measure of
preferential diffusion in a given direction [4], [5].

We decided to split diffusion into two components: a scalar isotropic component (Xis) and a vectorial anisotropic
component (

−−→
Xan). The value of Xis is equal to the average of the two smaller eigenvalues and the magnitude of

−−→
Xan

is equal to the difference of the largest eigenvalue from Xis. The direction of
−−→
Xan is along the eigenvector with largest

eigenvalue.

2.2 2D Visualisation

In the method described in [1] that we developed, we are using the 2D Dual Tree Complex Wavelet Transform to
visualise the data. The 2D DT-CWT is a multilevel transform that has 6 directional subbands per level. Each of these
subbands picks out details of an image in different directions (i.e. at ±15o, 45o, 75o) [3].

For each slice in a DT-MRI dataset, we can calculate the component of the anisotropic vector field along each
CWT subband direction. We then feed these components into their corresponding subbands (using random values for
the complex phase) and we also feed the isotropic component into the LoLo subband. By then applying the inverse
CWT, we will get an image which will show isotropic diffusion as grey-scale pixel intensity and anisotropic diffusion
as “stripiness”. We then apply the forward and inverse CWT iteratively for about five iterations, in order to achieve
better phase alignment of the “stripes”. In the final iteration we apply 2 levels of inverse CWT in order to increase
the resolution of the image by 2 in each dimension. This makes details more readily discernible.

We also need to include the anisotropic vertical component in the image. We do this in two ways. We firstly
superimpose a red-scale image on our grey-scale image, where red pixel intensity represents the vertical component.
Secondly, we superimpose an image with stripes which are perpendicular to the anisotropic component in order to
synthesise an “end-on” view of stripes that are almost normal to the image plane. The amount of perpendicular stripes
is equal to the amount of parallel ones if anisotropy is completely vertical and it is zero if anisotropy is completely
horizontal.

Figure 1 shows the result of our 2D method applied to the 4th slice of a 128x128x8 DT-MRI dataset of a healthy
person. It can be seen that our method can provide useful detail even in low anisotropy regions, such as close to the
cortical surface (skull boundary).
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Figure 1: Representation of the fourth slice of the dataset in 2 dimensions

2.3 Interpolating between slices

ur initial dataset has 8 slices each with 128x128 voxels. The spacing between slices is 10mm and the intervoxel spacing
is 1mm. Hence we decided to increase the number of slices from 8 to 64 and a number of different interpolation
strategies was considered.

The simplest strategy is averaging. This consists of averaging the eigenvalues of the top and bottom slice to compute
the eigenvalues of the interpolated slice. The principal eigenvectors of the interpolated slice are then computed by
just adding the principal eigenvectors of the top and bottom slices and normalising. The major disadvantage of this
method is the fact that averaging causes blurring of the edges, thus reducing image quality.

The second strategy that was considered made use of a least squared error criterion. This consists of computing
an interpolated voxel by looking at its neighbouring voxels in the top and bottom slices. For each interpolated voxel,
the squared error (difference) of each eigenquantity is computed for pairs of voxels on the top and bottom slices, in a
small square neighbourhood near the interpolated voxel. The pair of voxels that gives the minimum squared error is
then used to compute the interpolated voxel’s eigenquantities. This method, however seems to give worst results than
averaging and was therefore not used. This was probably due to the fact that original slice spacing is much larger
that intervoxel spacing. This method probably works better for smaller slice spacings.

The final method that was considered takes advantage of the anisotropic components of the 3D tensors in the
dataset. This requires finding a pair of voxels in adjacent slices, whose principal eigenvector points to the same voxel
in the interpolated slice. Having found this pair of voxels we then compute its eigenvalues and eigenvectors as some
form of weighted mean of the eigenquantities of the top and bottom voxels. If no two vectors line up properly for
a given interpolated voxel, we can just perform simple averaging. A threshold, defined by the dot product of each
vector with the vector connecting the interpolated voxel to the original voxel, is used to decide if the vector criterion
or simple averaging will be used. This technique only seems to work if this threshold is very large, i.e. the only vectors
used are those that almost perfectly line up. Otherwise, it tends to flare up the areas with a large vertical component.
It is also not efficient in calculating horizontal vectors.

We decided to initially use the simple averaging technique, despite its drawbacks. This was because the least
squared error technique does not work in this case and the vector technique is still under development. However, an
ideal interpolating technique should make use of the third vectorial method, as well as some sort of method of finding
voxels whose eigenvectors are parallel.

2.4 3D Visualisation

By applying the previous method to a given DT-MRI dataset, we obtain a 3D set which contains useful information
only parallel to the xy plane. The cross sections parallel to the xz or yz planes do not give us good images. The reason
for this is the fact that our method is separately applied to each slice. In order to overcome this we must develop a
transformation which is applied to the whole dataset simultaneously. Hence for 3D visualisation we make use of the
3D DT-CWT.

The 3D DT-CWT has 28 directional subbands per level, oriented approximately uniformly over the surface of a
hemisphere (7 bands per quadrant). Each of these subbands has a planar-like impulse response.

For each anisotropic vector in the dataset, we want to generate a filament-like structure (similar in cross-section
to the criss-cross pattern used previously for the vertical anisotropic component). To do this we excite two subbands,
whose planes of impulse response both contain the given anisotropic vector and are approximately perpendicular to
each other. One strategy is to compute the dot product of each anisotropic vector with each directional vector for the
28 subbands and then select the subband which gives us the smallest dot product value. Then we use a lookup table
to find the subbands which are perpendicular to the one selected and out of those select the one which has the smallest
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dot product with the given anisotropic vector. These two subbands are then excited with an amount proportional to
the anisotropic magnitude.

As before, the isotropic component is fed into the LoLo subband and we iteratively apply the forward and inverse
CWT to achieve better phase alignment of the filaments.

We found however, that the output images of this algorithm are not satisfactory. This is due to two main reasons.
The first one is the fact that we are using all available highpass subbands, including the HiHiHi bands, which increase
the amount of high frequency information within the image, thus causing distortion. The second one is the fact that
the problem of finding two planes perpendicular to each other which contain a given vector does not have a single
solution, as the normals of the two planes can rotate about the axis defined by the given vector. Thus small changes
in the anisotropic direction can cause large changes in the output image, which is undesirable.

We thus need a way of interpolating between subbands which is unambiguous and which produces images that
change smoothly with direction.

2.5 3D DT-CWT Subband Interpolation Strategy

In order to minimise ambiguities, the number of subbands used must be reduced. Hence it was decided to make use
only of the LHH, HLH, HHL subbands (just 3 per quadrant of a hemisphere, making 12 in total). The normals of the
impulse responses of these subbands are the vertices of the structure shown in figure 2. This structure is in essence a
cube, with a tetrahedral volume removed from each of its corners and having six octagonal sides.
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Figure 2: Structure depicting used subband normals

Suppose we want to visualise an anisotropic vector that has a direction parallel to vector V in figure 2. In order
to do that, we draw the plane whose normal is V and which passes through the origin O. In the above case this plane
is P1. The points of intersection of this plane are then computed (I1, I2, I3 and I4 in figure 2). Note that due to the
spherical symmetry of the 3D DT-CWT subband structure, points I1 and I3 are identical and so are I2 and I4. These
intersection points show which subbands have to be used to visualised a specific anisotropic vector. For this particular
example, we can use subbands HHL1, HHL2, HHL3 and HHL4 to synthesize V.

The number of edge intersections indicates what proportion of the total anisotropy must be allocated to each pair
of subbands in each edge. In this case there are essentially two edge intersections (due to symmetry), thus each edge
gets half the total anisotropy. This edge components is then divided between the two subbands using as a weighting
factor the exact position of the intersection point. Hence for V HHL2 will get a higher weighting than HHL1 and
similarly HHL3 will get a higher weighting than HHL4. If for example V was parallel to the z-axis (i.e. vertical), the
four subbands would each get a weighting of a quarter.

The method described above works well for vectors which lie close to the x, y or z axes. However, vectors which
are not close to a particular axis are not very well represented. This is especially true for vectors which define a line
that cuts through any of the four triangular sides of the structure (i.e. which have almost equal amounts of x, y and
z components). Some steps can be taken to avoid this ambiguity, for example we can ignore edges that are almost
parallel to the plane defined by a specific vector. This technique is currently under development.
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We then apply the above interpolation method to each anisotropic vector within the DT-MRI dataset, weighing
each subband magnitude by the specific anisotropic vector’s magnitude. We can then apply the iterative technique
described for 2D to get an output image of the DT-MRI dataset.
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Figure 3: Output images for 3D technique

Figure 3 shows two sets of slices viewed along the x (top right), y (bottom left) and z (top left) axes for a 72x99x64
cuboid within our original dataset. The algorithm interpolates the dataset up to a cuboid size of 288x396x256. Note
how the top left output image for the set of slices on the left is very similar to figure 1. This shows that our 3D
technique is a natural evolution of the 2D technique.

By looking at the images of figure 3, it is evident that our method produces criss-cross patterns for groups of
vectors viewed end on. This can be clearly seen in the bottom left subimage of the left side set of slices. It is also
evident that if these same vectors are viewed along a direction perpendicular to their direction, they create “stripy”
patterns. These two properties suggest that our method creates filament-like structures for anisotropy vectors, as
desired. Even though stripe continuity is not always guaranteed, image quality is adequate for viewing purposes.

3 Conclusions

We have presented an iterative algorithm which can be used to visualise Diffusion Tensor Magnetic Resonance Imaging
data in three dimensions. The distinct advantage of our method compared to standard techniques is that it contains
both the isotropic and anisotropic components of diffusion on the same image. Using this method a high level of detail
can be achieved and the images are also easy to physically interpret.
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